
1. Introduction*

In Cloud environments a task scheduling is a

process that manages and maps the execution

of  inter-dependent  tasks  on  the  data  centers

(resources) [6]. It allocates appropriate tasks to

the virtual resources which is virtual machines

(VMs) so the execution is often completed to

satisfy  objective  functions  imposed  by

customers. Efficient task scheduling algorithm

will have important impact on the performance

of the system. The scheduling problem in cloud

computing can be generalized as an unrelated

parallel  machine  with  different  speeds  and

precedence constraints. We consider VMs as an

unrelated  parallel  machine  because  the  cloud

computing  providers  offer  their  services

virtually  by  sharing  their  physical  resources

*
  This  paper  recalls  the  Task  Scheduling  Genetic  Algorithm

(GATS),  published  in  [20].  In  the  current  paper,  we  improve

GATS and we propose an advanced version GATS+. Moreover,

we  propose  two new algorithms:  Genetic  Algorithm Based on

Cut-point (GACP) and Genetic Algorithm Based on The List of

Available  Jobs  (GAAV),  as  well  as  its  improved  version

(GAAV+).  We also  tested  and  compared  different  versions  of

these genetic algorithms (GAAV -> GATS, GAAV+ -> GATS,

GATS -> GAAV, GATS -> GAAV+).

through a large number of virtual machines in

parallel. These virtual machines, allocated with

different  CPU  capacities,  so  it  can  be

considered as unrelated parallel machines.

In cloud computing users may face hundreds of

thousands of virtualized resources to utilize. It

is hard to allocate user’s tasks on the available

resources. Due to the virtualization properties,

cloud  computing  leaves  task  scheduling

complexity to the virtual machine layer through

resource virtualization.

Hence,  to  allocate  the  resources  to  each  task

efficiently,  scheduling  plays  more  important

role in cloud computing [3]. It is quite difficult

to achieve an optimal solution with traditional

optimization  methods.  Mathematical

optimization  techniques  can  give  an  optimal

solution  for  a  reasonably  sized  problem,

however, in the case of a large scale problem,

their  application  is  limited  [13].  Dispatching

rules (LPT, SPT, EDD,...) are suitable only for

small scale problems and no single dispatching

rule guarantees good result in various problems

[5].  Research  efforts  in  scheduling  are

concentrated  on  heuristic  approaches.  Many
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heuristics  and  meta-heuristics  have  been

proposed  such  as  simulated  annealing  (SA),

tabu  search,  branch  and  bound  (B&B)  and

genetic  algorithm  (GA)  [3].  Among  these

various  approaches  to  different  scheduling

problems, there has been an increasing interest

in applying GA in view of its adaptability. The

important  difference  between  GA  and  other

heuristics  is  that  GA  maintains  a  set  of

solutions  (population)  rather  than  a  unique

solution, which leads to a better diversity.

This  paper  considers  the  problem  of  task

scheduling in cloud computing as the problem of

unrelated  parallel  machines  with  precedence

constraints in order to minimize makespan (Cmax).

In scheduling problems, Cmax is equivalent to the

completion  time  of  the  last  task  leaving  the

system.  The small  Cmax usually implies  a  high

utilization.  Therefore,  reducing  the  Cmax should

also lead to a higher throughput rate [5]. Three

genetic algorithms have been applied to solve this

problem. The rest  of  the paper is  organized as

follows. Section 2 reports the literature review. In

Section 3, we formulate the problem. Our genetic

algorithms  are  represented  in  Section  4.  In

Section 5 we discussed the results, and Section 6

concludes the paper.

2. Literature Review

The task scheduling problem in the distributed

systems is known to be NP-hard [2], since, for

allocating n jobs to m virtual machines (VMs),

the number of allocation will be |n||m| and the

number of states for running will be n!. One of

the  goals  of  scheduling  is  to  determine  an

assignment of jobs to computing machines in

order  to  optimize the  completion  time of  the

final  task  in  the  system.  Job  scheduling

problem  in  heterogeneous  distributed  system

like  cloud  computing  [17]  has  been  widely

studied  in  the  last  few  years.  The  job

scheduling problem has two forms:  static and

dynamic.  When  all  information  needed  for

scheduling, such as execution times of jobs and

data dependencies between jobs are known in

advance,  the scheduling problem is  described

as  static.  This  type  of  scheduling  jobs  place

during compile time. On the other hand, in the

dynamic model jobs are allocated to processors

upon  their  arrival,  and  scheduling  decisions

must  be  made  at  run  time [18],  [19].  In  this

section we focus our attention on the available

algorithms  for  static  scheduling  in  cloud

environment  and  unrelated  parallel  machine

with  precedence  constraints  scheduling

problem. In the literature numerous approaches

have been developed for solving this problem

(heuristic-based  and  evolutionary-based

algorithms).  A survey on scheduling in  cloud

computing  can  be  found  in  [6]  and  [3].

