
1. Introduction*

Control Systems

The fundamental control problem, according to
[2] is “… to find a technically feasible way to
act  on  a  given  system  or  process  so  that  it
adheres, as closely as possible, to some desired
behaviour. This approximate behaviour should
be achieved in the face of  uncertainty  of  the

process and in the presence of  uncontrollable

external  disturbances acting  on  the  process”
(italics  belong  to  the  authors).  Worth  noting
here  is  that  control  should  exhibit  or
approximate some behaviour without a perfect
model of the process, defined by uncertainty in
the amount and value of parameters and degree
of  modeling  abstraction.  A  perfect  model,
furthermore, is practically impossible to obtain
and, when a model is used, one should have in
mind  the  constraints  and  trade-offs  that  are
taken into consideration in its design. 

This paper is then organized as follows: 

- A brief discussion about issues with model-
based control;

- A way to streamline Sliding Mode Control
(SMC);

- Prior works on how to dynamically tune an
SMC;

* This paper is based on a previous presentation of the

authors  at  the  CBA  2012  (Brazilian  Automation

Congress)  [1].  The  simulation  on  this  paper, however,

incorporates  all  the  necessary  electrical  signals

conversions  and  incorporates  enhancements  in  the

controller developed thenceforth.

- A brief explanation of how a Fuzzy Logic
Controller (FLC) can be simplified;

- The EMC (Exponential Mapping Function)
derivation and its use in control;

- A procedure showing how to implement it
in a real system;

- An  example  of  its  implementation  on  a
rigorously simulated system;

- Conclusion.

2. Issues with Model-based Control

Uncertainty on model dynamics

The control project of a dynamical system can
be based on its model or on different levels of
prior  knowledge about  its  free  or closed-loop
response.  Model-based  linear  techniques  for
control  abound,  but  systems and disturbances
are  usually of  a  nonlinear  nature  and can  be
extremely  hard  to  model.  Imprecisions  may
come from uncertainties about the plant and its
external  disturbances,  or  from  a  purposeful
choice of model simplification [3], which may
lead to poor or inadequate response in a model-
based control project.

Another advantage of analysing the response of
a  real,  instrumented  plant  as  input  to  the
heuristic  generation  of  initial  gains  or
parameters  to  a  controller  is  that  conversions
from  digital  to  analogue  signals,  and  vice-
versa,  delays,  and  noises,  are  already  being
taken into account. Their modelling would be
necessary  in  the  building  of  an  analytical
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model.  Equipment  and instrumentation  aging,
corrosion,  deterioration etc.,  are  unfortunately
not taken into consideration when creating an
analytical model. Usually these components are
taken as ideal, or have their physical properties
taken from the manufacturer’s manual.

3. Streamlining SMC

EMC  is  partially  based  on  ideas  taken  from
SMC.  Sliding  Mode  Control  (SMC)  is  a
technique  to  control  nonlinear  systems  with
uncertain dynamics and disturbances due to its
order reduction property and low sensitivity to
disturbances and process parameter variations,
which relaxes the burden of the need for exact
modeling.  It  does  so  by  application  of  a
discontinuous  control  signal  that  forces  the
system to slide along a specified surface of the
systems normal behavior [4].

Heuristics and simplification of an SMC

From observations in [5] both λ  and ϕ  can be
derived  using open loop experimental data.  A
switching band around the switching line can
be used to alleviate chattering. Their idea is to
apply maximal and minimal control input to a
system and  calculate  λ  from the slope of the
resulting curve. Figure 1 shows the open loop
step  response  when  applying  maximal  and
minimal rudder angle on a boat.

-60 -40 -20 0 20 40 60

-15

-10

-5

0

5

10

15

Open Loop Step Response for Maximal and Minimal Rudder Angle

Heading [deg]

Y
a
w

 R
a
te

 [
d
e
g
/s

]

Figure 1. Open loop response to maximal and
minimal rudder positions on a boat

Standard  linear  controller  design  can  only
linearly  approximate  this  nonlinear  curve.
Additionally, the disturbance magnitude can be
used to define  ϕ . This heuristic, or practical,
method,  allows  for  establishing  initial  values
for the boundary layer of an SMC controller,
thus  eliminating  the  need  of  the  equivalent
control  term and of  an analytical  model.  The

authors further discuss two problems associated
with nonlinear time optimal controller design.
First, how to get the true switching curve. For
nonlinear systems, this switching curve is very
difficult  to  get  analytically. Secondly, how to
approximate the nonlinear curve. To solve the
first problem, they proposed to use system open
loop  experimental  data.  Under  the  maximal
control command, the system output should be
stabilized or  saturated after  a  period of  time.
The nonlinear open loop response can be used
as  a  switching  curve  since  it  represents  the
system’s fastest response. To handle the second
problem,  an  FLC  can  approximate  the
nonlinear switching curve since fuzzy systems
are universal function approximators [6].

