
1. Introduction

Optimization algorithms have been widely
studied in literature. While exact methods are
very efficient in solving small and medium size
problems, they fail on finding (nearly) optimal
solutions for large scale optimization problems
[1]. When exact algorithms cannot be used
directly on such large scale complex
optimization problems, heuristic methods are
very helpful. During the past five decades an
increasing number of (meta-)heuristics have
been developed to provide “good” solutions
within an acceptable computational time.
Although (meta-)heuristic techniques cannot
ensure optimality (as exact method does), they
have demonstrated to be very effective on
solving complex large-scale combinatorial
optimization problems.

One key element in the success of a
(meta-)heuristic method is its parameters
configuration. It has been shown that fine
parameter tuning can lead to great
improvements on the final solution quality as
well as on the technique behaviour [2,3,4,5].
Unfortunately, fine tuning task is quite time
consuming and problem-specific. Automatic
parameter tuning has been widely studied in the
literature (see [4,5,6]). In this paper we propose
a genetic programming [7] algorithm to adjust a

key parameter of a well-known local search
heuristic namely Simulated Annealing (SA)
[12]. We test our approach on a set of instances
of the Capacitated Facility Location problem
(CFLP), obtained from the OR Library [8].

The idea is to let Genetic Programming finds a
good value of a key parameter in SA which
leads to an improvement in both final objective
function value found by the heuristic method
and heuristic behaviour (reliability,
convergence, etc).

2. Simulated Annealing

Simulated Annealing (SA) algorithm was firstly
introduced in [10, 11, 12]. It can be defined as a
local search (meta-)heuristic. Theoretically
global optimal solutions can be found by SA,
however unlimited time is needed, which
makes this feature impractical. The method is
inspired by thermodynamic systems where
concepts such as energy, state and temperature

are adapted to make it works in combinatorial
optimization framework. The algorithm has
been extensively studied and applied on a wide
range of complex combinatorial optimization
problems [13, 14, 15].

The inputs of the algorithm are as follows: t0

is the initial temperature. The maxIter

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 419

Improving Simulated Annealing Performance by means

of Automatic Parameter Tuning

Pablo CABRERA-GUERRERO1,*, Guillermo GUERRERO1, Jorge VEGA2, Franklin JOHNSON3

1 Pontificia Universidad Católica de Valparaíso, CHILE
pablo.cabrera.g@mail.pucv.cl
* Corresponding author

2 Universidad de Antofagasta, Escuela de Ingeniería Electrica, CHILE
jvega@antofa.cl

3 Universidad de Playa Ancha, CHILE
fjohnson@upla.cl

Abstract: A common problem when using (meta)-heuristic techniques to solve complex combinatorial optimization
problems is related to parameters tuning. Finding “the right” parameter values can lead to significant improvements in
terms of best solution objective value found by the heuristic, heuristic reliability and heuristic convergence, among others.
Unfortunately, this is usually a tedious and complicated task if done manually. In this paper, we propose a framework that
is based on Genetic Programming to fine-tune a key parameter of the well-known Simulated Annealing (SA) algorithm.
Experiments on a set of small instances of the Facility Location Problem with capacity constraints are performed. Results
show that automatically adjusting a key parameter in SA by means of Genetic Programming leads to an average value of
the obtained solution that is closer to the optimal solution than the average value obtained by the simple SA algorithm
with a priori selected values. More important, standard deviation of the algorithm is greatly improved by our approach
which makes it much more reliable if time limitations are imposed.

Keywords: Genetic Programming, Simulated Annealing, Combinatorial Optimization, Automatic Parameter Tuning

parameter corresponds to the total number of
iteration the SA algorithm would perform at
each run. Additionally, the algorithm needs to
define a neighbourhood move, so we can
generate (or move) from current solution (state)
to another. In this paper, we define the
neighbourhood of a solution , as the
set of all , with the set of feasible
solutions, such that only differs from in
one client allocation, i.e. all clients but one in

 are allocated as in . For instance, let
 be a solution for a problem

with 5 clients and 3 potential warehouses,
where clients 1, 2, and 4 are allocated to
warehouse 1, client 3 is allocated to warehouse
3 and client 5 is allocated to warehouse 2.
Then, let and

 be neighbours of . As we

can see, only differs from in client 2
allocation, which is now assigned to warehouse
2. Same situation occurs with where client
1 allocation changes.

