
1. Introduction

Optimization  algorithms  have  been  widely
studied in literature. While exact methods are
very efficient in solving small and medium size
problems, they fail on finding (nearly) optimal
solutions for large scale optimization problems
[1].  When  exact  algorithms  cannot  be  used
directly  on  such  large  scale  complex
optimization  problems,  heuristic  methods  are
very helpful.  During the past five decades an
increasing  number  of  (meta-)heuristics  have
been  developed  to  provide  “good”  solutions
within  an  acceptable  computational  time.
Although  (meta-)heuristic  techniques  cannot
ensure optimality (as exact method does), they
have  demonstrated  to  be  very  effective  on
solving  complex  large-scale  combinatorial
optimization problems. 

One  key  element  in  the  success  of  a
(meta-)heuristic  method  is  its  parameters
configuration.  It  has  been  shown  that  fine
parameter  tuning  can  lead  to  great
improvements  on the final  solution quality as
well  as  on  the  technique  behaviour  [2,3,4,5].
Unfortunately,  fine  tuning  task  is  quite  time
consuming  and  problem-specific.  Automatic
parameter tuning has been widely studied in the
literature (see [4,5,6]). In this paper we propose
a genetic programming [7] algorithm to adjust a

key  parameter  of  a  well-known  local  search
heuristic  namely  Simulated  Annealing  (SA)
[12]. We test our approach on a set of instances
of  the  Capacitated  Facility  Location  problem
(CFLP), obtained from the OR Library [8]. 

The idea is to let Genetic Programming finds a
good  value  of  a  key  parameter  in  SA which
leads to an improvement in both final objective
function value found by the heuristic  method
and  heuristic  behaviour  (reliability,
convergence, etc). 

2. Simulated Annealing

Simulated Annealing (SA) algorithm was firstly
introduced in [10, 11, 12]. It can be defined as a
local  search  (meta-)heuristic.  Theoretically
global optimal solutions can be found by SA,
however  unlimited  time  is  needed,  which
makes this feature impractical.  The method is
inspired  by  thermodynamic  systems  where
concepts such as energy, state and temperature

are adapted to make it works in combinatorial
optimization  framework.  The  algorithm  has
been extensively studied and applied on a wide
range  of  complex  combinatorial  optimization
problems [13, 14, 15].

The inputs of the algorithm are as follows: t0

is  the  initial  temperature.  The  maxIter
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parameter  corresponds to  the total  number  of
iteration  the  SA algorithm  would  perform  at
each run. Additionally, the algorithm needs to
define  a  neighbourhood  move,  so  we  can
generate (or move) from current solution (state)
to  another.  In  this  paper,  we  define  the
neighbourhood of a solution ,   as the
set of all  , with   the set of feasible
solutions, such that  only differs from  in
one client allocation, i.e. all clients but one in

 are  allocated  as  in  .  For  instance,  let
 be  a  solution  for  a  problem

with  5  clients  and  3  potential  warehouses,
where  clients  1,  2,  and  4  are  allocated  to
warehouse 1, client 3 is allocated to warehouse
3  and  client  5  is  allocated  to  warehouse  2.
Then,  let   and

 be neighbours of  . As we

can see,   only differs from   in client 2
allocation, which is now assigned to warehouse
2. Same situation occurs with  where client
1 allocation changes.

The  SA  algorithm  starts  with  a  randomly
generated  solution   (or  state).  After

that,  a  neighbour  solution   is

generated,  where   denotes  the
current iteration. Once the neighbour solution is
generated,  the  change  in  objective  function
values  when  moving  from   to  ,

ΔE=cost (sk )−cost (scurrent )  is calculated. If

 then  the  neighbour   is  accepted
and the current solution is updated. If 
then  the  neighbour  solution   is  accepted
with a probability

(1)

It  is clear that  acceptance probability  P(ΔE)
depends on the temperature parameter  temp.
Usually,  temp varies  over  the  algorithm
execution,  although  some  constant  values
have proven to be effective in  finding good
solutions  for  some  combinatorial
optimization problems.  As the  temp variable
cools  down,  worst  solutions  are  not  longer
accepted, which provokes that the algorithm
converges to a locally optimal  solution.  The
temp variable  cools  down  according  to  an
annealing  schedule.  Commonly  used
annealing schedules are 

(2)

with  in the range  and

(3)

with   [11,16,17].  The  algorithm
ends when either no further improvements can
be made or the maximum number of iterations

 is reached.