Different  methods  for  solving  this  problem

exist.  Some  researchers  proposed  efficient

meta-heuristics  based  on  genetic  algorithm:

Zhou et al in [9] proposed a genetic algorithm

based  on  earliest  completion  time  (ECT)  to

minimize completion time (we represent  it  in

sub  section  4.1.  Arash  and  Yalda  also

developed  hybrid  genetic  algorithm for  work

flow scheduling  in  cloud  system (HSGA).  It

merges  best-fit  and Round Robin methods  to

make an optimal initial population to obtain a

good solution quickly. HSGA at first makes job

prioritization  in  complex  graph  considering

their  impact  on  others.  A  particle  swarm

optimization  (PSO)  have  used  in  [11]  for

workflow  scheduling  in  cloud  environment,

which  considers  not  only  execution  cost  but

also the cost for transmitting dependent data. In

[12] a PSO is also formulated as a model for

the multi-objective task assignment to optimize

the  time  and  cost.  To  the  best  of  our

knowledge,  none  of  the  existing  Genetic

algorithms  have  considered  the  idea  of

scheduling  jobs  with  a  high  number  of

successors in order to optimize the makespan.

Unrelated parallel machine scheduling problem

receives  a  great  deal  of  attention  in  the

academic and engineering circle. The literature

on parallel machine scheduling is fairly large,

we  focus  mainly  on  the  non-preemptive

unrelated  parallel  machine  problem  with

precedence constraints  to  minimize  makespan

criterion. There are many applications for this

scheduling  problem  specially  in  distributed

computing systems [12],[9]. Several heuristics

and  meta-heuristics  have  been  proposed  to

solve  this  problem  for  optimizing  different

objectives. In [15] Vallada and Ruiz proposed a

genetic  algorithm to  minimize  the  makespan.

Their  GA includes  a  fast  local  search  and  a

local  search  enhanced  crossover  operator.  In

[13]  Balin proposed a new crossover operator

for  genetic  algorithm to  minimize  makespan.

His  algorithm achieved a  high  computational

speed  for  large-scale  problems.  In  [14]

Tavakkoli-Moghaddam et al proposed a genetic

algorithm  to  solve  bi-objective  unrelated
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parallel  machine  scheduling  problem.  In  this

paper,  we  deal  with  the  problem  of  job

scheduling  in  cloud  environment  and  we

generalized  this  problem  as  an  unrelated

parallel  machines  scheduling with precedence

constraints  for  optimizing  the  makespan.  We

proposed  four  genetic  algorithms.  Three  of

them show a very good performance for small

and medium benchmarks. 

3. Problem Formulation

The problem under consideration is to schedule

n jobs  on m machines which are arranged in

parallel  with the  aim of  minimizing  the  total

completion time. Let J be the set of the jobs and

M  be  the  set  of  the  parallel  machines.  A

precedence constraint between two jobs  j1 and

j2 is denoted by ( j
1
= j

2 ) and it  requires that

job  j2 cannot start to be processed until job  j1

will  finish  its  processing.  The  type  of  the

precedence constraint is a graph type, which is

denoted by  D = (V, A),  where  V  is the set of

vertices associated at each job and denotes the

set  of  edges  associated  with each precedence

constraint. We called this graph the precedence

graph.  We  take   also  the  case  where
{υ , ϖ ,ω }⊆V  such that  υ  before  ϖ  and  ϖ

before ω then υ before ω. We consider also the

speeds for all  machines denoted by  σι, where
ι∈M . Every job φ∈ϑ  has a processing time
πφ  and its effective processing time depends

on the selected machine ι, where πι φ=πφ×σι .

Each machine ι∈M  cannot process more than

one job at a given time. Furthermore, machines

have different speeds and preemption of jobs is

not allowed. According to the well-known α/β|γ

scheduling  problem  classification  scheme

proposed  initially  by  Graham  et  al  [1],  this

problem  can  be  denoted  as  P|prec|Xμαξ.  We

denote by Ci the completion time of machine ι,

where ι∈M , and denote by Xφ the completion

time of job  φ, where φ∈ϑ , in the rest of this

paper. Thus, the problem can be reduced to the

following  mathematical  formulation  proposed

in [11]:

For all i∈M , j∈J , r∈{1 ,… ,n }

x jir {1 if job j in the position r on machine i

0 otherwise

For all j∈J ,C
i
∈ℵ+

 is the completion time of

j. C
max

∈ℵ+
 is the maximum of Cj.

min C
max , (1)

C
j
≤C

max
, ∀ j∈J , (2)

∑
i∈M

∑
r∈{1, …,n }

x jir=1, ∀ j∈J , (3)

∑
j∈J

x jir≤1, ∀ i∈M , ∀ r∈{1,… , n} , (4)

∑
j1∈J

x j
1
ir−∑

j2∈J

x j
2
ir−1≤0

∀ i∈M , ∀ r∈{2,… ,n }
, (5)

C
j1
−C

j2
+C (2−x

j1ir
−x

j2 ir−1)≥ p
j1 i

,

∀ i∈M , ∀ r∈ {2,… ,n } ,∀ j 1≠ j2∈J
, (6)

C j≥ ∑
r ∈{1,… , n}

p ji x jir , ∀ i∈M , ∀ j∈J , (7)

∑
r∈{1,… , n}

∑
i∈M

p j
1
i x j

1
ir≤C j

1

−C j
2

,

∀ ( j 1 , j2)∈A
, (8)

x
jir
∈{0,1},

∀ j∈J ,∀ i∈M , ∀ r∈{1,… ,n}
, (9)

C
j
≥0 , ∀ j∈J . (10)

where C in (6) is a large positive number.