To  further  support  this  proposition,
Pontryagin’s maximum principle [7] states that
for  2-dimensional  time  optimal  controller
design, there exists a nonlinear switching curve
such that the control can have maximal value
on one and minimal value on the other.

Following  the  idea  of  simplification,  the
authors  in  [8]  proposed  a  simplified  FLC
(SFLC)  based  on  the  fact  that  most  FLC
implementations  naturally  inherit  from
conventional  proportional-derivative  (PD)  or
proportional-integral  (PI)  controllers.
Observing that rule tables of most FLCs have
skew-symmetric  properties  and  that  the
absolute magnitude of the control input |u| or |
∆u| is proportional to the distance from its main
diagonal  line  in  the  normalized  input  space,
they derived a new variable called the signed
distance:

d s=
ė+λ⋅e

√1+λ2 (1)

which is  used as  a  sole  fuzzy input  variable.
Here, a modified version of a sliding surface is
being used instead of using e and ė  as distinct
entry parameters for a generic controller.

4. Dynamic SMC Tuning

The  earliest  applications  of  the  time  varying
switching  lines  for  the  second  order  plant
control are reported in [9] and [10]. The authors
of these papers propose using switching lines
which instantaneously change their position on
the phase plane. The lines can move in one of
the two ways: they may either rotate around the
origin  of  the  plane,  or  they  may  be  shifted
without  changing  their  slope.  This  approach
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results in faster error convergence than the one
obtained  in  conventional  systems  with  fixed,
time-invariant sliding lines.

The authors in [9] proposed a Moving Sliding
Surface (MSS) that was dependent on the initial
conditions of the system and through rotations
and  shifts  would  subsequently  move  it  to  a
predetermined  switching  surface.  In  the
proposed scheme, however, the sliding surface
is  shifted  and/or  rotated  instantaneously,  and
after each movement the system representative
point is no longer on the surface. Consequently,
the system is, at least for some time, sensitive
to disturbances and parameter uncertainties.

Another proposal [11] was to use a sigmoidal
mapping function for a vision-based control of
molten metal pouring.

The sigmoidal function with bias is:

S (E−B)=
1

1+e
−k⋅(E−B) (2)

where E is the error, B is the bias, and k is the
response  function  shape  parameter. The
possible  formats  of  the  proposed  sigmoidal
function are shown with different gains, Figure
6a,  and  bias,  Figure  6b,  k ∈[0.5,5]  and
B∈[−10,10 ] .
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Figures 2a and 2b. Sigmoidal responses

The  controller  needs  eleven  parameters as
inputs for the ten rules used for the adaptation

of  the  controller  gain  k and  bias  B. For  the
molten  metal  pouring  system,  adaptation  was
chosen  to  overcome  the  problems  associated
with the high nonlinearity of the process.

In [12] a  way to tune a fuzzy SMC (FSMC)
was derived by rotating and shifting the sliding
surface and achieved faster reaching times and
improved tracking error to a class of nonlinear
systems  compared  with  a  conventional  SMC.

The  sliding  surface  can  rotate  or  shift  in  the
phase space in such a direction that the tracking
behaviour can be improved. In their work it is
shown that with arbitrary initial conditions, the
reaching  time  and  tracking  error  in  the
approaching  phase  can  be  significantly
reduced.  Chattering  can  also  be  reduced  by
tuning the fuzzy controller parameters.

Figure 3 presents the rotations and shiftings of
the sliding line.

(a)

(b)

Figure 3a and 3b. Rotating and shifting the sliding
surface to achieve faster response times

A drawback of  this  proposal  is  that  the  slope
range of the rotating sliding surface and position
range of the shifting sliding surface have to be
known in advance. The stable zone of the phase
plane is dealt with heuristics depending on the
stiffness of the system to be controlled. 

