
1. Introduction*

In Cloud environments a task scheduling is a

process that manages and maps the execution

of inter-dependent tasks on the data centers

(resources) [6]. It allocates appropriate tasks to

the virtual resources which is virtual machines

(VMs) so the execution is often completed to

satisfy objective functions imposed by

customers. Efficient task scheduling algorithm

will have important impact on the performance

of the system. The scheduling problem in cloud

computing can be generalized as an unrelated

parallel machine with different speeds and

precedence constraints. We consider VMs as an

unrelated parallel machine because the cloud

computing providers offer their services

virtually by sharing their physical resources

*
 This paper recalls the Task Scheduling Genetic Algorithm

(GATS), published in [20]. In the current paper, we improve

GATS and we propose an advanced version GATS+. Moreover,

we propose two new algorithms: Genetic Algorithm Based on

Cut-point (GACP) and Genetic Algorithm Based on The List of

Available Jobs (GAAV), as well as its improved version

(GAAV+). We also tested and compared different versions of

these genetic algorithms (GAAV -> GATS, GAAV+ -> GATS,

GATS -> GAAV, GATS -> GAAV+).

through a large number of virtual machines in

parallel. These virtual machines, allocated with

different CPU capacities, so it can be

considered as unrelated parallel machines.

In cloud computing users may face hundreds of

thousands of virtualized resources to utilize. It

is hard to allocate user’s tasks on the available

resources. Due to the virtualization properties,

cloud computing leaves task scheduling

complexity to the virtual machine layer through

resource virtualization.

Hence, to allocate the resources to each task

efficiently, scheduling plays more important

role in cloud computing [3]. It is quite difficult

to achieve an optimal solution with traditional

optimization methods. Mathematical

optimization techniques can give an optimal

solution for a reasonably sized problem,

however, in the case of a large scale problem,

their application is limited [13]. Dispatching

rules (LPT, SPT, EDD,...) are suitable only for

small scale problems and no single dispatching

rule guarantees good result in various problems

[5]. Research efforts in scheduling are

concentrated on heuristic approaches. Many

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro

Genetic Algorithms for Job Scheduling in

Cloud Computing*

Mohammed-Albarra HASSAN1,2, Imed KACEM1, Sébastien MARTIN1, Izzeldin M. OSMAN3

1 Université de Lorraine,

LCOMS EA 7306, Metz, 57000, FRANCE

imed.kacem@univ-lorraine.fr, (corresponding author)

2 University of Gezira,

Wadmedani, SUDAN,

barra.hassan@univ-lorraine.fr

3 University of Sciences and Technology,

Khartoum, SUDAN

izzeldin@acm.org

Abstract: Efficient job scheduling algorithms needed to improve the resource utilization in cloud computing, the role

of a good scheduling algorithm on cloud computing is to minimize the total completion time for last job on the system.

In this paper, we present a genetic-based task scheduling algorithms in order to minimize Maximum Completion Time

Makespan. These algorithms combines different techniques such as list scheduling and earliest completion time (ECT)

with genetic algorithm. We reviewed, evaluated and compared the proposed algorithms against one of the well-known

Genetic Algorithms available in the literature, which has been proposed for task scheduling problem on heterogeneous

computing systems. After an exhaustive computational analysis we identify that the proposed Genetic algorithms show

a good performance overcoming the evaluated method in different problem sizes and complexity for a large benchmark

set of instances.

Keywords: Task scheduling, Genetic Algorithm, Cloud Computing, Unrelated Parallel machines with precedence Constraints.

387

heuristics and meta-heuristics have been

proposed such as simulated annealing (SA),

tabu search, branch and bound (B&B) and

genetic algorithm (GA) [3]. Among these

various approaches to different scheduling

problems, there has been an increasing interest

in applying GA in view of its adaptability. The

important difference between GA and other

heuristics is that GA maintains a set of

solutions (population) rather than a unique

solution, which leads to a better diversity.

This paper considers the problem of task

scheduling in cloud computing as the problem of

unrelated parallel machines with precedence

constraints in order to minimize makespan (Cmax).

In scheduling problems, Cmax is equivalent to the

completion time of the last task leaving the

system. The small Cmax usually implies a high

utilization. Therefore, reducing the Cmax should

also lead to a higher throughput rate [5]. Three

genetic algorithms have been applied to solve this

problem. The rest of the paper is organized as

follows. Section 2 reports the literature review. In

Section 3, we formulate the problem. Our genetic

algorithms are represented in Section 4. In

Section 5 we discussed the results, and Section 6

concludes the paper.

2. Literature Review

The task scheduling problem in the distributed

systems is known to be NP-hard [2], since, for

allocating n jobs to m virtual machines (VMs),

the number of allocation will be |n||m| and the

number of states for running will be n!. One of

the goals of scheduling is to determine an

assignment of jobs to computing machines in

order to optimize the completion time of the

final task in the system. Job scheduling

problem in heterogeneous distributed system

like cloud computing [17] has been widely

studied in the last few years. The job

scheduling problem has two forms: static and

dynamic. When all information needed for

scheduling, such as execution times of jobs and

data dependencies between jobs are known in

advance, the scheduling problem is described

as static. This type of scheduling jobs place

during compile time. On the other hand, in the

dynamic model jobs are allocated to processors

upon their arrival, and scheduling decisions

must be made at run time [18], [19]. In this

section we focus our attention on the available

algorithms for static scheduling in cloud

environment and unrelated parallel machine

with precedence constraints scheduling

problem. In the literature numerous approaches

have been developed for solving this problem

(heuristic-based and evolutionary-based

algorithms). A survey on scheduling in cloud

computing can be found in [6] and [3].