The  objective  function  minimizes  the

makespan.  Inequalities  (2)  ensure  that  the

global  makespan  is  greater  or  equal  the

completion time of all the jobs. Inequalities (3)

ensure that each job is assigned to one of the

existing positions on the machines. Inequalities

(4)  guarantee  that  at  most  one  job  can  be

assigned  to  each  position.  Inequalities  (5)

ensure that until one position on a machine is

occupied, jobs are not assigned to subsequent

positions.  Inequalities  (6)  ensure  that  the

completion  time  of  a  job  in  sequence  on  a

machine  is  at  least  equal  to  the  sum of  the

completion time of the preceding job and the

processing time of the present job. Inequalities

(7)  measure completion time for  each job on

each  machine.  Inequalities  (8)  observe

precedence relationships. Inequalities (9) define

the type of decision variables. Inequalities (10)

bounds  Cj.  This  mathematical  model  will  be

used later in computational experiments.
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4. Genetic Algorithm (GA)

The GA is a general search approach inspired

by the process of the natural evolution. It has

been  widely  exploited  for  solving

combinatorial optimization problems [16]. It is

introduced in the 1970s by Holland [15]. The

basic  idea  of  our  algorithm is  to  exploit  the

advantages of the both of the evolutionary and

heuristic based algorithms while avoiding their

drawbacks. A potential solution to this problem

will  be  represented  as  a  chromosome

containing a series of genes, its fitness value is

related to its objective function and constraints

for that solution.

Figure 1. Precedence constraints

The population P of generation g, denoted by

(Pg),  consists  of  a  set  of  chromosomes.  GA

utilizes a population of solutions in its search

in  order  to  find  a  better  solution.  The

efficiency  of  GA  depends  largely  on  the

presentation  of  a  chromosome  which  is

composed of a series of genes. In this paper

we proposed two encoding methods random

ordering method and list  scheduling method

to  formulate  the  chromosome.  During  each

iteration  step  (Generation),  genetic

operations,  that  is  crossover, mutation and

selection are  processed  to  search  potential

better  solutions.  Crossover combines  two

chromosomes  to  generate  next  generation

Pg+1.  Mutation  reorganizes  the  structure  of

genes  in  a  chromosome  randomly so  that  a

new combination of genes may appear in the

next  generation.  It  manages  the  search  by

jumping form out of local optimal solutions.

Reproduction is to copy a chromosome to the

next generation directly so that chromosomes

from various generations  could cooperate  in

the  evolution  and  the  quality  of  the

population  may  be  improved  after  each

generation [13]. The general schema of GA is

illustrated in the code below.

The instances in Figure 1 and Table 1, will be

considered for numerical example. The rest of

genetic  algorithms  tested  and compared  under

the following proposed benchmark of instances.

The  processing  times  are  uniformly  distributed

between 1 and 100 as it is common in the literature

[4]. We keep the processing time for a specific size

of problem, and we changed the density of graph.

Regarding the precedence constraints,

Table 1. Processing Time

J 1 2 3 4 5 6 7

Processing Time 1 2 3 1 2 3 4

we generated three subsets of DAG where the

graph  density  is  high,  medium  and  low

respectively, with  the  following combinations

of number of jobs n = {50, 100, 200, 500} and

number of machines  m = {2, 5, 10, 20}. The

speed of machines generated randomly between 10

and 20. In total 4×4×3  instances are generated.

Table  2  Represents  the  Average  and  the

standard  deviation  of  jobs  processing  time.

Regarding  to  the  graph  density  (GD)  is

calculated as follow:  GD=
|E|

|V|(|V |−1)
 where

E is the set of edges associated with precedence

constraints  between jobs,  and  V is  the  set  of

vertices associated with jobs. 

Table 2. Average and Standard deviation for

Instances Processing time

J Average Stdev

50 48.11 25.98

100 52.26 28.62

200 50.81 27.61

500 49.72 27.70

We generated the instances of three density sets

{low, medium, high} corresponding to the values

{0.1,  0.15,  0.25}  respectively.  Regarding  the

parameters  of  the  algorithms,  we  tested  the

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015390

Algorithm 1:

Pseudo-code of a genetic algorithm.

Generate randomly  an  initial  population  of

solutions.

Calculate the fitness of the initial population.

while Stopping Criteria Not Satisfied do

          Select a pair of parents based on fitness.

         Create two offspring using crossover.

         Apply mutation to each child.

         Evaluate the mutated offspring.

All the offspring will be the new population.

end



combinations of population size P
size

∈{50,100 }
crossover ratio  P

c
∈{1,0.5}  and mutation ratio

P
m
∈{1, 0.5} . The stopping criterion is set to the

computation time of 1, 10, 60 and 600 seconds

for all combinations of instance. 

