
1. Introduction

This section recalls basic facts, sometimes seen
from a different perspective. In defining fuzzy
sets  on  the  real  axis,  typically  two  steps  are
involved;  the  first  connects  the  line  or  a
segment of it  with a finite set  Λ of linguistic
descriptions (labels), {λ j } j=1,. .. ,N  (such as in ‘a
tall  man’);  the  second  assigns  (one-to-one)
intervals of the line,  Jj, to the linguistic labels,
λ j ↔ J j ,  where  typically  each  interval  is

overlapping with at least two other intervals. To
each interval  Jj one assigns a function, named
membership  function  (m.f.).  The  m.f.s  are
defined  on  the  line,  positive,  and  normalized
(i.e.,  with  maximal  value  equal  to  1);  in
addition,  they  are  null  valued  everywhere
except (at most) the specified intervals. Thus, a
set  of  functions  M ={μ j}j=1,. .. ,N  is  put  into
one-to-one  correspondence  with  the  set  of
intervals  and  respectively  to  the  linguistic
labels,  μ j ↔ J j ↔λ j .  In  this  way,  to  every
point of the real line, x∈∪ j J j , one associates
a subset of membership functions overlapping
in x, by the condition μ (x)≠0 . Let us denote
this subset by M x={μ j |μ j ( x)≠0} . This entire
construction corresponds to the fuzzification of
the real line (or of an interval of it.)

A  second  construction,  which  reverses  the
above  one,  is  stereotypically  as  follows.
Assume that all m.f.s satisfy the condition that
they have value 1 at exactly one point; denote
that  point  by  aj.  For  every  x,  assign  to  the
points  aj a weight  w j( x)=μ j(x) . In this way,
every value of the real line is endowed with the
set of couples {(a j , μ j (x)) } j .

All  aj points corresponding to m.f.s not in  Mx

have  null  weights.  Next,  assign  to  x the
weighted  average  of  the  points  aj,
x ' ( x)=∑ j

a j μ j (x)/∑ j
μ j( x) .  This  is

equivalent  with  defining  a  Takagi-Sugeno-
Kang (TSK) system from  R to itself;  the last
operation corresponds to the defuzzification.

The entire construction, composed of the above
two  constructions,  when  applied  to  R,  i.e.,
when R is fuzzified and then mapped on itself
with a TSK, will  be named type I coordinate
fuzzy transformation (CoFT) of  the real  line.
The  construction  is  easily  extended  to  n-
dimensional  Euclidean  spaces.  The
transformation  corresponds  to  the  TSK fuzzy
systems, where the output of the system is the
same  space  as  the  input.  The second type  of
fuzzy transformation of the space follows the
idea  of  Mamdani,  assigning  a  second  set  of
functions ηh to the real line and next assigning
to every  μk at  least one  ηh (i.e.,  providing the
‘rules’ of the FLS). The ‘reverse’ construction
is  finalized  according  to  defuzzification  for
Mamdani systems.

The above discussion was meant to show why
the  name  of  fuzzy transformation  of  the  real
line  is  used  for  these  constructions.  The
investigation of the issue of fuzzy transforms is
useful,  among  others,  because  any  inverse
model based controller can be seen as a space
transform of the input space of the controller by
the  reverse  model.  The  paper  studies  several
examples  of  fuzzy  space  transforms  and
potential applications.

The second Section introduces the definitions
and properties  of  the fuzzy transforms,  while
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the  third  Sections  presents  fuzzy  tent  maps
defined by means of the transforms. Section 4
shows an example of CoFT in prediction. The
last Section concludes the paper. 

The  following  abbreviations  are  used
throughout  the  paper:  m.f.(s)  –  membership
function(s), FL – fuzzy logic, FLS – fuzzy logic
system,  TSK  –  Takagi-Sugeno-Kang  FLS,
CoFT – coordinate fuzzy transform.

2.  Definitions,  Properties  and

Examples of Fuzzy Transforms

Definition. We name space fuzzy transform of
the interval J in the n-th dimensional Euclidean
space  an  n-dimensional  subspace  H =ψ( J ) ,
H ∈Rn , where the transform ψ denotes an  n-

input,  n-output  fuzzy  system  with
defuzzification on each output.