Different methods for solving this problem

exist. Some researchers proposed efficient

meta-heuristics based on genetic algorithm:

Zhou et al in [9] proposed a genetic algorithm

based on earliest completion time (ECT) to

minimize completion time (we represent it in

sub section 4.1. Arash and Yalda also

developed hybrid genetic algorithm for work

flow scheduling in cloud system (HSGA). It

merges best-fit and Round Robin methods to

make an optimal initial population to obtain a

good solution quickly. HSGA at first makes job

prioritization in complex graph considering

their impact on others. A particle swarm

optimization (PSO) have used in [11] for

workflow scheduling in cloud environment,

which considers not only execution cost but

also the cost for transmitting dependent data. In

[12] a PSO is also formulated as a model for

the multi-objective task assignment to optimize

the time and cost. To the best of our

knowledge, none of the existing Genetic

algorithms have considered the idea of

scheduling jobs with a high number of

successors in order to optimize the makespan.

Unrelated parallel machine scheduling problem

receives a great deal of attention in the

academic and engineering circle. The literature

on parallel machine scheduling is fairly large,

we focus mainly on the non-preemptive

unrelated parallel machine problem with

precedence constraints to minimize makespan

criterion. There are many applications for this

scheduling problem specially in distributed

computing systems [12],[9]. Several heuristics

and meta-heuristics have been proposed to

solve this problem for optimizing different

objectives. In [15] Vallada and Ruiz proposed a

genetic algorithm to minimize the makespan.

Their GA includes a fast local search and a

local search enhanced crossover operator. In

[13] Balin proposed a new crossover operator

for genetic algorithm to minimize makespan.

His algorithm achieved a high computational

speed for large-scale problems. In [14]

Tavakkoli-Moghaddam et al proposed a genetic

algorithm to solve bi-objective unrelated

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015388

parallel machine scheduling problem. In this

paper, we deal with the problem of job

scheduling in cloud environment and we

generalized this problem as an unrelated

parallel machines scheduling with precedence

constraints for optimizing the makespan. We

proposed four genetic algorithms. Three of

them show a very good performance for small

and medium benchmarks.

3. Problem Formulation

The problem under consideration is to schedule

n jobs on m machines which are arranged in

parallel with the aim of minimizing the total

completion time. Let J be the set of the jobs and

M be the set of the parallel machines. A

precedence constraint between two jobs j1 and

j2 is denoted by (j
1
= j

2) and it requires that

job j2 cannot start to be processed until job j1

will finish its processing. The type of the

precedence constraint is a graph type, which is

denoted by D = (V, A), where V is the set of

vertices associated at each job and denotes the

set of edges associated with each precedence

constraint. We called this graph the precedence

graph. We take also the case where
{υ , ϖ ,ω }⊆V such that υ before ϖ and ϖ

before ω then υ before ω. We consider also the

speeds for all machines denoted by σι, where
ι∈M . Every job φ∈ϑ has a processing time
πφ and its effective processing time depends

on the selected machine ι, where πι φ=πφ×σι .

Each machine ι∈M cannot process more than

one job at a given time. Furthermore, machines

have different speeds and preemption of jobs is

not allowed. According to the well-known α/β|γ

scheduling problem classification scheme

proposed initially by Graham et al [1], this

problem can be denoted as P|prec|Xμαξ. We

denote by Ci the completion time of machine ι,

where ι∈M , and denote by Xφ the completion

time of job φ, where φ∈ϑ , in the rest of this

paper. Thus, the problem can be reduced to the

following mathematical formulation proposed

in [11]:

For all i∈M , j∈J , r∈{1 ,… ,n }

x jir {1 if job j in the position r on machine i

0 otherwise

For all j∈J ,C
i
∈ℵ+

 is the completion time of

j. C
max

∈ℵ+
 is the maximum of Cj.

min C
max , (1)

C
j
≤C

max
, ∀ j∈J , (2)

∑
i∈M

∑
r∈{1, …,n }

x jir=1, ∀ j∈J , (3)

∑
j∈J

x jir≤1, ∀ i∈M , ∀ r∈{1,… , n} , (4)

∑
j1∈J

x j
1
ir−∑

j2∈J

x j
2
ir−1≤0

∀ i∈M , ∀ r∈{2,… ,n }
, (5)

C
j1
−C

j2
+C (2−x

j1ir
−x

j2 ir−1)≥ p
j1 i

,

∀ i∈M , ∀ r∈ {2,… ,n } ,∀ j 1≠ j2∈J
, (6)

C j≥ ∑
r ∈{1,… , n}

p ji x jir , ∀ i∈M , ∀ j∈J , (7)

∑
r∈{1,… , n}

∑
i∈M

p j
1
i x j

1
ir≤C j

1

−C j
2

,

∀ (j 1 , j2)∈A
, (8)

x
jir
∈{0,1},

∀ j∈J ,∀ i∈M , ∀ r∈{1,… ,n}
, (9)

C
j
≥0 , ∀ j∈J . (10)

where C in (6) is a large positive number.