5  Modelling  the  Problem  using

Genetic Algorithm

In this section, we present the modeling of our

GAs  for  DAGs  in  cloud  environment.  These

scheduling algorithms effectively addresses the

issues of minimizing the makespan.

5.1 Task scheduling genetic algorithm (GATS)

This GA has been proposed on heterogeneous

computing systems by Zhou et al in [9]. They

call  it,  ”task  scheduling  based  Genetic

Algorithm  (GATS)”.  It  has  been  modeled  as

follows: The linear order of all jobs forms the

chromosome.  Each  chromosome  represents  a

solution for the problem by scheduling the jobs

in the order given by the permutation, the order

of the jobs should be a valid topological order

as the associated nodes in the DAG, where start

nodes should be placed at the beginning of the

chromosome,  while  the  exit  nodes  should  be

placed  at  the  end.  The  initial  population  is

produced by making a random perturbation to

the  order  of  jobs  in  the  first  chromosome  to

produce a valid chromosome, until the desired

size of the initial population reached. Indeed, a

linear crossover from a single random position

applied  to  the  two  selected  parents.  The

mutation operation operated for all individuals

of  the  new  population  considering  the

precedence constraints topologically. 

Then,  the  objective  function  is  evaluated  by

using  the  Earliest  Completion  Time  (ECT)

technique, which schedules a candidate job onto

machines (processors) on which the completion

time  of  the  job  is  the  earliest.  The  robust

characteristic in this GA is the generation of a

valid chromosome in the initial population.

At  the  next  generation,  we  modify GATS in

GATS+ by just making a random mutation for

two  genes  selected  randomly  and  if  the

candidate  chromosome  is  not  valid,  then  we

throw it out by assigning a big value as Cmax

to  this  candidate.  Since  we  have  valid

chromosomes  in  the  initial  population,  the

robust characteristics of the GATS can still be

maintained  and  we  will  not  spend  a  lot  of

computation  time  in  the  mutation  operator.

This small change increases the chance to find

a best result, especially when the computation

time is  less  than one minute,  because GATS

spends a lot of time in mutation procedure if

the candidate is not valid. Table 3 shows the

results obtained by GATS and GATS+ in one

second with Psize = 100, Pc = 1.0 and Pm = 0.5.

The dashed results means that GATS does not

find  a  solution  during  one  second  and  also

when  we  run  the  instances  for  10  seconds

GATS  cannot  find  a  solution  with  the

problems of large number of instances in all of

the three density sets.

Table 3. GATS vs GATS+ Cmax Comparison

Inst. L-Density H-Density

m-n GATS GATS+ GATS GATS+

2- 50 17274 17251 17274 17927

2- 100 37667 37667 37667 38636

2 -200 - 74590 - 75702

2 -500 - 181679 - 183294

5 -50 10349 10527 7813 7355

5 -100 20791 19766 20049 19747

5 -200 - 37731 - 32981

5 -500 - 88668 - 82615

10 -50 7820 7820 6460 6460

10 -100 10860 10768 10970 10900

10 -200 - 22236 - 18182

10 -500 - 48365 - 40901

20 -50 6238 6090 4540 4540

20 -100 9775 9604 9628 9593

20 -200 - 20892 - 15189

20 -500 - 39090 - 30158

5.2  Genetic  Algorithm  based  on  Cut-

point (GACP)

For  this  genetic  algorithm  (GACP),  the

chromosome  coding  composed  of  two  rows:

the  first  represents  a  valid  order  of  jobs

according to the precedence constraints, and the

second  row  gives  an  information  on  job

positioning according to the cut-point. 

We  generate m−1  random  cut-points
(cp)=cp

1
, cp

2
,… , cp

m−1 ,  to assign jobs to its

VMs.  The  solution  provided  as  follows:  The
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sequence  of  jobs  from j0 to  j
cp1

 will  be

assigned on VM1 and the sequence of jobs from
j

cp 1+1  to  j
cp2

will be assigned on VM2 and the

sequence of jobs from j
cp2+1  to  j

cp3
 on VM3

and so on.  In other words,  we assign a valid

sub-sequence of a random length of jobs on a

specific VM.

In  this  genetic  algorithm we  carried  out  one

point  crossover between  two  parents  and  an

exchange between two random points  carried

as  mutation operator.  However,  this  genetic

algorithm  gave  bad  results.  The  best  result

obtained  by  GACP is  at  least  two  times  the

results obtained by GATS.

5.3 Genetic Algorithm based on the list

of Available jobs (GAAV)

In this section we will propose a simple idea to

generate  the  population  with  lowest

computational  cost,  where  the  chromosome

coding depends on VMs and places the job in

its  associated  VM,  and  the  computational

efforts will be taken in the evaluation function.

In  this  section  we  will describe  our  second

genetic algorithm, based on the list of available

jobs  (GAAV),  which  depends  mainly  on  the

available-list scheduling heuristic.

5.3.1 Coding an initial population

The assignment of VMs to the list of jobs is a

candidate  solution  to  the  problem.  Therefore,

the chromosome can be represented by a linear

list of integers, each integer representing a VM,

here mi considered as gene. The series of genes

with the length of n are generated randomly by

assigning each job of J to a random mi from the

set  of  M.  Figure  2  shows  the  chromosome

representation for ten jobs on five VMs. 