In the remaining part of  the paper, only TSK
fuzzy systems will be used for ψ. A very simple
case of fuzzy transform, although an important
one is the identity transform given in Property
1. Translations and scaling (linear deformation)
along  an  axis  are  easily  built  based  on  the
discussion in the proof of Property 1. Example
of nonlinear transforms of the axis (‘nonlinear
first bisectors’) will be discussed in detail.

Property 1. A TSK system with input variable x
and output variable x' and having the rules If x
is  Ãk then  ~x '=~x k  (k=1,...,n),  where  Ãk is  a
fuzzy  set  with  isosceles  triangular  m.f.  with
center  in  xk and  ~x k  is  the  singleton  in  xk

performs the identical transform x'=x  where  x'
is the defuzzified output.

Proof. A TSK system with isosceles triangular
membership  functions  at  the  input  is  linear
piecewise. Because  ~x k  is the singleton in  xk,
the  TSK  output  is  interpolator  through  the
points (xk,xk). Because it is a linear interpolator,
it  results  that  it  is  the  identical  transform on
[x1 , x n] . 

Fuzzify the first diagonal,  x=y as follows. The
Ox axis  is  fuzzified  by defining  single  mode
m.f., µk(x), µk(ak)=1. Assume that at most three
m.f.s overlap in any x. Then, for a specified x,
the  Ox axis  transformation  (deformation)  is
x '=h( x)  defined by, for example, as 

x → x '=h( x )=

=
a k−1 μk−1( x )+ak μk( x )+ak+1 μk+1( x )
μk−1 ( x)+μk ( x)+μk +1( x )

 (1)

With this ‘new’  x,  the function  y=f(x) can be
computed as usually. Thus, if we have a classic
controller and wish to adjust it locally, we can
apply simply a transformation of the input axis
and then apply it to the controller. Again, this
transformation can be seen as a ‘system inverse
model’,  because  the  control,  including  the
transformation effect, is f(h(x)).

When the m.f.s are all triangular (possibly not
isosceles),  h(x) = x, so this case is the identity
transformation,  of  little  interest.  The  same
happens when all m.f.s are complementary on
their intervals of overlapping, in the sense that
μk−1( x )=1−μk (x )  and  μk ( x)=1−μk+1( x )

whenever  μk (x)>0 .  Notice  that
complementarity  does  not  imply  that  the
membership  functions  are  triangular  or
piecewise linear.

Assume a uniform sampling of the x space, i.e.,
a k−ak−1=c .  Also,  assume that  the m.f.s  are

not complementary and that they are parabolic,
that  is,  piece-wisely  they  are  branches  of
parabolas,

μk ( x)=

{( x−a k−1)
2 /c

2
for ak−1≤−x≤a k

( x−a k+1)
2 /c2

for ak≤−x≤ak+1

(2)

When the x-space is not uniformly sampled and
the membership functions are chosen parabolic
at left and right of the vertex, i.e. (see Figure 1),

μk ( x)={
(x−a k−1)

2

(ak−ak−1)
2 ,a k−1≤ x≤a k

(x−ak+1)
2

(a k+1−a k)
2

,a k≤x≤ak+1

(3)

Because  the  left  and  right  sides  of  the
membership  functions  are  parabola  arcs,  the
m.f.s  will  be  named  parabolic,  respectively
semi-parabolic  in  case  the  space  sampling  is
not uniform.

In  case  of  uniform sampling  of  the  x space,
assuming,  as  usually,  that  successive  m.f.s
overlap on [a k ,ak +1]  and that μk ( ak )=1 , and
taking  into  account  that  ak +1−ak=ak−a k−1 ,
one obtains on [a k−1 , ak+1]  the transform

h ( x)=
ak μk ( x)+a k+1μk+1( x )

μk ( x )+μk+1( x)
(4)
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θ(x)=

{α+ s1( x−v0) , s1>0, for v0≤x≤v1

β+s2 (x−v 1), s 2<0, for v1≤x≤v2

(5)

Figure 1 illustrates a set of parabolic m.f.s and
the ‘fuzzy identity’ transform obtained with the
respective  parabolic  m.f.s,  according  to  the
above formulas.  Replacing in (5)  a k=a0+kc

and  ak +1=a0+(k +1)c ,  one  obtains  a
somewhat closer form.