The objective function minimizes the

makespan. Inequalities (2) ensure that the

global makespan is greater or equal the

completion time of all the jobs. Inequalities (3)

ensure that each job is assigned to one of the

existing positions on the machines. Inequalities

(4) guarantee that at most one job can be

assigned to each position. Inequalities (5)

ensure that until one position on a machine is

occupied, jobs are not assigned to subsequent

positions. Inequalities (6) ensure that the

completion time of a job in sequence on a

machine is at least equal to the sum of the

completion time of the preceding job and the

processing time of the present job. Inequalities

(7) measure completion time for each job on

each machine. Inequalities (8) observe

precedence relationships. Inequalities (9) define

the type of decision variables. Inequalities (10)

bounds Cj. This mathematical model will be

used later in computational experiments.

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 389

4. Genetic Algorithm (GA)

The GA is a general search approach inspired

by the process of the natural evolution. It has

been widely exploited for solving

combinatorial optimization problems [16]. It is

introduced in the 1970s by Holland [15]. The

basic idea of our algorithm is to exploit the

advantages of the both of the evolutionary and

heuristic based algorithms while avoiding their

drawbacks. A potential solution to this problem

will be represented as a chromosome

containing a series of genes, its fitness value is

related to its objective function and constraints

for that solution.

Figure 1. Precedence constraints

The population P of generation g, denoted by

(Pg), consists of a set of chromosomes. GA

utilizes a population of solutions in its search

in order to find a better solution. The

efficiency of GA depends largely on the

presentation of a chromosome which is

composed of a series of genes. In this paper

we proposed two encoding methods random

ordering method and list scheduling method

to formulate the chromosome. During each

iteration step (Generation), genetic

operations, that is crossover, mutation and

selection are processed to search potential

better solutions. Crossover combines two

chromosomes to generate next generation

Pg+1. Mutation reorganizes the structure of

genes in a chromosome randomly so that a

new combination of genes may appear in the

next generation. It manages the search by

jumping form out of local optimal solutions.

Reproduction is to copy a chromosome to the

next generation directly so that chromosomes

from various generations could cooperate in

the evolution and the quality of the

population may be improved after each

generation [13]. The general schema of GA is

illustrated in the code below.

The instances in Figure 1 and Table 1, will be

considered for numerical example. The rest of

genetic algorithms tested and compared under

the following proposed benchmark of instances.

The processing times are uniformly distributed

between 1 and 100 as it is common in the literature

[4]. We keep the processing time for a specific size

of problem, and we changed the density of graph.

Regarding the precedence constraints,

Table 1. Processing Time

J 1 2 3 4 5 6 7

Processing Time 1 2 3 1 2 3 4

we generated three subsets of DAG where the

graph density is high, medium and low

respectively, with the following combinations

of number of jobs n = {50, 100, 200, 500} and

number of machines m = {2, 5, 10, 20}. The

speed of machines generated randomly between 10

and 20. In total 4×4×3 instances are generated.

Table 2 Represents the Average and the

standard deviation of jobs processing time.

Regarding to the graph density (GD) is

calculated as follow: GD=
|E|

|V|(|V |−1)
 where

E is the set of edges associated with precedence

constraints between jobs, and V is the set of

vertices associated with jobs.

Table 2. Average and Standard deviation for

Instances Processing time

J Average Stdev

50 48.11 25.98

100 52.26 28.62

200 50.81 27.61

500 49.72 27.70

We generated the instances of three density sets

{low, medium, high} corresponding to the values

{0.1, 0.15, 0.25} respectively. Regarding the

parameters of the algorithms, we tested the

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015390

Algorithm 1:

Pseudo-code of a genetic algorithm.

Generate randomly an initial population of

solutions.

Calculate the fitness of the initial population.

while Stopping Criteria Not Satisfied do

 Select a pair of parents based on fitness.

 Create two offspring using crossover.

 Apply mutation to each child.

 Evaluate the mutated offspring.

All the offspring will be the new population.

end

combinations of population size P
size

∈{50,100 }
crossover ratio P

c
∈{1,0.5} and mutation ratio

P
m
∈{1, 0.5} . The stopping criterion is set to the

computation time of 1, 10, 60 and 600 seconds

for all combinations of instance.

5 Modelling the Problem using

Genetic Algorithm

In this section, we present the modeling of our

GAs for DAGs in cloud environment. These

scheduling algorithms effectively addresses the

issues of minimizing the makespan.

5.1 Task scheduling genetic algorithm (GATS)

This GA has been proposed on heterogeneous

computing systems by Zhou et al in [9]. They

call it, ”task scheduling based Genetic

Algorithm (GATS)”. It has been modeled as

follows: The linear order of all jobs forms the

chromosome. Each chromosome represents a

solution for the problem by scheduling the jobs

in the order given by the permutation, the order

of the jobs should be a valid topological order

as the associated nodes in the DAG, where start

nodes should be placed at the beginning of the

chromosome, while the exit nodes should be

placed at the end. The initial population is

produced by making a random perturbation to

the order of jobs in the first chromosome to

produce a valid chromosome, until the desired

size of the initial population reached. Indeed, a

linear crossover from a single random position

applied to the two selected parents. The

mutation operation operated for all individuals

of the new population considering the

precedence constraints topologically.

Then, the objective function is evaluated by

using the Earliest Completion Time (ECT)

technique, which schedules a candidate job onto

machines (processors) on which the completion

time of the job is the earliest. The robust

characteristic in this GA is the generation of a

valid chromosome in the initial population.