In this paper, genetic programming is used to
optimize  annealing schedules used within our
Simulated  Annealing  algorithm.  Next  two
sections  shows  how  we  combine  genetic
programming and simulated annealing to solve
the CFLP problem. 

3. Genetic Programming

Since  mid-sixties  when  [18],  [19]  and  [20]
separately developed ideas based on Darwin's
findings,  evolutionary  computing  has  been  a
very  fruitful  research  area  in  artificial
intelligence  and,  particularly,  in  optimization.
Nature  inspired  algorithms  have  been
developed  mainly  in  the  last  two  decades  to
tackled  difficult  optimization  problems.  One
evolutionary strategy proposed by [7] in early
nineties is Genetic Programming. A distinctive
feature  of  this  strategy  is  that  it  attempts  to
apply evolutionary strategies on computational
programs  rather  than  optimization  or
classification problems, as previously proposed
evolutionary strategies do.

In  [7]  the  author  claims  that  the  process  of
solving  optimization  problems  can  be
reformulated  as  a  search  for  a  highly  fit
individual  computer  program in  the  space  of
possible  computer  programs.  In  this  way the
author changes the focus from the solutions of
the optimization problem to computer programs
which  lead  to  high  quality  solutions  of  the
optimization  problem.  This  is  substantially
different  from  other  evolutionary  strategies
such  as  genetic  algorithm  or  swarm
intelligence. Furthermore, [7] states that when
viewed in this way, the process of solving these
problems  becomes  equivalent  to  searching  a
space  of  possible  computer  programs  for  the
fittest  individual  computer  program.  In
particular, the search space is the space of all
possible  computer  programs  composed  of
functions  and  terminals  appropriate  to  the
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problem  domain.  Since  individual
representation and, consequently, search space
are different, specific strategies to seek for the
fittest individual must be considered.

In  genetic  programming,  populations  of
hundreds or  thousands  of  computer  programs
are  genetically  bred.  This  breeding  is  done
using the Darwinian principle of survival  and
reproduction of the fittest along with a genetic
recombination  (crossover)  operation
appropriate for mating computer programs. At
the  end,  a  computer  program  that
(approximately) solves a given problem would
emerge from this combination of selection and
genetic operations [7].  To do that,  a common
representation used in genetic programming is
by means of parse trees structure similar to the
ones used by compilers, being a link between
user-level  programming  languages  and  low-
level machine specific code. Using parse trees
has advantages since it prevents syntax errors,
which could lead to invalid individuals, and the
hierarchy in  a  parse  tree  resolves  any issues
regarding function precedence [21].

Individuals  in  genetic  programming  are
adaptive  computational  programs  which  are
hierarchically  structured.  Size  and  content  of
such programs will dynamically change during
the algorithm execution. The key elements of
an individual are its genes which are organized
as  chromosomes  (code).  Following  with  the
tree structure of the individuals, there are two
types  of  genes:  functions  and terminals  [22].
Terminals,  in  tree  terminology,  are  leaves
(nodes  or  points without  branches)  while
functions  are  points  with  children.  Figure  1
shows an example of a very simple individual
which returns .

Figure 1. Step 1. Example of an individual in GP.

More complex  functions  such as  sen(),  cos(),
exp(),  AND,  OR,  NOT as  well  as  structures
such  as  IF-THEN-ELSE,  FOR,  REPEAT,
among  others,  can  be  used  within  genetic
programming framework.