One easily modifies the above transform using
different m.f.s, for example quadratic, such as 

μk (x)={
( x−ak−1)

4

(ak−a k−1)
4 ,ak−1≤−x ≤ a k

(x−a k+1)
4

(ak +1−ak )
4

,a k ≤−x ≤ a k+1

(6)

The graph of the membership functions (6) is
shown in Figure 1 (a).

Figure 1. (a) Uniformly spaced interval of the
variable and the corresponding parabolic

membership functions. (b) Pseudo-identity
transformation - transformation of the first bisector. 

When the axis Ox is replaced with the axis Ox',
where  x'=h(x), the above represents the fuzzy
transform of the coordinate axis. 

Properties.  The  deformation  has  the
following properties:

1. The  transforms  are  nonlinear,  namely
piecewise  rational  transformations  when
the membership functions are polynomial. 

2. CoFT  (5)  and  similar  ones  preserve  the
points ak, that is, it is an interpolation of the
Ox axis in these points;

3. The  minimal  deformation  occurs  at  the
points ak, (where the derivative is minimal),
while  the  maximal  deformations,  for
uniformly  sampled  spaces,  occur  at
ak+ak +1

2
;

4. When  the  sampling  of  the  Ox axis  is
uniform (i.e., when the distance between ak

and ak+1 is constant for all k), the transform
is periodical.

Proof.  (1)  and  (2)  result  directly  from  the
definition equations. The proof of (3) and (4)
also results from the definition equations, after
elementary calculus.

In  many  applications,  a  logarithmic  scale  is
preferred,  where  ak=10k.  Then,  the  semi-
parabola  in  the  above  definition  of  the  m.f.s
should  be  changed  accordingly.  Observe  that
nothing prevents the choice of ‘inverse’ semi-
parabolas,  1−(x−a k)

2/c2  or  of  other
functions suitable for m.f.s and for the desired
deformation of the real line.

Because the above transform iterates  the first
diagonal  of  the  space  ( x , x ’)  through  the
values  ak,  it  will  be  named  fuzzy pseudo-
identity transformation.

It  is  worth  to  mention  that  by applying  first
CoFTs  and  then  standard  FLSs,  which  thus
‘see’  the  transformed  input  space,  more
powerful equivalent FLSs are built. The values
ak and the type (parabolic, quadratic etc.) of the
membership functions in the CoFT define the
transform and  can  be  modified  (adjusted)  in
adaptive CoFT-FLSs to suit specific applications.

The transformation defined in this Section uses
a different approach and is completely distinct
from the one with resembling name introduced
and  studied  in  [3],  [10-14],  although  the
application fields of these transforms may overlap.

3. CoFT-based Fuzzy Tent Maps

Chaotic  processes  are  ubiquitous  in  nature,
including  physics,  chemistry  and  biology.
Moreover,  they  occur  in  every  major  system
related  to  humans,  including  economic  and
social systems, e.g. [7, 8]. As a consequence, a
vast  literature  deals with the modeling of  the
nonlinear dynamic phenomena using crisp [2,
15, 16, 17] and fuzzy [18, 19] approaches, and
with  computer  methods  for  simulating  them,
e.g. [1, 21].

Tent maps [2, 8] are defined as piecewise linear
functions  with  only  two  branches,  the  first
increasing and the second decreasing. It will be
assumed subsequently that both branches have
values in the same interval [α,β], that is

θ( x )=

{α+ s1( x−v0) , s1>0, for v0≤x≤v1

β+s2 ( x−v 1), s2<0, for v1≤x≤v2

(7)
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where  α+s 1(v1−v0)=β  and
s2=−( β−α)/(v 2−v1) ;  most  frequently,
s1=−s2=2  [2].  In  (7),  α+s1( x−v 0)  is  the

increasing  linear  section of  the tent  map  and
β+s2( x−v1)  is the decreasing one.