1 4 2 1 3 3 5 2 1 3

Figure 2. Chromosome representation for GAAV

In GAAV there  is  no computational  effort  to

produce the initial population (IP ) because it is

produced  by  making  a  random  number  of

permutations  to  the  integer-list  to  produce  a

chromosome until the size of IP (IPsize) reached.

Hence, all chromosomes give a valid solution.

5.3.2 Fitness evaluation

In GAAV, to evaluate the chromosome, first we

search  the  virtual  machine  with  minimum

completion time Ci. For this machine we take

its  available jobs according to the precedence

constraints,  from  these  available  jobs  we

schedule the job with the maximum number of

successors will be placed to the selected virtual

machine first.  Then,  we update Available list,

and  search  again  for  machine  with  the

minimum  completion  time  and  repeat  this

process until we finish the evaluation process.

Simply, at  each placement  iteration we select

the  machine  with  minimum  completion  time

and  its  available  job  with  highest  number  of

successors.  Then,  we  assign  the  job  which

could lead to a late schedule of some jobs in the

future to its VM, maybe this job will affect the

Cmax of  the whole  system.  At  the  end of  this

process, a valid schedule will be obtained and

the  fitness  function (Cmax)  also  will  be

calculated.  Algorithm 2  illustrates  the  GAAV

fitness function steps.

Algorithm 2.

Fitness Evaluation Function for GAAV.

Let Available be the current set of jobs without 

predecessors.

while |Available| > 0 do

      Selectedmachine = 

         the machine with   minimum Ci.

      Selectedjob= 

         the job of greater number of successors in 

Selectedmachine.

      Add Selectedjob to Selectedmachine 

      Update Ci.

      Update Available.

end

5.3.3 Crossover

The matter of replacing some of the genes in one

parent by corresponding ones on the other parent

is  known  as  crossover.  Here  this  operator  is

carried out based on a linear crossover from a

single  point.  This  operator  is  applied  to  the

selected parents (parent1, parent2), then a new

two offsprings  are  obtained  as  offspring1 and

offspring2, the crossover operated between two

chromosomes one with higher fitness value and

the other with the  Pc ratio. Figure 3 illustrates

the crossover operator.

5.3.4 Mutation

Mutation  can  be  thought  as  an  effectively

escape method for  premature convergence by

randomly change  the  value  of  an  individual.

For  maintaining  the  feasibility  of  the  new
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generated  individual.  During  the  mutation

process,  one  gene  selected  randomly and  we

put it on a different random mi from the set of

M  to  obtain  a  new  offspring,  Figure  4

represents the mutation operator. 

Figure 3. GAAV Crossover Operator

5.3.5 Selection

Finally,  the  best  chromosome  of  the  first

population is stored as in a linear ranking.

5.3.6 Stopping rule

The  Genetic  Algorithm  is  stopped  when  the

execution  time  is  greater  than  the  maximum

execution time allowed.

Figure 4. GAAV Mutation Operator

Figure  5,  represents  an  example  of

chromosome  encoding  solution  for  GATS,

which  is  (1-2-3-6-4-7-5),  and  a  chromosome

encoding solution for GAAV, which is (0-1-0-

1-0-1-0), for the instances in Table 1 according

to the precedence constraints in Figure 1, run

on  two  VMs  of  different  speeds  which  are:
s

1
=1, s

2
=2 .

5.4 Genetic Algorithm (GAAV+)

When  GATS  depends  mainly  on  ECT

technique and GAAV based on the local density

of the DAG, according to the effectiveness of

these  two  techniques  in  the  optimization  of

scheduling unrelated parallel machine problem

with  precedence  constraints, we  combined

these two techniques in GAAV+.

In  this  genetic  algorithm  GAAV+,  the

modification  occurred  in  the  Fitness

Evaluation.  Therefore,  the  chromosome

representation as in Figure 2, according to this

coding  we  know the  VM  for  each  job,  this

fitness  evaluation  will  select  the  job  in

machine that will  give the minimum  Cj from

the  available  jobs  j∈AV ,  where  AV is  the

current set of jobs without predecessors, this is

ECT technique.  From the  other  hand,  at  the

same  time  we  considered  the  number  of

successors  of  this  job,  and  this  is  the  local

density  of  the  DAG  technique.  Thus,  the

evaluation can be taken by selecting job j from

AV with the minimum value produced by the

following function:

α×(C
j
)−(1−α)×|Succ

j
|

where  α∈[1,0 ]  and |Succj|  is  the number  of

successors of job j.  We schedule the job with

the  minimum  value  of  this  function  first  to

generate a valid schedule for calculating Cmax.