At the next generation, we modify GATS in

GATS+ by just making a random mutation for

two genes selected randomly and if the

candidate chromosome is not valid, then we

throw it out by assigning a big value as Cmax

to this candidate. Since we have valid

chromosomes in the initial population, the

robust characteristics of the GATS can still be

maintained and we will not spend a lot of

computation time in the mutation operator.

This small change increases the chance to find

a best result, especially when the computation

time is less than one minute, because GATS

spends a lot of time in mutation procedure if

the candidate is not valid. Table 3 shows the

results obtained by GATS and GATS+ in one

second with Psize = 100, Pc = 1.0 and Pm = 0.5.

The dashed results means that GATS does not

find a solution during one second and also

when we run the instances for 10 seconds

GATS cannot find a solution with the

problems of large number of instances in all of

the three density sets.

Table 3. GATS vs GATS+ Cmax Comparison

Inst. L-Density H-Density

m-n GATS GATS+ GATS GATS+

2- 50 17274 17251 17274 17927

2- 100 37667 37667 37667 38636

2 -200 - 74590 - 75702

2 -500 - 181679 - 183294

5 -50 10349 10527 7813 7355

5 -100 20791 19766 20049 19747

5 -200 - 37731 - 32981

5 -500 - 88668 - 82615

10 -50 7820 7820 6460 6460

10 -100 10860 10768 10970 10900

10 -200 - 22236 - 18182

10 -500 - 48365 - 40901

20 -50 6238 6090 4540 4540

20 -100 9775 9604 9628 9593

20 -200 - 20892 - 15189

20 -500 - 39090 - 30158

5.2 Genetic Algorithm based on Cut-

point (GACP)

For this genetic algorithm (GACP), the

chromosome coding composed of two rows:

the first represents a valid order of jobs

according to the precedence constraints, and the

second row gives an information on job

positioning according to the cut-point.

We generate m−1 random cut-points
(cp)=cp

1
, cp

2
,… , cp

m−1 , to assign jobs to its

VMs. The solution provided as follows: The

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 391

sequence of jobs from j0 to j
cp1

 will be

assigned on VM1 and the sequence of jobs from
j

cp 1+1 to j
cp2

will be assigned on VM2 and the

sequence of jobs from j
cp2+1 to j

cp3
 on VM3

and so on. In other words, we assign a valid

sub-sequence of a random length of jobs on a

specific VM.

In this genetic algorithm we carried out one

point crossover between two parents and an

exchange between two random points carried

as mutation operator. However, this genetic

algorithm gave bad results. The best result

obtained by GACP is at least two times the

results obtained by GATS.

5.3 Genetic Algorithm based on the list

of Available jobs (GAAV)

In this section we will propose a simple idea to

generate the population with lowest

computational cost, where the chromosome

coding depends on VMs and places the job in

its associated VM, and the computational

efforts will be taken in the evaluation function.

In this section we will describe our second

genetic algorithm, based on the list of available

jobs (GAAV), which depends mainly on the

available-list scheduling heuristic.

5.3.1 Coding an initial population

The assignment of VMs to the list of jobs is a

candidate solution to the problem. Therefore,

the chromosome can be represented by a linear

list of integers, each integer representing a VM,

here mi considered as gene. The series of genes

with the length of n are generated randomly by

assigning each job of J to a random mi from the

set of M. Figure 2 shows the chromosome

representation for ten jobs on five VMs.

1 4 2 1 3 3 5 2 1 3

Figure 2. Chromosome representation for GAAV

In GAAV there is no computational effort to

produce the initial population (IP) because it is

produced by making a random number of

permutations to the integer-list to produce a

chromosome until the size of IP (IPsize) reached.

Hence, all chromosomes give a valid solution.

5.3.2 Fitness evaluation

In GAAV, to evaluate the chromosome, first we

search the virtual machine with minimum

completion time Ci. For this machine we take

its available jobs according to the precedence

constraints, from these available jobs we

schedule the job with the maximum number of

successors will be placed to the selected virtual

machine first. Then, we update Available list,

and search again for machine with the

minimum completion time and repeat this

process until we finish the evaluation process.

Simply, at each placement iteration we select

the machine with minimum completion time

and its available job with highest number of

successors. Then, we assign the job which

could lead to a late schedule of some jobs in the

future to its VM, maybe this job will affect the

Cmax of the whole system. At the end of this

process, a valid schedule will be obtained and

the fitness function (Cmax) also will be

calculated. Algorithm 2 illustrates the GAAV

fitness function steps.

Algorithm 2.

Fitness Evaluation Function for GAAV.

Let Available be the current set of jobs without

predecessors.

while |Available| > 0 do

 Selectedmachine =

 the machine with minimum Ci.

 Selectedjob=

 the job of greater number of successors in

Selectedmachine.

 Add Selectedjob to Selectedmachine

 Update Ci.

 Update Available.

end

5.3.3 Crossover

The matter of replacing some of the genes in one

parent by corresponding ones on the other parent

is known as crossover. Here this operator is

carried out based on a linear crossover from a

single point. This operator is applied to the

selected parents (parent1, parent2), then a new

two offsprings are obtained as offspring1 and

offspring2, the crossover operated between two

chromosomes one with higher fitness value and

the other with the Pc ratio. Figure 3 illustrates

the crossover operator.