The SA algorithm starts with a randomly
generated solution (or state). After

that, a neighbour solution is

generated, where denotes the
current iteration. Once the neighbour solution is
generated, the change in objective function
values when moving from to ,

ΔE=cost (sk)−cost (scurrent) is calculated. If

 then the neighbour is accepted
and the current solution is updated. If
then the neighbour solution is accepted
with a probability

(1)

It is clear that acceptance probability P(ΔE)
depends on the temperature parameter temp.
Usually, temp varies over the algorithm
execution, although some constant values
have proven to be effective in finding good
solutions for some combinatorial
optimization problems. As the temp variable
cools down, worst solutions are not longer
accepted, which provokes that the algorithm
converges to a locally optimal solution. The
temp variable cools down according to an
annealing schedule. Commonly used
annealing schedules are

(2)

with in the range and

(3)

with [11,16,17]. The algorithm
ends when either no further improvements can
be made or the maximum number of iterations

 is reached.

In this paper, genetic programming is used to
optimize annealing schedules used within our
Simulated Annealing algorithm. Next two
sections shows how we combine genetic
programming and simulated annealing to solve
the CFLP problem.

3. Genetic Programming

Since mid-sixties when [18], [19] and [20]
separately developed ideas based on Darwin's
findings, evolutionary computing has been a
very fruitful research area in artificial
intelligence and, particularly, in optimization.
Nature inspired algorithms have been
developed mainly in the last two decades to
tackled difficult optimization problems. One
evolutionary strategy proposed by [7] in early
nineties is Genetic Programming. A distinctive
feature of this strategy is that it attempts to
apply evolutionary strategies on computational
programs rather than optimization or
classification problems, as previously proposed
evolutionary strategies do.

In [7] the author claims that the process of
solving optimization problems can be
reformulated as a search for a highly fit
individual computer program in the space of
possible computer programs. In this way the
author changes the focus from the solutions of
the optimization problem to computer programs
which lead to high quality solutions of the
optimization problem. This is substantially
different from other evolutionary strategies
such as genetic algorithm or swarm
intelligence. Furthermore, [7] states that when
viewed in this way, the process of solving these
problems becomes equivalent to searching a
space of possible computer programs for the
fittest individual computer program. In
particular, the search space is the space of all
possible computer programs composed of
functions and terminals appropriate to the

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015420

problem domain. Since individual
representation and, consequently, search space
are different, specific strategies to seek for the
fittest individual must be considered.

In genetic programming, populations of
hundreds or thousands of computer programs
are genetically bred. This breeding is done
using the Darwinian principle of survival and
reproduction of the fittest along with a genetic
recombination (crossover) operation
appropriate for mating computer programs. At
the end, a computer program that
(approximately) solves a given problem would
emerge from this combination of selection and
genetic operations [7]. To do that, a common
representation used in genetic programming is
by means of parse trees structure similar to the
ones used by compilers, being a link between
user-level programming languages and low-
level machine specific code. Using parse trees
has advantages since it prevents syntax errors,
which could lead to invalid individuals, and the
hierarchy in a parse tree resolves any issues
regarding function precedence [21].

Individuals in genetic programming are
adaptive computational programs which are
hierarchically structured. Size and content of
such programs will dynamically change during
the algorithm execution. The key elements of
an individual are its genes which are organized
as chromosomes (code). Following with the
tree structure of the individuals, there are two
types of genes: functions and terminals [22].
Terminals, in tree terminology, are leaves
(nodes or points without branches) while
functions are points with children. Figure 1
shows an example of a very simple individual
which returns .