6. Experiments and Results

This section presents the experiment setup and

the  results  for  GATS,  GATS+,  GAAV,  and

GAAV+.  A  set  of  simulations  have  been

performed on Dell Intel, core i5 running at 3.4

GHz, and 8 GB of RAM. The GAs have been

coded  in  C++,  compiled  with  g++  compiler,

and  tested  under  Ubuntu  14.02  64-OS.  The

entries in the Table 5 and 6 are:

– m : number of machines, 

– n : number of jobs,

– GATS : Cmax value for GATS, 
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Figure 5. Example of the GATS and

GAAV encoding



– GATS+ : Cmax value for GATS+,

– GAAV : Xmax value for GAAV,

– GAAV+ : Xmax value for GAAV+,

Genetic search is implemented through genetic

operators. Tables 5 and 6 show the results given

by  our  proposed  GAs  (GATS+,  GAAV,  and

GAAV+) compared to GATS.

Table 5. Makespan(Cmax)for the proposed algorithms

and GATS (H density)

Inst. L- Density

m-n GATS GATS+ GAAV GAAV+

2- 50 17274 17251 17251 17251

2- 100 37667 37667 37492 37521

2 -200 73839 74508 73024 73412

2 -500 180246 180089 179612 216190

5 -50 7813 7416 7649 7438

5 -100 18980 18837 18689 18020

5 -200 31902 32342 33652 31600

5 -500 80214 80537 89516 124257

10 -50 6560 6460 6493 6460

10 -100 10632 10871 10264 9544

10 -200 17030 17558 17600 17998

10 -500 38147 38649 45846 75764

20 -50 4540 4540 4540 4540

20 -100 9320 9320 9320 9320

20 -200 14092 14340 15804 13735

20 -500 27765 28179 33921 50949

From  this  simulation  study  we  fixed  the

parameters with the combination of (100, 1.0,

0.5,  600),  Population  size,  Crossover  ratio,

mutation  ratio  and  the  computation  time

respectively.  We  have  tested  out  different

values of α in GAAV+ to find the best value.

Therefore, we took α = 0.5. From the results we

have  noticed  that  when  population  size  in

GAAV is larger than 100, any increase of it has

no significant influence on the performance of

the genetic algorithm. 

In  Table  6  we  can  see  the  genetic  algorithm

GAAV  can  improve  31%  of  the  solutions

obtained  by  GATS  in  low  density  problems,

43% in medium density problems and 43% in

high  density  problems.  One  other  interesting

outcome is that GAAV can be considered as an

efficient  algorithm with the problems of small

and medium number  of  VMs.  GAAV+ mostly

outperforms GATS when the number of jobs 100

and 200 in high density. This may improve 50%

of  solutions  obtained  by  GATS.  It  can  also

improve 50% of medium density problems and

31% of low density problems. If we focused our

attention  to  genetic  algorithm GATS+,  we  can

see  that  for  low  density  showed  a  good

performance and for medium and high density

problems is  really far  from the best  solutions,

because  when  we  thrown  out  the  invalid

candidates we lost some information about some

generations.  According to  the GATS operators

behaviors, it  always needs more time than the

specified  stop  criterion,  with  the  problems  of

large numbers of machines and jobs. 

Another  interesting  factor  to  study  in  the

experiments  is  the  count  of  best  solutions

obtained  by GAs.  In  Figure  6  we can  notice

that GATS+ can find maximum number of best

solutions  overall  instances  in  one second and

ten  seconds,  whereas  GATS cannot  find  best

solution within the specified computation time,

we noticed that  GATS cannot  obtain solution

when we run it for 1 and 10 seconds, it needs at

least  77  seconds  to  obtain  solution  with  few

number  of  iterations.  We  also  noticed  that

GATS  need  a  lot  of  time  to  find  the  first

population  and  for  other  genetic  algorithm

operators. We can also see the similarity of a

behavior for GATS and GATS+ when we run

them  for  10  and  60  seconds  with  the

improvement of GATS+. Therefore, we can say

GATS+  outperforms  GATS  in  terms  of  best

solutions for sizes and densities. In Figure 6 it

is clear that GAAV+ has a positive relationship

with the computation time, and has the ability

to  improve  the  counts  of  best  solutions  for

different problems. The other positive thing is

that,  it  can  also  obtain  a  solution  within  the

specified computation time.

Figure 6. Counts of best results 
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The efficiency of GAAV appears when we run it

for  one  second;  it  can  always  obtain  the  best

solution for the minimum and medium problems.

Figure  8  indicates  the  Average  Relative

Percentage Gap (ARPG) between the first and

the best solution for genetic algorithm. Indeed,

ARPG is computed as follows:
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Table 6. Makespan(Cmax)for the proposed algorithms and GATS, (L&M Density)