5.3.4 Mutation

Mutation can be thought as an effectively

escape method for premature convergence by

randomly change the value of an individual.

For maintaining the feasibility of the new

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015392

generated individual. During the mutation

process, one gene selected randomly and we

put it on a different random mi from the set of

M to obtain a new offspring, Figure 4

represents the mutation operator.

Figure 3. GAAV Crossover Operator

5.3.5 Selection

Finally, the best chromosome of the first

population is stored as in a linear ranking.

5.3.6 Stopping rule

The Genetic Algorithm is stopped when the

execution time is greater than the maximum

execution time allowed.

Figure 4. GAAV Mutation Operator

Figure 5, represents an example of

chromosome encoding solution for GATS,

which is (1-2-3-6-4-7-5), and a chromosome

encoding solution for GAAV, which is (0-1-0-

1-0-1-0), for the instances in Table 1 according

to the precedence constraints in Figure 1, run

on two VMs of different speeds which are:
s

1
=1, s

2
=2 .

5.4 Genetic Algorithm (GAAV+)

When GATS depends mainly on ECT

technique and GAAV based on the local density

of the DAG, according to the effectiveness of

these two techniques in the optimization of

scheduling unrelated parallel machine problem

with precedence constraints, we combined

these two techniques in GAAV+.

In this genetic algorithm GAAV+, the

modification occurred in the Fitness

Evaluation. Therefore, the chromosome

representation as in Figure 2, according to this

coding we know the VM for each job, this

fitness evaluation will select the job in

machine that will give the minimum Cj from

the available jobs j∈AV , where AV is the

current set of jobs without predecessors, this is

ECT technique. From the other hand, at the

same time we considered the number of

successors of this job, and this is the local

density of the DAG technique. Thus, the

evaluation can be taken by selecting job j from

AV with the minimum value produced by the

following function:

α×(C
j
)−(1−α)×|Succ

j
|

where α∈[1,0] and |Succj| is the number of

successors of job j. We schedule the job with

the minimum value of this function first to

generate a valid schedule for calculating Cmax.

6. Experiments and Results

This section presents the experiment setup and

the results for GATS, GATS+, GAAV, and

GAAV+. A set of simulations have been

performed on Dell Intel, core i5 running at 3.4

GHz, and 8 GB of RAM. The GAs have been

coded in C++, compiled with g++ compiler,

and tested under Ubuntu 14.02 64-OS. The

entries in the Table 5 and 6 are:

– m : number of machines,

– n : number of jobs,

– GATS : Cmax value for GATS,

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 393

Figure 5. Example of the GATS and

GAAV encoding

– GATS+ : Cmax value for GATS+,

– GAAV : Xmax value for GAAV,

– GAAV+ : Xmax value for GAAV+,

Genetic search is implemented through genetic

operators. Tables 5 and 6 show the results given

by our proposed GAs (GATS+, GAAV, and

GAAV+) compared to GATS.

Table 5. Makespan(Cmax)for the proposed algorithms

and GATS (H density)

Inst. L- Density

m-n GATS GATS+ GAAV GAAV+

2- 50 17274 17251 17251 17251

2- 100 37667 37667 37492 37521

2 -200 73839 74508 73024 73412

2 -500 180246 180089 179612 216190

5 -50 7813 7416 7649 7438

5 -100 18980 18837 18689 18020

5 -200 31902 32342 33652 31600

5 -500 80214 80537 89516 124257

10 -50 6560 6460 6493 6460

10 -100 10632 10871 10264 9544

10 -200 17030 17558 17600 17998

10 -500 38147 38649 45846 75764

20 -50 4540 4540 4540 4540

20 -100 9320 9320 9320 9320

20 -200 14092 14340 15804 13735

20 -500 27765 28179 33921 50949

From this simulation study we fixed the

parameters with the combination of (100, 1.0,

0.5, 600), Population size, Crossover ratio,

mutation ratio and the computation time

respectively. We have tested out different

values of α in GAAV+ to find the best value.

Therefore, we took α = 0.5. From the results we

have noticed that when population size in

GAAV is larger than 100, any increase of it has

no significant influence on the performance of

the genetic algorithm.

In Table 6 we can see the genetic algorithm

GAAV can improve 31% of the solutions

obtained by GATS in low density problems,

43% in medium density problems and 43% in

high density problems. One other interesting

outcome is that GAAV can be considered as an

efficient algorithm with the problems of small

and medium number of VMs. GAAV+ mostly

outperforms GATS when the number of jobs 100

and 200 in high density. This may improve 50%

of solutions obtained by GATS. It can also

improve 50% of medium density problems and

31% of low density problems. If we focused our

attention to genetic algorithm GATS+, we can

see that for low density showed a good

performance and for medium and high density

problems is really far from the best solutions,

because when we thrown out the invalid

candidates we lost some information about some

generations. According to the GATS operators

behaviors, it always needs more time than the

specified stop criterion, with the problems of

large numbers of machines and jobs.