Another idea [13] was the use of a parabolic
function coupled to a shifted sigmoid function
to change the linear discontinuous control with
the equivalent term computed with a simplified,
model-based piecewise function. This nonlinear
parabolic sliding surface was:
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Ŝ=s−k
s

2 (3)

This function is illustrated in Figure 4. Here, ks

defines  the  position  of  the  parabolic  surface.
Any monotonous  function  can  be  selected  to
generate a  ks value. For positive values of  ks,
the nonlinear surface given in (3) is  over the
classical sliding line and for negative values it
bends to the opposite side. The adaptive shifted
sigmoid function was:

k s(t )=
k

s

+−k
s

−

1+e
−m⋅t+a

+k s
− (4)

Where m is the time scaling parameter and a is
the time shifting parameter. The minimum and
maximum allowable values of  ks are  k

s

−  and

k
s

+ ,  respectively. This  function  computes  the
nonlinear  sliding  surface  bending,  which
defines  the  controller  performance.  The
parameters  k

s

−  and  k
s

+  are used to maintain
the controller inputs inside an acceptable range
but  the  authors  didn’t  formalize  how  to
compute or deduce them.

Figure 4. Nonlinear time-varying
sliding surfaces in [11]

In  [14]  a  parameterizable  Modified  Sigmoid
Function  (MSF)  was  proposed  to  nonlinearly

interpolate  in  the  boundary  layer.  Their
motivation is that the sole use of a BL around
the  switching  curve  and  then  the  use  of  a
continuous  control  in  its  domain  does  not
ensure the convergence of the state trajectory to
the  sliding  surface  and  probably  results  in
steady-state errors.

The MSF is:

f (x )=−
2

1+e
−α x

+1 (5)

with  x∈[−1 1]  and  α∈[0 10 ] .  When
α=0  the response is a diagonal line.

The parameter  k that  adapts the shape of the
MSF is continuously tuned by five fuzzy rules
of  an  FLC.  The  fuzzy  inputs  are  the  sliding
surface s, and the current chattering Γ=|ṡ| . Its
output is Δα .

The fuzzy sliding control law is:

u=û+u
f (6)

with

u
f
=−k

fuzzy
(e ,ė , λ)⋅sat ( s

ϕ ) (7)

with  k
fuzzy

(e , ė ,λ )  as  the  absolute  adaptive
gain calculated by the FC and û  is the nominal
control law, dependent on the model of the plant.

In [15] the response within the boundary layer
in an SMC was improved through dynamically
deciding  the slope of  a  linear  sliding  surface
using  fuzzy  logic  and  sliding  mode  control
(FLSMCα).  The  controller  architecture  to
control a planar robot with two revolute joints
is  shown in  Figure  5.  θ and  θr are the  joint
angle and reference angle, respectively.
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Figure 5. Controller architecture, showing the dependence on the inverse kinematics



First, they developed a non-chattering standard
robust  sliding mode control  using the inverse
model of the plant. Then, in order to improve
the performance of the controller a fuzzy logic
algorithm was integrated with the sliding mode
controller. The algorithm decides the slope of
the sliding surface dynamically, as in Figure 6.
Thus,  the  system  is  caught  on  the  sliding
surface rapidly and remains over it.

Figure 6. Sliding surface slope according to α

In  [16]  a  controller  that  uses  a  single-input

FLC with  an  one-dimensional  rule  base  and
seven  linguistic  fuzzy  rules to  continuously
compute  the  slope  of  the  sliding  surface  λ,
through  minimum  and  maximum  values
[λ

min
λ

max
] ,  was  presented.  This  rotation  is

computed to decrease the reaching phase.

Figure  7  presents  a  graphical  depiction  of
this movement.

Figure 7. Sliding surface rotation governed by a
single-input FLC

Lecture  Notes  [17]  surveys  theories  and
advances  in  the  field  of  time-varying  sliding
modes.  The  reader  is  referred  to  this
publication to further exploration of the subject.

Much importantly, all the approaches presented
in  Section  4,  however,  make  use  of  the

equivalent control and therefore need a  model

of the system.

5. Fuzzy Logic Control

Fuzzy logic, proposed by [18] in his seminal
work for logic calculus and later extended in
[19] is a way to approach problems that  are
difficult  or  unnatural  to  define  in  a  binary,
crisp sense.