Inst. H- Density M-Density

m-n GATS GATS+ GAAV GAAV+ GATS GATS+ GAAV GAAV+

2- 50 17927 17927 17927 17927 17251 17251 17251 17251

2- 100 38577 38577 37790 37539 37661 37667 37505 37492

2 -200 75595 75682 74659 74474 73847 73956 73210 74850

2 -500 180908 180861 180849 195618 180375 180466 179120 190116

5 -50 10349 9672 10073 9591 8318 8228 7997 8013

5 -100 19921 19776 19921 19320 18467 18213 17793 17640

5 -200 36521 36645 36036 36205 35621 35577 35575 34890

5 -500 85015 85268 92482 114689 80365 81039 87801 113390

10 -50 7820 7820 7820 7820 4850 4850 4887 4850

10 -100 10494 10591 10378 10310 10580 10552 10118 9898

10 -200 20656 21755 22980 21803 18858 19521 20010 18148

10 -500 44935 46714 57585 73291 40309 41062 48073 70042

20 -50 6156 6090 6156 6090 6430 6430 6430 6430

20 -100 9310 9431 9801 9495 8206 8141 8186 8198

20 -200 20112 19964 21151 20707 14477 14348 15395 14430

20 -500 36364 36346 43463 54919 30117 31063 41631 51731

(a) High Density (b) Medium Density

(c) Low Density

Figure 8. Average Relatives Percentage Gap



100×
C

max

First−C
max

Best

C max

Best ,  where C
max

Best
 is  the  best

known  Cmax,  obtained  by  the  given  GA,  and

C
max

First
 is the first Cmax obtained by this GA. We

noticed that GATS with low, medium and high

density  DAG  problems  cannot  improve  its

solutions. This means GATS starts with a good

initial population and the computation time will

not affect this solution positively. 

This  behavior  inherited  also  by  GATS+,

whereas GAAV and GAAV+ start with random

solutions, but they can obtain a better solutions

when we increase the computation time. 

Figure 7 represents the convergence traces for

processing  the  problem of  high  density  of  a

randomly generated DAG with 5 VMs and 100

jobs.  It  can  be  observed  from  this  figure

GAAV+ decreases quickly. GAAV also shows a

quick decreasing and provides a best  solution

when it runs for 10 and 60 seconds. 

Figure 7. Genetic algorithms convergence.

Whereas GATS remains in the same trend, this

behavior followed with most of our problems.

Hence, we can say that the techniques used in

GAAV and GAAV+ can  improve  the  solution

and we can find a better upper bound for this

problem. The modification of GATS in GATS+

also has a good outcome.

6.1 Integral Linear Programming 

Solution (ILP)

The mathematical  model  is  applied  for  small

instances. It is implemented with CPLEX 12.4,

on an Intel, core i5 running at 3.4 GHz, and 8

GB of RAM under a computation time limit of

one hour (if after one hour no optimal solution

is  obtained,  the  current  integer  solution  is

returned).  In  Table  4,  columns  LB  and  UB

represent  the  lower  bounds  and  the  upper

bounds  respectively  for  some  problems,  for

which  CPLEX is  not  able  to  find  the  linear

relaxation value. Indeed,  we have limited the

use of the RAM to 6 GB and for the most of

instances this amount is not sufficient  for the

linear relaxation with all these constraints and

variables in the model.

6.2 Transformations between GAs

In spite of the variety between GATS and GAAV

encoding’s, we tried to investigate the ability of

each genetic algorithm to improve the solution

obtained  by  the  other  genetic  algorithm.  We

transformed the best population generated by the

first genetic algorithm, to be the first population

for  the  second  genetic  algorithm.  This  also

provides  interesting  observations,  about  the

differences  between  our  proposed  genetic

algorithms  and  GATS,  by  doing  all

transformations  from  GATS  to  GAAV  and

GAAV+, and from GAAV,GAAV + to GATS. We

noticed that,  because of  the differences  of the

encoding  and  the  genetic  operators  between

GATS in comparing to GAAV and GAAV+ the

ARPG between the best solution obtained by the

first  GA  before  transformation  and  the  best

solution  obtained  by  the  second  genetic

algorithm after the transformation.

The ARPG is computed as follows:

100×
C

max

FirstBest−C
max

SecondBest

Cmax

SecondBest
,  where  C

max

FirstBest
 is

the best known Cmax, obtained by the first GA,

and C
max

SecondBest
 is the best known Cmax, obtained

by the second GA. Table 7 shows the ARPG of

the  transformation  processes:  the  negative

values  mean  that  the  second  best  solution  is

worse than the first best. We observed that the
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Table 4. Results obtained by the

Integral Linear Program

Inst. H-Density M-Density L-Density

m-n LB UB LB UB LB UB

2-20 8892 38480 8008 38480 8190 38480

5-50 8887 40885 5482 40885 5575 40835

10-50 7263 45695 4746 45695 5888 45695
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Table 7. The Average Relative Percentage Gap(ARPG) for the transformation process between GAs