Another interesting factor to study in the

experiments is the count of best solutions

obtained by GAs. In Figure 6 we can notice

that GATS+ can find maximum number of best

solutions overall instances in one second and

ten seconds, whereas GATS cannot find best

solution within the specified computation time,

we noticed that GATS cannot obtain solution

when we run it for 1 and 10 seconds, it needs at

least 77 seconds to obtain solution with few

number of iterations. We also noticed that

GATS need a lot of time to find the first

population and for other genetic algorithm

operators. We can also see the similarity of a

behavior for GATS and GATS+ when we run

them for 10 and 60 seconds with the

improvement of GATS+. Therefore, we can say

GATS+ outperforms GATS in terms of best

solutions for sizes and densities. In Figure 6 it

is clear that GAAV+ has a positive relationship

with the computation time, and has the ability

to improve the counts of best solutions for

different problems. The other positive thing is

that, it can also obtain a solution within the

specified computation time.

Figure 6. Counts of best results

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015394

The efficiency of GAAV appears when we run it

for one second; it can always obtain the best

solution for the minimum and medium problems.

Figure 8 indicates the Average Relative

Percentage Gap (ARPG) between the first and

the best solution for genetic algorithm. Indeed,

ARPG is computed as follows:

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 395

Table 6. Makespan(Cmax)for the proposed algorithms and GATS, (L&M Density)

Inst. H- Density M-Density

m-n GATS GATS+ GAAV GAAV+ GATS GATS+ GAAV GAAV+

2- 50 17927 17927 17927 17927 17251 17251 17251 17251

2- 100 38577 38577 37790 37539 37661 37667 37505 37492

2 -200 75595 75682 74659 74474 73847 73956 73210 74850

2 -500 180908 180861 180849 195618 180375 180466 179120 190116

5 -50 10349 9672 10073 9591 8318 8228 7997 8013

5 -100 19921 19776 19921 19320 18467 18213 17793 17640

5 -200 36521 36645 36036 36205 35621 35577 35575 34890

5 -500 85015 85268 92482 114689 80365 81039 87801 113390

10 -50 7820 7820 7820 7820 4850 4850 4887 4850

10 -100 10494 10591 10378 10310 10580 10552 10118 9898

10 -200 20656 21755 22980 21803 18858 19521 20010 18148

10 -500 44935 46714 57585 73291 40309 41062 48073 70042

20 -50 6156 6090 6156 6090 6430 6430 6430 6430

20 -100 9310 9431 9801 9495 8206 8141 8186 8198

20 -200 20112 19964 21151 20707 14477 14348 15395 14430

20 -500 36364 36346 43463 54919 30117 31063 41631 51731

(a) High Density (b) Medium Density

(c) Low Density

Figure 8. Average Relatives Percentage Gap

100×
C

max

First−C
max

Best

C max

Best , where C
max

Best
 is the best

known Cmax, obtained by the given GA, and

C
max

First
 is the first Cmax obtained by this GA. We

noticed that GATS with low, medium and high

density DAG problems cannot improve its

solutions. This means GATS starts with a good

initial population and the computation time will

not affect this solution positively.

This behavior inherited also by GATS+,

whereas GAAV and GAAV+ start with random

solutions, but they can obtain a better solutions

when we increase the computation time.

Figure 7 represents the convergence traces for

processing the problem of high density of a

randomly generated DAG with 5 VMs and 100

jobs. It can be observed from this figure

GAAV+ decreases quickly. GAAV also shows a

quick decreasing and provides a best solution

when it runs for 10 and 60 seconds.

Figure 7. Genetic algorithms convergence.

Whereas GATS remains in the same trend, this

behavior followed with most of our problems.

Hence, we can say that the techniques used in

GAAV and GAAV+ can improve the solution

and we can find a better upper bound for this

problem. The modification of GATS in GATS+

also has a good outcome.

6.1 Integral Linear Programming

Solution (ILP)

The mathematical model is applied for small

instances. It is implemented with CPLEX 12.4,

on an Intel, core i5 running at 3.4 GHz, and 8

GB of RAM under a computation time limit of

one hour (if after one hour no optimal solution

is obtained, the current integer solution is

returned). In Table 4, columns LB and UB

represent the lower bounds and the upper

bounds respectively for some problems, for

which CPLEX is not able to find the linear

relaxation value. Indeed, we have limited the

use of the RAM to 6 GB and for the most of

instances this amount is not sufficient for the

linear relaxation with all these constraints and

variables in the model.

6.2 Transformations between GAs

In spite of the variety between GATS and GAAV

encoding’s, we tried to investigate the ability of

each genetic algorithm to improve the solution

obtained by the other genetic algorithm. We

transformed the best population generated by the

first genetic algorithm, to be the first population

for the second genetic algorithm. This also

provides interesting observations, about the

differences between our proposed genetic

algorithms and GATS, by doing all

transformations from GATS to GAAV and

GAAV+, and from GAAV,GAAV + to GATS. We

noticed that, because of the differences of the

encoding and the genetic operators between

GATS in comparing to GAAV and GAAV+ the

ARPG between the best solution obtained by the

first GA before transformation and the best

solution obtained by the second genetic

algorithm after the transformation.