Figure 1. Step 1. Example of an individual in GP.

More complex functions such as sen(), cos(),
exp(), AND, OR, NOT as well as structures
such as IF-THEN-ELSE, FOR, REPEAT,
among others, can be used within genetic
programming framework.

In genetic programming, we need to ensure that
the a priori defined set of terminals and

functions should be selected so as to satisfy the
requirements of closure and sufficiency. The
closure property requires that each of the
functions in the function set be able to accept,
as its arguments, any value and data type that
may possibly be returned by any function in the
function set and any value and data type that
may possibly be assumed by any terminal in
the terminal set. The sufficiency property
requires that the set of terminals and the set of
primitive functions be capable of expressing a
solution to the problem. The user of genetic
programming should know or believe that some
composition of the functions and terminals he
supplies can yield a solution to the problem [7].

Both terminals and primitive functions sets (
 and respectively) must be defined by

users. Users need to do this independently of
the specific problem to be solved and then
other problem specific algorithms, such as Tabu
Search, can be considered within this
framework. Once sets and have been
defined, the first population needs to be
generated. To do that, an initialization function
must be implemented. This function should
provide valid and feasible trees. Figures 2, 3
and 4 show an example of how this
initialization function works.

Figure 2. A random function is selected from F

Figure 2 shows the first step to create an
individual of the first generation. In this step, a
function from set is selected. Since this is
the first step, elements from set of
terminals cannot be used.

Figure 3. Step 2. A random function is again
selected from F. In this case a random terminal from

T could have also been selected.

Next step (see Figure 3) is to set child nodes.
Here either elements from or can be
chosen. If an element from is selected, no
further action is needed in the corresponding
branch. If an element from is selected, we
proceed with the same procedure for the new
node. The initialization procedure ends when

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 421

all tree leaves are set to terminal elements, as in
Figure 4. Following this procedure we will
obtain a set of different individuals for our first
generation. These individuals are different in
both size and shape. Different methods have
been proposed to the implementation of the
initialization procedure (e.g. grow method,
ramped half-and-half method and complete
method). See [7] for further details on these
methods. After the initial population is
generated, normalised fitness is calculated [7,
9] in order to identify those individuals which
have a larger probability of being considered
into the next generation.

Figure 4. Step 3. Random terminals are selected to
complete remaining tree leaves.

As in other evolutionary techniques, the better
the fitness, the more probability of being
passed on to the next generation. Based on that
probability, crossover as well as mutation
operations are performed on those promising
individuals to generate the next generation of
the population. Also, a small portion of the best
individuals of the population is selected to be
passed on to the next generation without any
change. This is call reproduction. Apart from
reproduction, the simplest operation is the
mutation. In this paper mutation is performed
as follows: Given an individual (tree) , a
randomly selected function node is replaced by
a new function chosen from the set . As we
can see in Figure 5, shape of the tree remains
with no change after the mutation process,
although the resulting tree is a new individual
that belongs to the next generation.

Figure 5. Example of the mutation operation.

In this paper crossover is also considered to
generate new individuals for the next
generation. It is performed as follows: Given

two parents selected from the current
generation based on their normalised fitness, a
node at each parent is randomly selected. The
selected nodes are the crossover points. Sub-
trees below the crossover points are then
exchanged as in Figure 6.

Figure 6. Example of the crossover operation.
Parent combination leads to two off-springs.

As in any other evolutionary algorithm, genetic
programming ends when a predefined criterion
is met. In our case, the maximum number of
generations is the termination criterion.

4. Proposed Framework

As we mentioned before, in this paper genetic
programming is used to define the annealing
schedule function. Although decreasing
functions are commonly used to implement
annealing schedules, in this paper we do not
restrict the algorithm to such functions, but
include constant values as well as increasing
functions. Thus, hereafter we denote
variable in SA also as, the annealing function.