Tent maps, which are kin to logistic and cubic
maps,  are  simple  yet  useful  examples  of
functions  that,  by  iteration,  produce  chaotic
time series when the function graph intersects
the first bisector of the plane [2, 8]. The class
of  tent  maps  (7),  on  a  specified  interval,
[v 0 , v2 ] ,  includes  functions  with  a  single

parameter, namely the position of the tent peak,
v1.  This  limits  their  suitability  for  modelling
processes  that  have  a  large  number  of
parameters, as well as their flexibility in fitting
the model.

On the  other  hand,  the simplicity of  the  tent
maps  and  their  scarcity  of  adjustable
parameters,  which  hampers  their  use  in
modelling  and  prediction  applications,  make
them computationally effective in chaotic series
generation. As a consequence, tent maps have
been  studied  in  applications  for  secure
communications  and data  encryption [23,  24]
and  may  be  used  to  replace  other  chaotic
systems  in  applications  such  as  the  ones
described in [23, 24]. A combination of CoFT
with a crisp tent map could be a compromise
between  computational  affordability  and
modelling power. Next, the use of the transform
in combination with the tent map is studied. 

The first combination investigated is

yn=θ (h ( xn−1)) , xn= yn , n≥1 (8)

with the transform included in the iteration, and
with a specified initial condition x0. The system
described by (8) will be named (iterated) fuzzy
tent  map  because  the  CoFT  h is  part  of  the
iteration,  such as the tent  map ‘sees’ a fuzzy
transformed space of the crisp input.

Next, we are interested in the iteration

yn=θ( x n−1) , x n=y n−1 , y n
*=g ( y n) , (9)

where  the  iteration  produces  yn
* .  In  the  last

case, the transform is applied to the ‘output’ of
the tent map and is not included in the iteration.
This  case  is  less  interesting  than  the  one
described by (8).

Using (8) and combining the equation (7) of the
crisp  tent  map  with  the  fuzzy  space
transformation, one obtains, 

xn+1=h( yn)=∑ j
a j μ j ( y n)/∑ j

μ j ( yn) ,

yn+1=θ( xn+1)
(10)

For  example,  considering  the  transformation
with  equally  sampled  y-space  and  parabolic
m.f.s,  when  the  precedent  output  value  yn

satisfies ak−1≤ yn≤a k , the (n+1)th  iteration is

x n+1=
(a k−1(yn−ak −1)

2+(ak −1+c)( y n−a k−1)
2 )

( yn−a k−1)
2+( yn−ak −1)

2

y n+1=θ(xn+1)

, (11)

The computation results illustrate the difference
in  behaviour  between  the  fuzzy  tent  map
iteration  and  the  crisp  iteration  with  CoFT
applied only to the values produced by the crisp
tent map iteration. Figure 2 shows the iteration
of the tent map with the parameters s1=1.91 ;
x1=2.6178 ;  s2=−1.91  and  the  initial

condition  x0=1.5215 . After applying a CoFT
to the output  of  the crisp tent  map using the
same  membership  functions  as  in  Figure  1,
a0=0;  a1=1;  a2=2;  a3=3;  a4=4;  a5=5,  the
transformed  output,  denoted  y*[n] was
compared  to  the  sequence  generated  by  the
crisp  tent  map,  y[n].  The  time  series  of  the
difference  y*[n]−y [n ]  is shown in Figure 3;
while  chaotic,  this  difference  time  series  is
strongly  correlated  with  the  initial  one,  y[n],
with  a  correlation  coefficient  close  to  1.
However,  the  CoFT  has  a  benefic  effect,
making  more  uniform the  distribution  of  the
values in the time series (i.e., a more uniform
coverage  of  the  output  values.)  The  effect  of
applying  the  CoFT  is  also  evidenced  in  the
third graph (phase plot) in Figure 4.

Figure 2. Time series generated with the standard
tent map.