In genetic programming, we need to ensure that
the  a  priori  defined  set  of  terminals  and

functions should be selected so as to satisfy the
requirements  of  closure and  sufficiency.  The
closure  property  requires  that  each  of  the
functions in the function set be able to accept,
as its arguments, any value and data type that
may possibly be returned by any function in the
function set and any value and data type that
may possibly be assumed by any terminal  in
the  terminal  set.  The  sufficiency  property
requires that the set of terminals and the set of
primitive functions be capable of expressing a
solution  to  the  problem.  The  user  of  genetic
programming should know or believe that some
composition of the functions and terminals he
supplies can yield a solution to the problem [7].

Both  terminals  and  primitive  functions  sets  (
 and   respectively)  must  be defined by

users. Users need to do this independently of
the  specific  problem  to  be  solved  and  then
other problem specific algorithms, such as Tabu
Search,  can  be  considered  within  this
framework. Once sets   and   have been
defined,  the  first  population  needs  to  be
generated. To do that, an initialization function
must  be  implemented.  This  function  should
provide valid  and feasible  trees.  Figures  2,  3
and  4  show  an  example  of  how  this
initialization function works.

Figure 2. A random function is selected from F

Figure  2 shows  the  first  step  to  create  an
individual of the first generation. In this step, a
function from set   is selected. Since this is
the  first  step,  elements  from  set   of
terminals cannot be used.

Figure 3. Step 2. A random function is again
selected from F. In this case a random terminal from

T could have also been selected.

Next step (see Figure 3) is to set child nodes.
Here either elements  from   or   can be
chosen. If an element from  is selected, no
further  action  is  needed in  the  corresponding
branch. If an element from  is selected, we
proceed with the same procedure for the new
node.  The  initialization  procedure  ends  when

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 421



all tree leaves are set to terminal elements, as in
Figure  4.  Following  this  procedure  we  will
obtain a set of different individuals for our first
generation.  These  individuals  are  different  in
both  size  and  shape.  Different  methods  have
been  proposed  to  the  implementation  of  the
initialization  procedure  (e.g.  grow  method,
ramped  half-and-half  method  and  complete
method).  See  [7]  for  further  details  on  these
methods.  After  the  initial  population  is
generated,  normalised fitness is  calculated [7,
9] in order to identify those individuals which
have a  larger  probability of  being  considered
into the next generation.

Figure 4. Step 3. Random terminals are selected to
complete remaining tree leaves.

As in other evolutionary techniques, the better
the  fitness,  the  more  probability  of  being
passed on to the next generation. Based on that
probability,  crossover  as  well  as  mutation
operations  are  performed  on  those  promising
individuals to generate the next  generation of
the population. Also, a small portion of the best
individuals of the population is selected to be
passed on to  the next  generation without any
change.  This is  call  reproduction.  Apart  from
reproduction,  the  simplest  operation  is  the
mutation. In this paper mutation is performed
as  follows:  Given  an  individual  (tree)  ,  a
randomly selected function node is replaced by
a new function chosen from the set . As we
can see in Figure 5, shape of the tree remains
with  no  change  after  the  mutation  process,
although the resulting tree is a new individual
that belongs to the next generation. 

Figure 5. Example of the mutation operation.

In  this  paper  crossover  is  also  considered  to
generate  new  individuals  for  the  next
generation.  It  is  performed as  follows:  Given

two  parents  selected  from  the  current
generation based on their normalised fitness, a
node at each parent is randomly selected. The
selected nodes  are  the  crossover  points.  Sub-
trees  below  the  crossover  points  are  then
exchanged as in Figure 6.

Figure 6. Example of the crossover operation.
Parent combination leads to two off-springs.

As in any other evolutionary algorithm, genetic
programming ends when a predefined criterion
is met.  In our case,  the maximum number  of
generations is the termination criterion. 

4. Proposed Framework

As we mentioned before, in this paper genetic
programming  is  used  to  define  the  annealing
schedule  function.  Although  decreasing
functions  are  commonly  used  to  implement
annealing  schedules,  in  this  paper  we  do  not
restrict  the  algorithm  to  such  functions,  but
include  constant  values  as  well  as  increasing
functions. Thus, hereafter we denote 
variable in SA also as, the annealing function. 