FLCs  as  an  input-output  mapping

mechanism

In  [20]  fuzzy  controllers  as  an  input-output
mapping mechanism were discussed. The fuzzy
rules are supposed to define the characteristic
of a mapping y= f ( x) . As fuzzy systems are
universal approximators, systems are addressed
which  can  approximate  any  mapping
(function). This implies that:

∀ x∈X ,|F ( x)− f (x)|<ε (8)

Where  F ( x)  is  the  function  to  be
approximated and ε  can be chosen arbitrarily
small. When we regard the fuzzy system as a
discretization of F ( x) , and know that between
these discretizations interpolation is performed
by means  of  fuzzy inference,  it  is  clear  that
increasing the number  of  rules  can provide a
better approximation.

The  fuzzy  system  can  be  regarded  as  an
interpolation among a number of points,  each
defined  by  a  fuzzy  rule,  under  certain
conditions. This mapping can be nonlinear as a
result of the fuzzy rules, chosen operators, and
membership functions (MFs).

6.  The  EMC  –  Exponential

Mapping Controller

The number and format of the MFs, the rule base
and the defuzzification method in an FLC allow
for altering the shape of its response. This can be
simplified by decreasing the input dimensionality
and  using  only one  shape-modifiable  function.
This in turn accounts for easier implementation
since there is no need to define the amount and
shape  of  the  MFs  as  needed  for  an  FLC and
allows  for  faster  computation  times  and  more
modest  memory requirements,  at  the cost  of  a
limited set  of  shapes  and,  consequently, a  less
expressive controller.
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EMC  implements  a  bang-bang  SISO  SMC-
inspired approach with a  heuristically-defined
nonlinear  mapping  function  equivalent  to  a
bounded  nonlinear  sliding  surface.  Its
boundary, er, and function shape, us, are derived
from the open loop response of a stable plant,
when maximal control inputs are applied. For
dynamically stable or unstable systems, us must
be derived from previous knowledge about the
plant behavior before instability happens.

The bang-bang method and the boundary layer
solution serve as foundations in the creation of
a novel controller that needs two heuristics that
define the initial values of its two parameters.
The first heuristic is to apply maximum control
input to a stable plant and check the output for
the steady state value and the time it  took to
reach  it  to  define  the  error  range  parameter.
This can be roughly compared to a saturation
function inside a  boundary layer. The second
heuristic is to check the output shape, and then
define the second parameter, the control input
format, in a direct way. The idea here is to have
the system return to zero error by following the
same path it took to reach its limit, since this is
its natural reaction.

6.1 EMC Design

Since  in  practice  EMC  needs  only  two
parameters,  its implementation and tuning are
simplified. This simplicity allows for restoring
the responsibility of tuning back to the systems
operator or engineer. PIDs have three or more
non-intuitive  parameters  to  be  tuned.  Typical
SISO  FLCs,  even  though  intuitive  to
implement,  typically  need  at  least  nine
parameters to be tuned. However, tuning only a
small  number  of  intuitive  parameters  is
beneficial  for  the  implementation,  tuning  and
maintenance  of  automatic  control  systems  in
the industry. An alternative would be designing
adaptable, untunable and hands-off controllers,
but those depend on a high level of confidence
– usually derived from design efforts with long
duration  and  expensive  costs  –  before  its
implementation can be carried out.

6.2 EMC Implementation

EMC  is  implemented  as  follows.  First  it
calculates the error:

e= y−y
r (9)

Then a switching line is computed:

sEMC=
1
er

⋅e+ ė (10)

where  e
r
≠0  is heuristically defined as being

the  acceptable  error  before  applying  full
control input.  It  is comparable to the inverse
of  λ in  an  SMC.  For  lower  order  or  non-
oscillatory systems the ė  term can usually be
dropped.  Then  sEMC is  finally  restricted  to
−1≤s

EMC
≤1  to  be  within  the  exponential

function allowable range:

sEMC={
−1, if sEMC<−1
s

EMC
, if −1≥s

EMC
≤1

1, if s
EMC

>1
(11)

And then an exponential function is computed:

ue=sign(sEMC )⋅((1−|sEMC|)
1
2

u
s

−1) (12)

where

−10≤u
s
≤10 (13)

is  the  parameter  that  alters  the  exponential
function  from a  concave  to  a  convex  shape,
allowing  for  a  class  of  nonlinearities  and
disturbances to be dealt with.