In order to generate the annealing function
expressions, we define set

F= {+,− ,÷ ,mod,× ,√ } as the set of
functions to be used by genetic programming
and set as the set
of terminals. Using elements of these two sets,
genetic programming is able to generate
mathematical expressions for the annealing
function. Figure 7 shows the proposed
framework that combines genetic programming
and SA.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015422

Figure 7. Proposed GP + SA framework to
solve the CFLP problem.

We need to point out at this stage that the
proposed framework does not depend on the
problem that is going to be solved nor does on
the (meta-)heuristic genetic programming is
combined with. This means that a similar
framework can be used considering
(meta-)heuristics such as particle swarm
optimization or simple local search algorithms.
We only need to identify the key parameter of
such heuristics so we can optimize it using
genetic programming.

As Figure 7 shows, the SA algorithm is
performed for each individual of the population
in the genetic programming algorithm.
Parameter is calculated for each individual

 based on its corresponding tree structure.
Next generation is built using evolutionary
operators such as the ones described before in
this paper (reproduction, crossover and
mutation). After the maximum number of
generations is reached, the best solution found
so far is returned.

5. Capacitated Facility Location

Problem

In this paper the well-known capacitated
facility location problem (CFLP) is used as a
test problem. The CFLP consists on locating
plants, warehouses, and distribution centres
among a set of available locations and
allocating customers to such facilities. Here we

consider a situation where a single distribution
centre serves a set of warehouses. Customers
are served by such warehouses. The goal is to
find a sub-set of warehouses that allows us to
serve all customers minimising the total system
cost. Each customer (or cluster) is served only
by one warehouse. Customers are uniformly
distributed within a limited area. The problem
considers the location cost (i.e., the cost
associated with opening a specific warehouse)
and the allocation cost (i.e., the cost related to
transportation of a specific amount of products
from a warehouse to a customer) [1]. The
mathematical model for the CFLP is presented
as follows:

min∑
i=1

N

(F i× X i)+∑
i=1

N

∑
j=1

M

(C ij d jY ij) (4)

∑
j=1

M

d j Y ij≤ I i

cap
X i , ∀ i=1,2,…, N (5)

∑
i=1

N

Y ij=1, ∀ j=1,2,… ,M (6)

Y
ij
≤X

i
∀ i=1,2,…, N , ∀ j=1,2,…, M (7)

X
i
,Y

ij
∈{0,1}∀ i=1,… , N ;∀ j=1,… ,M (8)

Equation (4) is the total system cost. The first
term is the fixed setup and operating cost when
opening warehouses. The second term is the
daily transport cost between warehouse and
customers which depends on the customer
demand d and distance C

ij between
warehouse i and customer j . Inequality (5)
ensures that total demand of warehouse i will

never be greater than its capacity I i
cap .

Equations (6) and (7) ensures that customers
are served by only one warehouse. Finally,
Equation (8) states integrality (0−1) for the

binary variables X
i and Y

ij .

6. Computational Results

In order to evaluate the performance of our
approach, we consider a set of 8 well-known
CFLP instances obtained from the OR Library
[23], namely cap61, cap62, cap63, cap64, cap71,
cap72, cap73 and cap74. We select these
instances as they have a known optimal solution.
We perform experiments on an Intel i5 processor
running on Linux (Ubuntu 14.02) with 8GB of
memory. All tested algorithms were implemented
in Java 7. We need to state at this point that there
exists very efficient exact algorithms that are able

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 423

to solve these small instances to optimality in
only few seconds. It is clear that we do not want
to compete with such methods, as heuristic
methods must be used when such exact methods
fail in finding optimal solutions. Instead, we want
to prove whether our approach improves results
obtained by the SA itself.

Thus, we first apply the SA over the entire set
of instances. SA is performed 350 times over
each instance. Figure 8 shows the behaviour of
SA for one specific run on the instance cap61.
As we can see, SA reaches the optimum only
twice within the allowed time per run.

Figure 8. Results obtained for the SA algorithm
after 350 runs, for instance cap61. Red line is the

optimal solution.