In  order  to  generate  the  annealing  function
expressions,  we  define  set

F= {+,− ,÷ ,mod,× ,√ }  as  the  set  of
functions to be used by genetic programming
and set   as the set
of terminals. Using elements of these two sets,
genetic  programming  is  able  to  generate
mathematical  expressions  for  the  annealing
function.  Figure  7  shows  the  proposed
framework that combines genetic programming
and SA.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015422



Figure 7. Proposed GP + SA framework to
solve the CFLP problem.

We need  to  point  out  at  this  stage  that  the
proposed  framework  does  not  depend  on  the
problem that is going to be solved nor does on
the  (meta-)heuristic  genetic  programming  is
combined  with.  This  means  that  a  similar
framework  can  be  used  considering
(meta-)heuristics  such  as  particle  swarm
optimization or simple local search algorithms.
We only need to identify the key parameter of
such  heuristics  so  we  can  optimize  it  using
genetic programming.

As  Figure  7  shows,  the  SA  algorithm  is
performed for each individual of the population
in  the  genetic  programming  algorithm.
Parameter  is calculated for each individual

  based on its  corresponding tree structure.
Next  generation  is  built  using  evolutionary
operators such as the ones described before in
this  paper  (reproduction,  crossover  and
mutation).  After  the  maximum  number  of
generations is reached, the best solution found
so far is returned. 

5.  Capacitated  Facility  Location

Problem

In  this  paper  the  well-known  capacitated
facility location problem (CFLP) is used as a
test  problem.  The  CFLP consists  on  locating
plants,  warehouses,  and  distribution  centres
among  a  set  of  available  locations  and
allocating customers to such facilities. Here we

consider a situation where a single distribution
centre  serves  a set  of  warehouses.  Customers
are served by such warehouses. The goal is to
find a sub-set of warehouses that allows us to
serve all customers minimising the total system
cost. Each customer (or cluster) is served only
by  one  warehouse.  Customers  are  uniformly
distributed within a limited area. The problem
considers  the  location  cost  (i.e.,  the  cost
associated with opening a specific warehouse)
and the allocation cost (i.e., the cost related to
transportation of a specific amount of products
from  a  warehouse  to  a  customer)  [1].  The
mathematical model for the CFLP is presented
as follows:

min∑
i=1

N

(F i× X i )+∑
i=1

N

∑
j=1

M

(C ij d jY ij) (4)

∑
j=1

M

d j Y ij≤ I i

cap
X i , ∀ i=1,2,…, N (5)

∑
i=1

N

Y ij=1, ∀ j=1,2,… ,M (6)

Y
ij
≤X

i
∀ i=1,2,…, N , ∀ j=1,2,…, M (7)

X
i
,Y

ij
∈{0,1}∀ i=1,… , N ;∀ j=1,… ,M (8)

Equation (4) is the total system cost. The first
term is the fixed setup and operating cost when
opening  warehouses.  The  second  term is  the
daily  transport  cost  between  warehouse  and
customers  which  depends  on  the  customer
demand  d  and  distance  C

ij  between
warehouse  i  and customer  j . Inequality (5)
ensures that total demand of warehouse i  will

never  be  greater  than  its  capacity  I i
cap .

Equations  (6)  and  (7)  ensures  that  customers
are  served  by  only  one  warehouse.  Finally,
Equation (8) states integrality  (0−1 )  for the

binary variables X
i  and Y

ij .