Figure 3. The difference time series. The parameters
of the tent maps are given in the text. 
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Figure 4. Effects of applying the CoFT to the series
generated by the standard tent map

The  results  discussed  subsequently  are  based
on iteration as in (10) for the case in (11), in
addition,  for  iteration  as  in  (9).  Figure  5
represents  the  time  series  generated  by  the
fuzzy tent map described by (8) and (10), with
the same parameters and initial value as above.
Not only visually the times series in Figures 2
and 5 are different, but their covariance has the
value  Covar=0.0495 and  their  correlation
coefficient is  Corr=0.0285, demonstrating the
strong effect the CoFT has in the fuzzification
of  the tent  map.  (This  also  explains  why the
difference time series in Figure 3 is correlated
with the original time series).

Figure 5. Series generated with the tent map
obtained by the fuzzy transform of the x coordinate.

Finally, the Fourier spectrum of the time series
generated by the fuzzy tent  map is  shown in
Figure 6; the spectrum (arbitrary units for the
amplitude,  vs.  frequency  bins)  has  some
similarity  with  the  1/f noise  for  higher
frequencies, but not for the lower ones.

Figure 6. Fourier spectrum of a sequence of
samples generated by the fuzzy tent map iteration 

The above results support the notion that there
is a benefit in using CoFT in the loop (iteration)
of a tent map, in terms of enriching the range of
chaotic  regimes  of  the  tent  map.  However, a
thorough investigation, using a variety of tools
[20] should be carried out before deciding on
the  suitability  of  specific  fuzzy  tent  map
implementations in applications.

4.  CoFT  Application  to  Chaotic

Series Prediction

Various  applications  of  the  CoFT  can  be
imagined,  ranging  from  the  optimization  of
nonlinear  classification  to  decision  making.
One  of  them,  the  trimming  of  the  chaotic
processes,  has  been  shown  in  the  previous
Section. Here we show an elementary example
of a new method of improving the time series
prediction, based on the CoFT in conjunction
with a standard LPC predictor. 

There are so numerous methods based on fuzzy
systems,  neural  networks,  and  neuro-fuzzy
systems  for  prediction  of  time  series  in  the
literature  that  even  their  basic  comparison
becomes a terrible feat. As a matter of example,
only  the  researches  using  fuzzy  methods  in
predicting Mackey-Glass time series produces
(Google  Scholar)  more  than  3100  papers.
Methods  used  range  from  recurrent  neural
networks [6], to evolving radial basis function
networks [4], to adaptive neuro-fuzzy inference
system (ANFIS) with self-feedbacks [22], and
to  ensembles  of  ANFIS  models  [9],  to  name
just a few recent works. 

Our aim is not to show that a method based on
a combination of CoFT and a fuzzy or neuro-
fuzzy  predictor  can  improve  the  results
obtained by the sophisticated current methods
of prediction, but only to show that the CoFT
may  improve  a  standard  predictor  already
determined for some specified time series. For
this  purpose,  we  consider  one  of  the  best
known nonlinear time series, the logistic series,
determine for it the best linear predictor (LPC)
as  generated  by the  corresponding MATLAB
toolbox,  and  then  try to  improve  it  using  an
adapted  CoFT.  The  logistic  series  was
generated with the recursion 

x [n]=3.64 × x [n−1]× (1−x [n−1] ) (12)

with the seed (initial value) x [1 ]=0.7 . An LPC
model of order 12 was identified for the first 150
samples of the logistic process (12) and the total
square error of the model was computed.
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Then, an elementary CoFT transform was used
to  modify  the  input  to  the  LPC  model
determined.  The  CoFT  was  represented  by  a
basic  TSK system with  only  three  triangular
input m.f.s, as shown in Figure 7(a). The three
output  singletons  of  the  TSK  system  are
respectively 0, V, and 1. 

Figure 7. The basic CoFT with parameter V.

The  value  of  the  parameter  V was  the  only
adjustable  parameter  of  the  CoFT,  which  is
obviously represented by a piecewise transform
x→ x '  with the graph shown in Figure 7(b).