Finally, the controller input is calculated:

u EMC=
u

max
−u

min

2
⋅(ue−1)+umax (14)

where  u
min  and  u

max , collectively called  u
r ,

for  controller  input  range,  are  the  actuator
minimum and maximum values, respectively.

u
r
=[umin

u
max

] (15)

Figure  8  presents  the  sliding  lines  sEMC and
controller outputs  uEMC or  ΔuEMC for the EMC,
with  e

r
=1 , shapes  −4≤u

s
≤+4 ,  u

min
=−1 ,

u
max

=1 , and −1≤s
EMC

≤1 .

For  systems  that  need  a  strong  control
effort  even  with  small  errors,  us should be
defined  in  the  range  0≤ u

s
≤ 10 ,  or

−10 ≤ u
s
≤ 0  otherwise.

This modified exponential function in its basic
form allows for  the controller  to  have strong
actuation for small errors. This is related to the
sigmoidal functions proposed in [11], [13], and
[14],  but  the  exponential  mapping  is  more
flexible in the sense that it can also generate a
weak actuation for higher errors.
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6.3 Handling asymmetries in actuators

Membership functions for an asymmetrical valve
are  not  reflexed,  since valves  close faster  than
they open. The exponential function as defined in
(12)  cannot  mimic  this  behavior,  because  it  is
perfectly  mirrored  about  the  horizontal  and
vertical axes in Cartesian quadrants I and III. This
asymmetry  can  be  seen  in  Figure  9,  where
symmetrical  MFs  are  compared  to  original,
asymmetrical, valve responses.

To solve this issue, the following changes are
proposed to EMC.

Figure 9. Comparison between symmetrical and
asymmetrical MFs

Derive a new variable:

u
as
=[u

ast
u

asu
] (16)

where  uast defines  the  negative,  or  lower,
control input shape and uasu defines the positive,
or  upper,  control  input  shape.  For  this  new
configuration, a new test is needed:

us={u
asl

, if  s
EMC

≤ 0

u
asu

, if s
EMC

>0
(17)

Figure  10  presents  an  example  of  the
asymmetrical  EMC,  with  −2≤ u

asl
≤ 6  and

−4≤u
ast

≤4 , e
r
=1 , u

min
=−1 , u

max
=1 , and

−1≤ s
EMC

≤ 1 .

Figure 10. Asymmetrical EMC Response

For  the  Tank  Level  Control  [22],  the
asymmetrical  EMC  was  implemented  using
u

asl
=2.4  and  u

asu
=1.7 .  The  comparison  in

responses can be seen in Figure 11. The valve
is  now  opening  faster,  as  shown  by  the
overshoot in the upper reference.  There is  no
change in the lower reference, since it does not
depend on the opening of the valve, but on its
closing. The remaining parameters are e

r
=1m

, u
min

=−1 , and u
max

=1 .

Figure 11. Asymmetrical Tank
Level EMC Response

Since this is an infrequent situation, the author
decided  to  use  equation  (14)  for  the
implemented system here.

6.4  Positional  and  incremental  forms

of EMC

EMC  is  able  to  perform  the  positional  an
incremental forms for control, meaning that it
can produce u or ∆u, as its output.
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Equation  (14)  is  for  the  positional
implementation.  For  the  incremental  form
equation (14) becomes equation (18):

u
EMCk+1

=u
EMCk

+

+(Δu
max

−Δu
min

2
⋅(ue−1)+Δumax)⋅T

(18)

where  u
EMCk

 and  u
EMCk+1

are  the  controller
inputs  in  discrete  time  k  and  k +1 ,
respectively  and  Δu

min  and  Δu
max  are  the

actuator minimal and maximal changes during
the sampling period T. Collectively,

Δu
r
=[Δumin

Δu
max

] (19)

and

Δu
r
=u

r
⋅T (20)

Strictly speaking, u
r  or Δu

r  could be thought
as parameters for the EMC but since  e

r  and
u

s  dominate  the  tuning  process,  the  author
decided  to  leave  them as  values  that  can  be
defined  directly  from  the  manufacturer’s  or
from  the  system  specification,  in  a  cascade
controller, for example.