Although SA performs generally well on all
these instances (it finds the optimum for all of
them if no time limit is imposed), average of
the current solution value and its standard
deviation as well as its convergence could still
be improved as variation in the current solution
value is too large provoking that the algorithm
becomes both less reliable and slower.

We then perform several experiments on the
same set of instances using now our combined
approach of SA and GP.

As we can see in Figure 9, when SA is
combined with GP, the obtained results are
better in terms of average solution value,
standard deviation and convergence. While
average of the solution values is clearly closer
to the optimal solution value, its variation is
much less than the one obtained when only SA
is applied. Table 1 shows the obtained results
for all the instances considered in this study

Column Instance in Table 1 is the instance
name that is considered. Then columns AVG

show the average value obtained by both the
SA and GP + SA algorithms for each instance.
Column SD shows the standard deviation as a

percentage of the optimal solution of each
instance. Columns GAP is the difference, as a
% of the optimal solution value, between the
average value obtained by the algorithms and
the optimal solution of each instance.

Figure 9. Results obtained for the proposed GP +
SA algorithm after 210 runs, for instance cap61. Red

line is the optimal solution.

As we can see, in average, the genetic
programming when combined with the SA
algorithm is able to improve the obtained
results in more than 2%. Moreover, the
standard deviation is greatly improved by using
GP along with SA.

This is especially important for large instances
where the any-time behaviour is very important.

Table 1. Obtained results for both the simple SA
and our GP+SA algorithms for

all the considered instances.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015424

7. Conclusions and Future Work

In this paper a genetic programming algorithm
is used to automatically fine tune a key
parameter of a Simulated Annealing algorithm,
namely annealing function, v . The proposed
approach is tested on small and medium size
instances of the facility location problem with
capacity constraints. Results shown that
adjusting function v of the SA algorithm by
using Genetic Programming leads to a rapid
convergence to optimal solutions and reduces
variance of the current solution objective
function value. This means that SA method
becomes more reliable as its any-time

behaviour is better. Convergence of the SA
algorithm is greatly improved as less iterations
are required to find optimal solution for all
tested instances. Furthermore, the fact that
average solution value of our approach is closer
to optimal solution in all instances makes it
very attractive if only limited time is provided
to solve the problem. This is because we known
that the solution provided by our approach will
be likely better than the one provided by the
simple SA at any time during the execution of
the algorithm.

As future work, heuristic methods other than
SA could be tested within the framework
presented here. In particular other local search
algorithms such as Tabu Search or Variable
Neighbourhood Search could be considered.
Moreover, the proposed approach could be
tested on large-scale combinatorial
optimization problems so we can evaluate its
performance when a large number of decision
variables is considered.

REFERENCES

1. CABRERA, G., E. CABRERA, R. SOTO,
J. M. RUBIO, B. CRAWFORD, F.
PAREDES, A Hybrid Approach using an

Artificial Bee Algorithm with Mixed

Integer Programming Applied to a

Large-scale Capacitated Facility

Location Problem, Mathematical
Problems in Engineering, vol. 2012, 2012.

2. GLOVER, F., M. LAGUNA, Tabu

Search . Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

3. HOOS, H. Automated Algorithm

Configuration and Parameter Tuning, in

Autonomous Search, Y. Hamadi, E.
Monfroy, and F. Saubion, Eds. Springer
Berlin Heidelberg, 2012, pp. 37-71.

4. VERA-PÉREZ, O. L., A. MESEJO-
CHIONG, A. JAUME-I-CAPÓ, M.
GONZÁLEZ-HIDALGO, Automatic

Parameter Configuration: A Case Study

on a Rehabilitation Oriented Human

Limb Tracking Algorithm, Studies in
Informatics and Control , vol. 23, no. 3,
2014, pp. 313-323.

5. MORI, M., R. KOBAYASHI, M.
SAMEJIMA, N. KOMODA, Cost-benefit

Analysis of Decentralized Ordering on

Multitier Supply Chain by Risk

Simulator, Studies in Informatics and
Control , vol. 21, no. 1, 2012, pp. 75-83.