The ARPG is computed as follows:

100×
C

max

FirstBest−C
max

SecondBest

Cmax

SecondBest
, where C

max

FirstBest
 is

the best known Cmax, obtained by the first GA,

and C
max

SecondBest
 is the best known Cmax, obtained

by the second GA. Table 7 shows the ARPG of

the transformation processes: the negative

values mean that the second best solution is

worse than the first best. We observed that the

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015396

Table 4. Results obtained by the

Integral Linear Program

Inst. H-Density M-Density L-Density

m-n LB UB LB UB LB UB

2-20 8892 38480 8008 38480 8190 38480

5-50 8887 40885 5482 40885 5575 40835

10-50 7263 45695 4746 45695 5888 45695

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 397

Table 7. The Average Relative Percentage Gap(ARPG) for the transformation process between GAs

Inst. H-Density M-Density L-Density

m-n ATSV ATSV+ AVTS AV+TS ATSV ATSV+ AVTS AV+TS ATSV ATSV+ AVTS AV+TS

2- 50 1.1 -0.1 0.4 0.2 0.3 -3.1 3.3 0.1 2.0 0.1 0.3 0.3

2-100 2.1 2.5 0.9 0.2 0.8 -0.1 0.3 0.5 -1.9 0.4 1.4 0.0

2-200 1.6 1.2 0.9 0.6 0.7 -1.3 0.1 0.3 0.9 1.0 0.5 0.5

2-500 -0.2 -12.0 -0.5 12.7 0.0 -10.2 0.5 12.0 0.6 -17.3 0.2 17.4

5-50 10.8 5.8 1.7 8.8 16.0 6.6 -1.6 2.3 6.0 -0.2 6.9 4.6

5-100 4.1 3.0 6.6 5.1 11.1 -0.2 7.7 -3.3 14.8 2.7 3.4 3.5

5-200 -3.2 0.9 -0.7 0.1 1.0 -1.7 -3.8 1.2 -8.4 -0.9 -0.6 5.6

5-500 -9.7 -8.0 -0.1 31.0 -10.0 -37.7 -2.0 46.2 -9.7 -42.2 -6.8 52.2

10-50 1.3 -0.9 1.6 -3.4 -7.5 0.0 6.9 4.7 5.6 -1.9 3.9 1.1

10-100 -8.0 -1.1 2.7 2.7 3.8 4.0 3.2 3.3 1.1 6.0 6.9 4.6

10-200 -12.0 -5.8 0.1 1.3 -8.6 -2.9 -0.3 3.2 -15.5 -8.6 -1.3 -4.8

10-500 -27.8 -37.7 -14.4 52.0 -26.0 -42.0 -16.5 74.0 -26.1 -54.5 -15.6 93.1

20-50 4.2 1.3 -0.6 2.0 1.1 0.0 1.7 0.0 -6.0 0.0 1.4 3.6

20-100 0.3 1.6 10.0 0.8 3.3 -2.43 15.6 3.8 -2.0 -5.2 11.9 4.2

20-200 -1.4 -2.4 -2.6 5.0 -11.0 -4.1 -2.0 7.0 -7.4 -1.6 -2.5 10.0

20-500 -23 -39 -17.5 57.5 -29.0 -48.8 -12 83.0 -26.0 -52.7 -10.6 9.0

Table 8. Best Makespan (Xμαξ) obtained among All GAs Comparing to AV τo TS and AV+ τo TS

Inst. H-Density M-Density L-Density

m-n Best AVTS AV+TS Best AVTS AV+TS Best AVTS AV+TS

2- 50 17927 17927 17937 17251 17251 17251 17251 17251 17251

2-100 37539 37488 37488 37492 37488 37667 37488 37488 37488

2 -200 74474 74425 74438 73210 73112 73358 73024 72891 72891

2 -500 180849 179768 180377 179120 178412 178919 179612 178334 179580

5 -50 9591 9308 9217 7997 7365 7440 7416 7280 7435

5 -100 19320 19318 18579 17640 16929 18597 18020 17973 17830

5 -200 36036 36011 36418 34890 33995 34122 31600 30835 30796

5-500 85015 86133 89414 80365 82007 84885 38147 81178 85589

10 -50 7820 7820 8101 4850 4850 4850 6460 6460 6460

10 -100 10310 10736 10306 9898 9952 9920 9544 9570 9704

10 -200 20656 21045 21218 18148 18951 19301 17030 16251 19321

10 -500 44935 45262 46536 40309 40841 41663 38147 38744 42580

20 -50 6090 6156 6156 6430 6430 6430 4540 4540 4540

20 -100 9310 9428 9262 8141 8249 8189 9320 9054 9372

20 -200 19964 20208 20054 14348 14318 13880 13735 14235 13054

20 -500 36346 38198 37252 30117 32289 30835 27765 28950 28707

behavior of the proposed GAs and GATS is not

the same. From the transformations, GAAV and

GAAV+ cannot make an improvement to the

best generation obtained by GATS. However,

for the solutions obtained by the

transformations from GAAV to GATS and from

GAAV+ to GATS sometimes these

transformations can lead to solutions better

than those obtained by GAAV, GAAV+ and

GATS. Table 8 represents a comparison

between the best solutions obtained among all

GAs in column labeled ”Best” and the

transformations solutions. We can see also,

AV+TS can improve the best solution obtained

by the first genetic algorithm for instances of

large number of jobs, but this improvement did

not improve the best solution obtained among

all genetic algorithms.

7. Conclusion and Future Work

In this paper we have proposed genetic

algorithms for job scheduling problem in cloud

computing with the objective of minimizing the

makespan, which is considered as an unrelated

parallel-machine scheduling problem under

precedence constraints. Our contribution has

consisted in new genetic algorithms. GAAV

includes a new local search procedure for local

graph density to evaluate the chromosome.