The  transformed values  x'[n]  were fed to  the
LPC  determined  on  the  original  series.  The
value  of  V was  adjusted  in  a  loop,  in  an
elementary  search.  For  every  value  of  V
between 0 and 1, the values of the square error
between the output of the LPC and the original
series  was  computed  and  compared  with  the
error of the LPC on the original series. When
the new error was less than the original, V was
stored  and  then  the  optimal  choice  for  V,
providing the minimal error, was the result of
the  optimization.  The  optimization  produced

the  value  V=0.525,  with  the  error  2.1344,
compared  with  the  initial  error  of  the  LPC,
2.1607.  The  original  series  and  the  original
LPC model  are  shown in  the  upper  panel  of
Figure  8,  while  the  result  obtained  with  the
CoFT is shown in the lower panel of the same
figure.  This  extremely  simple  example
demonstrates that the CoFT method may help
in various modeling and prediction problems,
as discussed in the next Section.

The method was also tested on time series of
noise detected on Social Networks and on time
series  of  tremor  signals,  the  last  ones  being
known to have a  chaotic  component [5].  The
preliminary  results  shown  sometimes  similar
improvements  to  those  illustrated  above,  but
more work is needed for improving the method.

5. Discussion and Conclusions

A general definition of fuzzy transformation of
the  Euclidean  space  was  suggested  and  the
properties  of the transform were investigated;
then  the  definition  was  exemplified.  The
transforms  have  an  interpolative  nonlinear
effect,  which  is  periodical  under  uniformly
distributed  m.f.s  in  the  transformed  space.
When  the  transform  is  incorporated  in  the
application performed by tent maps, it produces
a  ‘fuzzy  tent  map’  with  more  intricate
behaviour  and  with  a  larger  number  of
parameters  available  for  adjustment  in
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prediction and modelling. When the transform
is external to the iteration, its effect is null in
terms of enriching the dynamics, yet it may be
useful  for  equalizing  the  distribution
probability (histogram) of the generated series.
It  was  determined  that,  for  the  same  initial
condition and for the same basic tent map, the
fuzzy tent  map  produces  time  series  that  are
non-correlated with the ones generated by the
corresponding crisp tent map. 

While  simple  iterated  functions  are  used
frequently to  model  natural  processes,  where
modelling  means  mimicking  some  of  the
properties  of  the  natural  time  series,  such
models may have limited power. For example,
with a single parameter, the class of standard
tent maps is poorly equipped for adaptation in
modelling  and  predicting  chaotic  time  series.
An alternative is to employ polynomial iterated
functions, or piecewise polynomial tent maps,
but  the  computations  become  more  intricate
and the intuition of the effect of the polynomial
coefficients is poor. In this paper, a relatively
simple  alternative  was  suggested,  using
coordinate transformations before applying the
tent  map.  The  advantage  of  this  type  of  tent
map is that the space deformation is an intuitive
concept and meaning may be attached to such
deformations.  For  example,  in  social  and
economic processes, deforming the opinion of
the  population  groups  may  induce  modified
social dynamics.

The  coordinate  fuzzy  transforms  may  find  a
variety  of  applications  in  model  and  control
trimming for critical applications such as those
of  implants  [5],  in  adaptive  assessment  for
decision making as for the problem in [25], and
in  improving  classification.  Fuzzy  tent  maps
obtained by the fuzzy transform may be useful
in  secure  communications,  in  protecting  the
hardware, and in generating a large number of
signals for communication equipment testing. 

Also,  an  appealing  application  could  be  the
mapping  of  a  social  process,  such  as  the
response  of  social  networks  to  events,  into
another of the same type, assuming that the two
processes  involve  populations  with  similar
behaviours  that  can  be  mapped  by  a  fuzzy
transform,  where  the  fuzzy transform reflects
the relation between the different  subjectivity
of the individuals in the two populations. Also,
if  fuzzy  mappings  prove  in  further  work  to
transform one noise time series on Social Networks
in  another  noise,  this  may  help  understand  the
characteristics of these noise processes. 
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