6. Computational Results

In  order  to  evaluate  the  performance  of  our
approach,  we  consider  a  set  of  8  well-known
CFLP instances  obtained from the OR Library
[23], namely cap61, cap62, cap63, cap64, cap71,
cap72,  cap73  and  cap74.  We  select  these
instances as they have a known optimal solution.
We perform  experiments on an Intel i5 processor
running on Linux (Ubuntu 14.02) with 8GB of
memory. All tested algorithms were implemented
in Java 7. We need to state at this point that there
exists very efficient exact algorithms that are able
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to  solve  these  small  instances  to  optimality  in
only few seconds.  It is clear that we do not want
to  compete  with  such  methods,  as  heuristic
methods must be used when such exact methods
fail in finding optimal solutions. Instead, we want
to prove whether our approach improves results
obtained by the SA itself. 

Thus, we first apply the SA over the entire set
of instances. SA is performed 350 times over
each instance. Figure 8 shows the behaviour of
SA for one specific run on the instance cap61.
As we can see, SA reaches the optimum only
twice within the allowed time per run. 

Figure 8. Results obtained for the SA algorithm
after 350 runs, for instance cap61. Red line is the

optimal solution.

Although  SA performs  generally  well  on  all
these instances (it finds the optimum for all of
them if no time limit  is imposed), average of
the  current  solution  value  and  its  standard
deviation as well as its convergence could still
be improved as variation in the current solution
value is too large provoking that the algorithm
becomes both less reliable and slower.

We then  perform several  experiments  on  the
same set of instances using now our combined
approach of SA and GP. 

As  we  can  see  in  Figure  9,  when  SA  is
combined  with  GP,  the  obtained  results  are
better  in  terms  of  average  solution  value,
standard  deviation  and  convergence.  While
average of the solution values is clearly closer
to  the  optimal  solution  value,  its  variation  is
much less than the one obtained when only SA
is applied. Table 1 shows the obtained results
for all the instances considered in this study

Column  Instance in  Table  1  is  the  instance
name  that  is  considered.  Then columns  AVG

show the average value obtained by both the
SA and GP + SA algorithms for each instance.
Column  SD shows the standard deviation as a

percentage  of  the  optimal  solution  of  each
instance. Columns GAP is the difference, as a
% of the optimal  solution value,  between the
average value obtained by the algorithms and
the optimal solution of each instance. 

Figure 9. Results obtained for the proposed GP +
SA algorithm after 210 runs, for instance cap61. Red

line is the optimal solution.

As  we  can  see,  in  average,  the  genetic
programming  when  combined  with  the  SA
algorithm  is  able  to  improve  the  obtained
results  in  more  than  2%.  Moreover,  the
standard deviation is greatly improved by using
GP along with SA. 

This is  especially important  for large instances
where the any-time behaviour is very important. 

Table 1. Obtained results for both the simple SA
and our GP+SA algorithms for 

all the considered instances.
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7. Conclusions and Future Work

In this paper a genetic programming algorithm
is  used  to  automatically  fine  tune  a  key
parameter of a Simulated Annealing algorithm,
namely annealing function,  v .  The proposed
approach is  tested on small  and medium size
instances of the facility location problem with
capacity  constraints.  Results  shown  that
adjusting function  v  of the SA algorithm by
using  Genetic  Programming  leads  to  a  rapid
convergence to  optimal  solutions and reduces
variance  of  the  current  solution  objective
function  value.  This  means  that  SA  method
becomes  more  reliable  as  its  any-time

behaviour  is  better.  Convergence  of  the  SA
algorithm is greatly improved as less iterations
are  required  to  find  optimal  solution  for  all
tested  instances.  Furthermore,  the  fact  that
average solution value of our approach is closer
to  optimal  solution  in  all  instances  makes  it
very attractive if only limited time is provided
to solve the problem. This is because we known
that the solution provided by our approach will
be likely better  than the one provided by the
simple SA at any time during the execution of
the algorithm.

As  future  work,  heuristic  methods  other  than
SA  could  be  tested  within  the  framework
presented here. In particular other local search
algorithms  such  as  Tabu  Search  or  Variable
Neighbourhood  Search  could  be  considered.
Moreover,  the  proposed  approach  could  be
tested  on  large-scale  combinatorial
optimization problems so we can evaluate  its
performance when a large number of decision
variables is considered.
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