The  sampling  period,  and  consequently  the
control input period, depends on the closed-loop
bandwidth of the system [20]. T is dependent on
the system and actuator dynamics or in practice
as  a  restriction  in  the  control  hardware,  and
therefore  will  not  be  considered  as  another
controller parameter. At best it can be considered
as a choice, almost an option, for the controller
designer, based on its experience with the plant
and hardware at hand. DCSs, for example, have
a few sampling rates available, perhaps three, to
be able to couple with all the different systems
and processes that will be controlled.

6.5 EMC procedure

Below is the procedure that is used to specify
an EMC controller to a SISO system.

Step 1. Define sgn(e
r
)=sgn (Δ y

Δu ) ;

Step  2.  Choose  if  the  control  is  positional
or incremental;

Step 3. If the control is incremental, define the
control period T;

Step 4. Define the control inputs u
min  and u

max

or  Δu
min  and  Δu

max  according  to  the

manufacturer’s specification (usually expressed
in  volts  or  amperes,  or  volts/cycle,
amperes/cycle)  or  the  system  control  input
limits themselves, if it is a cascade controller,
for example;

Step  5.  Apply  minimal  and  maximal  control
input in open loop. Wait for the system to reach
its steady state for both cases (or right before
saturation,  if  the  system  is  unstable)  and

calculate er=
Δ y

Δ t
;

Step 6. For  u
s ,  visually check the open loop

response and use a corresponding value. Check
for  asymmetries  in  the minimal  and maximal
responses  and,  if  needed,  apply  asymmetric
control inputs;

Step 7. Run the EMC controller in closed loop
with  the  new  e

r  and  u
s  and  observe  the

system response;

Step 8. Go to step 6 and  change  e
r  and  u

s

according to Table 1 until a satisfactory result is
achieved.

Table 1. Behavior of EMC Parameters

Choice Response Action

Decrease e
r Strong

Full control input 
applied earlier

Increase e
r Weak

Full control input 
applied earlier

Decrease u
s Smooth Steadily stronger

Increase u
s Crispy Immediately strong

7. Practical Implementation with EMC

A  two-tank  system,  based  on  the  Coupled
Tanks  experiment  from  Quanser®,  in  [23],
was  chosen  as  a  platform to  test  EMC in  a
simulated environment with electrical noise in
sensors  and  actuators,  quantization  effects,
filtering, external disturbances, and changes in
the  model,  in  an  effort  to  bring  real-world
difficulties  and  constraints  to  the  proposed
controller.  The  simulation  was  written  in
MATLAB®, using its scripting facilities. The
goal is to control the level of tank 2 through
the water pump, using tank 1 in cascade mode.
Figure  12  shows  a  simplified  schematics  of
the device.
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A detailed system, since its first voltage reading
from tank 2 water level pressure sensor, until
its control input voltage  generation to the DC
motor in the water pump was simulated. Gains,
saturations, delays, quantization, filtering, noise
from sensors, noise from actuator, and external
disturbances  were  incorporated  in  the  model.
Input actuator noise, input  sensor noise,  plant
noise,  and  output  sensor  noise  are  the  four
possible noises in a control system [24], two of
which are being taken into account,  the input
actuator  noise  and  the  output  sensor  noise.
There  are  no  other  measured  inputs  but  the
controlled one and the plant noise, like bubbles,
water flow friction etc., are not being modeled.

The system consists of two tanks with orifices
and level sensors at the bottom of each tank, a
pump, and a water basin. The  two tanks have
the  same  diameters  and  can  be  fitted  with
different outflow orifices. For this simulation,
the medium orifices were used.

A disturbance tap allows the operator to pour
water from tank 1 directly into the basin.

The dynamic equations for the liquid level in
the two tanks are in derived as in [22].

Closed Loop Process

The control  process starts with the reading of
a noisy pressure sensor voltage at the bottom
of tank 2 every T=0.01 s . Level of tank 1 is
not being used. Electrical noise is represented
by white noise  with zero mean and variance
σ2=0.01  [21]. The noisy voltage is quantized

by  a  12-bit  ADC  and  then converted  to  a
digital representation.

Quantization is an unwanted effect cause by the
finite precision of a digital converter, who has a
specific amount of bits available to convert an
analogue signal to a digital train of bits [24].
Quantization of a signal inserts noise, or error,
in  a  control  system.  Filtering  is  one  of  the
available resources to counteract this problem.