Inst. H-Density M-Density L-Density

m-n ATSV ATSV+ AVTS AV+TS ATSV ATSV+ AVTS AV+TS ATSV ATSV+ AVTS AV+TS

2- 50 1.1 -0.1 0.4 0.2 0.3 -3.1 3.3 0.1 2.0 0.1 0.3 0.3

2-100 2.1 2.5 0.9 0.2 0.8 -0.1 0.3 0.5 -1.9 0.4 1.4 0.0

2-200 1.6 1.2 0.9 0.6 0.7 -1.3 0.1 0.3 0.9 1.0 0.5 0.5

2-500 -0.2 -12.0 -0.5 12.7 0.0 -10.2 0.5 12.0 0.6 -17.3 0.2 17.4

5-50 10.8 5.8 1.7 8.8 16.0 6.6 -1.6 2.3 6.0 -0.2 6.9 4.6

5-100 4.1 3.0 6.6 5.1 11.1 -0.2 7.7 -3.3 14.8 2.7 3.4 3.5

5-200 -3.2 0.9 -0.7 0.1 1.0 -1.7 -3.8 1.2 -8.4 -0.9 -0.6 5.6

5-500 -9.7 -8.0 -0.1 31.0 -10.0 -37.7 -2.0 46.2 -9.7 -42.2 -6.8 52.2

10-50 1.3 -0.9 1.6 -3.4 -7.5 0.0 6.9 4.7 5.6 -1.9 3.9 1.1

10-100 -8.0 -1.1 2.7 2.7 3.8 4.0 3.2 3.3 1.1 6.0 6.9 4.6

10-200 -12.0 -5.8 0.1 1.3 -8.6 -2.9 -0.3 3.2 -15.5 -8.6 -1.3 -4.8

10-500 -27.8 -37.7 -14.4 52.0 -26.0 -42.0 -16.5 74.0 -26.1 -54.5 -15.6 93.1

20-50 4.2 1.3 -0.6 2.0 1.1 0.0 1.7 0.0 -6.0 0.0 1.4 3.6

20-100 0.3 1.6 10.0 0.8 3.3 -2.43 15.6 3.8 -2.0 -5.2 11.9 4.2

20-200 -1.4 -2.4 -2.6 5.0 -11.0 -4.1 -2.0 7.0 -7.4 -1.6 -2.5 10.0

20-500 -23 -39 -17.5 57.5 -29.0 -48.8 -12 83.0 -26.0 -52.7 -10.6 9.0

Table 8. Best Makespan (Xμαξ) obtained among All GAs Comparing to AV τo TS and AV+ τo TS

Inst. H-Density M-Density L-Density

m-n Best AVTS AV+TS Best AVTS AV+TS Best AVTS AV+TS

2- 50 17927 17927 17937 17251 17251 17251 17251 17251 17251

2-100 37539 37488 37488 37492 37488 37667 37488 37488 37488

2 -200 74474 74425 74438 73210 73112 73358 73024 72891 72891

2 -500 180849 179768 180377 179120 178412 178919 179612 178334 179580

5 -50 9591 9308 9217 7997 7365 7440 7416 7280 7435

5 -100 19320 19318 18579 17640 16929 18597 18020 17973 17830

5 -200 36036 36011 36418 34890 33995 34122 31600 30835 30796

5-500 85015 86133 89414 80365 82007 84885 38147 81178 85589

10 -50 7820 7820 8101 4850 4850 4850 6460 6460 6460

10 -100 10310 10736 10306 9898 9952 9920 9544 9570 9704

10 -200 20656 21045 21218 18148 18951 19301 17030 16251 19321

10 -500 44935 45262 46536 40309 40841 41663 38147 38744 42580

20 -50 6090 6156 6156 6430 6430 6430 4540 4540 4540

20 -100 9310 9428 9262 8141 8249 8189 9320 9054 9372

20 -200 19964 20208 20054 14348 14318 13880 13735 14235 13054

20 -500 36346 38198 37252 30117 32289 30835 27765 28950 28707



behavior of the proposed GAs and GATS is not

the same. From the transformations, GAAV and

GAAV+ cannot  make  an  improvement  to  the

best  generation  obtained by GATS.  However,

for  the  solutions  obtained  by  the

transformations from GAAV to GATS and from

GAAV+ to  GATS  sometimes  these

transformations  can  lead  to  solutions  better

than  those  obtained  by  GAAV, GAAV+ and

GATS.  Table  8 represents  a  comparison

between the best solutions obtained among all

GAs  in  column  labeled  ”Best”  and  the

transformations  solutions.  We  can  see  also,

AV+TS can improve the best solution obtained

by the first  genetic algorithm for instances of

large number of jobs, but this improvement did

not improve the best solution obtained among

all genetic algorithms.

7. Conclusion and Future Work

In  this  paper  we  have  proposed  genetic

algorithms for job scheduling problem in cloud

computing with the objective of minimizing the

makespan, which is considered as an unrelated

parallel-machine  scheduling  problem  under

precedence  constraints.  Our  contribution  has

consisted  in  new  genetic  algorithms.  GAAV

includes a new local search procedure for local

graph  density  to  evaluate  the  chromosome.

GATS+ which is based on a permutation coding

and ECT, and GAAV+ which is combined the

innovative  characteristics  of  GAAV with  the

(ECT)  technique.  The  performances  of  our

proposed  genetic  algorithms  have  been

compared  against  one  of  the  best  existing

genetic algorithm for the same problem. After

extensive  comparisons,  we  can  conclude  that

the  proposed  algorithms  can  improve  the

solutions  obtained  by  GATS  for  small  and

medium  problems.  Moreover,  they  can  get

better  results  than  GATS  within  the  specific

running  time  (stop  criterion)  for  a  high  and

medium DAG density problem.  In  the  future

work, we will enhance the mathematical model

by  adding  new  constraints  for  further

improvement.  Another  interesting  topic

regarding  scheduling  problem  in  cloud

computing  is  to  consider  the  multiobjective

optimization context.
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