GATS+ which is based on a permutation coding

and ECT, and GAAV+ which is combined the

innovative characteristics of GAAV with the

(ECT) technique. The performances of our

proposed genetic algorithms have been

compared against one of the best existing

genetic algorithm for the same problem. After

extensive comparisons, we can conclude that

the proposed algorithms can improve the

solutions obtained by GATS for small and

medium problems. Moreover, they can get

better results than GATS within the specific

running time (stop criterion) for a high and

medium DAG density problem. In the future

work, we will enhance the mathematical model

by adding new constraints for further

improvement. Another interesting topic

regarding scheduling problem in cloud

computing is to consider the multiobjective

optimization context.

REFERENCES

1. GRAHAM, R. L., E. L. LAWLER, J. K.

LENSTRA, A. R. KAN, Optimization and

Approximation in Deterministic

Sequencing and Scheduling: A Survey,

Annals of Discrete Mathematics, vol. 5,

1979, pp. 287-326.

2. RAHMANI, A. M., M. REZVANI, A Novel

Genetic Algorithm for Static Task

Scheduling in Distributed Systems, Intl J.

of Computer Theory and Engineering, vol.

1, no. 1, 2009, pp. 1793-8201.

3. SHENAI, S., Survey on Scheduling Issues

in Cloud Computing, Procedia

Engineering, vol. 38, 2012, pp. 2881-2888.

4. HALL, N. G., E. MARC, Generating

Experimental Data for Computational

Testing with Machine Scheduling

Applications, Operations Research, vol.

49, no. 7, 2001, pp. 854-865.

5. CHENG, W., L. MIN, A Genetic

Algorithm for Minimizing the Makespan

in the Case of Scheduling Identical

Parallel Machines, Artificial Intelligence

in Eng., vol. 13, no. 4, 1999, pp. 399-403.

6. BALA, A., I. CHANA, A Survey of Various

Task Scheduling Algorithms in Cloud

Environment, IJCA, 2011, pp. 26-30.

7. HUANG, Q., X. HUANG, J. LI, K.

SHUANG, S. SU, J. WANG, Cost-

efficient Task Scheduling for Executing

Large Programs in the Cloud, Parallel

Computing, vol. 39(4), 2013, pp. 177-188.

8. GUO, L., C. JIANG, S. ZHAO, S. SHEN,

Task Scheduling Optimization in Cloud

Computing based on Heuristic

Algorithm, Journal of Networks, vol. 7,

no. 3, 2012, pp. 547-553.

9. TIAN, S., Y. XU, H. ZHAO, G. ZHOU, A

Genetic-based Task scheduling

Algorithms on Heterogeneous

Computing Systems to Minimize

Makespan, Journal of Convergence

Information Technology(JCIT), vol. 8, no.

5, 2013, pp. 547-555.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015398

10. BILGAIYAN, S., M. DAS, S. SAGNIKA,

An Analysis of Task Scheduling in Cloud

Computing using Evolutionary and

Swarm-based Algorithms, International

Journal of Computer Applications, vol. 89,

no. 2, 2014, pp. 11-18.

11. LIU, C., YANG, S., A Heuristic Serial

Schedule Algorithm for Unrelated

Parallel Machine Scheduling with

Precedence Constraints, Journal of

Software, vol. 6(6), 2011, pp. 1146-1153.

12. HE, J., Y. KANG, H. LU, A PSO-based

Genetic Algorithm for Scheduling of

Tasks in a Heterogeneous Distributed

System, Journal of software, vol. 8, no. 6,

2013, pp. 1443-1450.

13. BALIN, S., Non-Identical Parallel

Machine Scheduling using Genetic

Algorithm, Expert Sys. with Applications,

vol. 38(6), 2011, pp. 6814-6821.

14. BAZZAZI, M., M. IZADI, F. SASSANI, F.

TAHERI, R. TAVAKKOLI-MOGHADDAM,

Design of a Genetic Algorithm for Bi-

objective Unrelated Parallel Machines

Scheduling with Sequence-dependent

Setup Times and Precedence

Constraints, Computers & Operations

Research, vol. 36, no. 12, 2009,

pp. 3224-3230.

15. RUIZ, R., E. VALLADA, A Genetic

Algorithm for the Unrelated Parallel

Machine Scheduling Problem with

Sequence Dependent Setup Times,

European Journal of Operational

Research, vol. 211(3), 2011, pp. 612-622.

16. BENZIANI, Y., I. KACEM, P. LAROCHE,

A. NAGIH, Exact and Heuristic Methods

for Minimizing the Total Completion

Time in Job-shops, Studies in Informatics

and Control, ISSN 1220-1766, vol. 23(1),

2014, pp. 31-40.

17. ARYAN, Y., A. G. DELAVAR, HSGA: A

Hybrid Heuristic Algorithm for

Workflow Scheduling in Cloud Systems.

Cluster Computing, vol. 17, no. 1, 2014,

pp. 129-137.

18. AHMAD, I., Y. K. KWOK, Static

Scheduling Algorithms for Allocating

Directed Task Graphs to

Multiprocessors, ACM Computing

Surveys, vol. 31, no. 4, 1999, pp. 406-471.

19. DEEPA, S. N., S. N. SIVANANDAM,

Introduction to Genetic Algorithm,

Springer Berlin Heidelberg, 2008.

20. HASSAN, M.-A., I. KACEM, S.

MARTIN, Unrelated Parallel Machines

with Precedence Constraints:

Application to Cloud Computing,

Cloudnet 2014, pp. 438-442.

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 399

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015400