The  quantization equation used is  simple and
straightforward [23]:

V q (k)=qL⋅round (V
n

qL
) (21)

where  qL is the quantum size, the result of the
following equation:

q L=
V

pmax

−V
pmin

2ADC r

(22)

where  V
max  is the maximal voltage from the

sensor, V
min  is its minimum, and ADC

r  is the
resolution of the ADC.

Quantization  generates  noise,  and  filtering  is
necessary.  Quanser proposes,  for  the pressure
sensor, a continuous filter with a 0.33Hz cut-off
frequency.  With  the  filtered voltage,  a
conversion to  centimetres eases  the design of
the controller, and this  value will  be used as
input to the controller, to further calculation of
the error.

The reference used as input to EMC
c , the one

used for control,  is calculated with the aid of
EMC itself, named EMC

ref , using error:

e (k )=L2 ref

(k )−L2 f

(k ) (21)

EMC  can  be  used as  a  reference  generator
because  it  is  a  function  mapping.  The
parameters  for  EMC

c  are  e
r
=12 cm ,

u
r
=[−0.0050.005] , and u

s
=1 .

The  derivative of  the  error  is  calculated  in
EMCref by:

ė(k )=
e(k )−e(k−1)

h
(22)
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It was expected that this calculation would cause
noise  in  the  system,  but  the  smoothing  of  the
level sensor noise was enough to keep the system
stable so no further filtering was necessary.

The output of EMC
ref  is the input to EMC

c ,
without  the  need  of  the  error  derivative.
EMC

c  parameters  were  e
r
=5cm ,

u
r
=[−20 20 ]⋅T , and u

s
=5 .

EMC
c  is the control input, so this real value

has to be sent to the water pump DC motor via
a  DAC.  EMC

c  already computes  its  control
input  in  the  actuator  voltage  range,  so  no
specific gain was necessary. A DAC with a 12-
bit resolution was used to generate a quantized
value.  Then,  a saturation to  impose limits  on
the  voltage  output  is  required,  between -20V
and 20V. After  saturation,  the signal  is  again
noisy, because of the quantization, so we have
to smooth it out, using a discrete filter with a
3Hz  cut-off  frequency,  proposed  by
QUANSER. To simulate most of the aspects of
the real  system,  noise  was  then  added to  the
filtered voltage, with a PSD of 0.001.

The  results  of  the  simulated  system for  set-
point  changes are presented in Figure 13. The
initial  conditions  are  L1 (0 )=9 cm ,
L2(0)=9cm , and V

m
(0 )=5.14 V .

The  disturbance  tap  is  pressed  from
150 s< t<152 s ,  a  two  second removal  of

water from tank 1 to the basin, and the orifice
diameter  is  changed from the  medium to  the
large size when t>700 s , a 16.67% change in
the model definition. 

Figure 13. Two-tank response to set-point changes

The  results  of  the  simulated  system  for  a
sinusoidal signal tracking is presented in Figure
14. The applied disturbance and model change
are the same as the previous run. The reference
sinusoidal is:

L2ref
(k )=−4⋅sin ( k

120 )+9 (22)

Figure 14. Two-tank response to
a sinusoidal reference

It should be noted that a simple low-pass filter of
cut-off frequency 2.5Hz is  added to the output
signal of the tank 2 level pressure sensor. This
filter is necessary to attenuate the high-frequency
noise content of the level measurement. Such a
measurement  noise  is  mostly  created  by  the
sensor’s environment consisting of turbulent flow
and circulating air bubbles.

8. Conclusion

An  exponential-function  based  controller
inspired by the bang-bang SMC and FLC was
developed.  It  seeks  to  ease  the  task  of
implementing  and  maintaining  a  nonlinear
SISO  control  system.  EMC  exhibits  the
property of allowing its tuning using only two
parameters. The first,  er, is the most important
one,  since during the simulations it  was seen
that  its  value  can  be  critical  in  terms  of
stability,  but  a  heuristic  helps  estimating  its
initial values. The second parameter, us, allows
for specifying a smoother or a more aggressive
response. Some of the controllers showed good
results  with  the  very  first  estimate  of  their
parameters,  obtained  from  simulation.  EMC
has also been implemented in a laboratory real
system, namely the Quanser 3DOF Helicopter.
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The controller  did  not  rely on  any analytical
information  about  the  simulated  systems  but
only on their open loop response and behavior.
Using  a  Lyapunov  approach  to  check  and
validate its stability properties and robustness is
intended  for  further  development  of  the
proposed controller.
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