6. CRAWFORD, B., C. VALENZUELA, R.
SOTO, E. MONFROY, F., PAREDES,
Parameter Tuning of Metaheuristics

using Metaheuristics, Adv. Sc. Letters,
vol. 19, no. 12, 2013, pp. 3556-3559.

7. KOZA, J. Genetic Programming as a

Means for Programming Computers by

Natural Selection. Kluwer Academic
Publishers, vol. 4, no. 2, 1994.

8. BEASLEY, J. An Algorithm for Solving

Large Capacitated Warehouse Location

Problems, European Journal of
Operational Research, vol. 33, no. 3, 1998,
pp. 314-325.

9. BÖLTE, A., U. W. THONEMANN,
Optimizing Simulated Annealing

Schedules with Genetic Programming,
European Journal of Operational Research ,
vol. 92, no. 2, 1996, pp. 402-416.

10. KIRKPATRICK, S., Optimization by

Simulated Annealing: Quantitative

Studies. Journal of Statistical Physics, vol.
34, no. 5-6, 1984, pp. 975-986.

11. KIRKPATRICK S., C. D. GELATT, M. P.
VECCHI, Optimization by Simulated

Annealing. Science, vol. 220, no. 4598,
1983, pp. 671-680.

12. METROPOLIS, N., A. W.
ROSENBLUTH, M. N. ROSENBLUTH,
A. H. TELLER, E. TELLER, Equation of

State Calculations by Fast Computing

Machines. Journal of Chemical Physics
vol. 21, no. 6, 1953, pp. 1087-1092.

Studies in Informatics and Control, Vol. 24, No. 4, December 2015 http://www.sic.ici.ro 425

13. CABRERA, G., S. RONCAGLIOLO, J. P.
RIQUELME, C. CUBILLOS, R. SOTO, A
Hybrid Particle Swarm Optimization-

Simulated Annealing Algorithm for the

Probabilistic Travelling Salesman

Problem. Studies in Informatics and
Control vol. 21, 2012, pp. 49-58.

14. LIU, S., W. H. WU, C. C. KANG, W. C.
LIN, Z. CHENG, A Single-machine Two-

agent Scheduling Problem by a Branch-

and-Bound and Three Simulated

Annealing Algorithms. Discrete Dynamics
in Nature and Society, vol. 2015, 2015,
Article ID 681854.

15. QIN, J., H. XIANG, Y. YE, L. NI, A
Simulated Annealing Methodology to

Multiproduct Capacitated Facility

Location with Stochastic Demand. The
Scientific World Journal vol. 2015, 2015,
Article ID 826363.

16. WILHELM, M., T. WARD, Solving

Quadratic Assignment Problems by

Simulated Annealing. IIE Transactions,
vol. 19, no. 1, 1987, pp. 107-119.

17. FOGEL, L. J., A. J. OWENS, M. J.
WALSH, Artificial Intelligence through

Simulated Evolution. New York, USA:
John Wiley, 1966.

18. HOLLAND, J. H. Adaptation in Natural

and Artificial Systems. Ann Arbor, MI,
USA: University of Michigan Press, 1975.

19. RECHENBERG, I., Evolutionsstrategie:

Optimierung technischer systeme nach

prinzipien der biologischen evolution,
Ph.D. dissertation, TU Berlin, 1971.

20. EGGERMONT, J., Data Mining using

Genetic Programming: Classification

and Symbolic Regression, PhD
dissertation, Universiteit Leiden,
September 2005.

21. WALKER, M., Introduction to Genetic

Programming, Computer Science
Department, Montana State University,
Tech. Rep., December 2001.

22. BEASLEY, J., OR-Library: Distributing

Test Problems by Electronic Mail,
Journal of the Operational Research
Society , vol. 41(11), 1990, pp. 1069-1072.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 4, December 2015426

