
1. Introduction

The location-allocation problem is an important
problem in logistics. The main goal is to find
the  best  possible  combination  of  facility
locations (among a set of possible locations) to
serve  a  set  of  customers,  which  must  be
allocated  so  that  their  demand  may  be  fully
satisfied  by  the  installed  facilities.  This
problem is, clearly, at strategic level as once the
decision on what locations should be installed
is made,  it  is  very difficult  to reverse  such a
decision because of the time and cost that such
changes would imply. These class of problems
have been widely studied in the literature ([1, 3,
8, 9, 10, 14, 34),  and a variety of techniques
have  been proposed so  far  to  solve  it  (for  a
comprehensive survey please see [21]). During
the  last  two  decades,  several  authors  have
pointed out the importance of including tactical
aspects  such  as  inventory  and  transportation
decisions within the same model that is used to
solve the strategic problems [24, 30, 31, 32, 15,
35,  36,  39].  This  is  because  sequential
approaches,  i.e.  those  that  solve  sequentially
the strategic, tactical and operational problems,
have  been  proved  to  lead  to  sub-optimal
solutions, as the quality of the solution at each

level will always depends on the quality of the
solutions obtained in previous levels. 

When inventory policies are included within the
location-allocation model, the resulting model is
known as Inventory Location Model (ILM).

Several  ILM  have  been  proposed  in  the
literature,  being  the  main  difference  between
them the  inventory  policy  that  is  considered
(see Section 2 for a short survey on ILM). In
this  article,  we  have  considered  the  ILM
proposed  by  [32].  In  their  article,  authors
propose a cross-level model that incorporates a
continuous  review  inventory  policy.  In  their
proposed model storage space at each facility is
limited  and  a  capacity  constraint  over  the
distribution  vehicles  is  applied.  These
conditions make the problem more realistic as
they model common situations  in  logistics.  It
also makes this problem harder to solve though.

The resulting model is nonlinear and includes
both integer and continuous decision variables.
The model considers inventory control as well
as  facility  location  decision  making.  Two
capacity constraints are considered: a limit over
the size of the lot  for the incoming orders to
each  facility  and;  a  stochastic  bound  to  the

Studies in Informatics and Control, Vol. 24, No. 3, September 2015 http://www.sic.ici.ro

Solving a Distribution Network Design Problem by

Combining Ant Colony Systems and

Lagrangian Relaxation

Carolina LAGOS1,*, Fernando PAREDES2, Stefanie NIKLANDER3,4, Enrique CABRERA5

1  Pontificia Universidad Católica de Valparaíso, CHILE,
carolina.lagos.c@mail.pucv.cl

2  Universidad Diego Portales, Escuela de Ingeniería Industrial, CHILE,
fernando.paredes@udp.cl

3  Universidad Autónoma de Chile, CHILE.

4  Universidad Científica del Sur, PERU,
sniklander@gmail.com

5  Universidad de Valparaíso, CIMFAV, CHILE,
enrique.cabrera@uv.cl

Abstract: Distribution network design  (DND) attempts  to  integrate  tactical  issues such as  inventory policies  and/or
vehicle routing decisions with strategic ones such as the problem of locating facilities and allocate customers to such
facilities.  When  inventory  policy  decision  making  is  considered  the  problem  is  also  known  as  inventory  location
modelling (ILM) problem. During the last two decades, mathematical programming as well as (meta-)heuristic approaches
have been considered to address different DND problem. In this article we consider a hybrid algorithm of Lagrangian
Relaxation and artificial ants to solve an ILM problem previously proposed in the literature. We use ACS to allocate
customers to a subset of warehouses that is previously generated by the Lagrangian relaxation. Results show that the
hybrid approach is quite competitive, obtaining near-optimal solutions within an acceptable time.

Keywords: Distribution Network Design, Matheuristics, Ant Colony Optimization, Lagrangian Relaxation.

251



inventory  capacity.  In  their  article,  authors
solution  approach  consists  of  a  Lagrangian
relaxation  and  the  well-known  sub-gradient
method,  combined  with  a  simple  2k-opt
heuristic. Miranda et. al. [32] highlights the fact
that  reducing  capacity  of  inventory  does  not
necessarily means that the number of facilities
to be installed must increase. In fact, order size
reduction  leads  to  an  optimal  customer
allocation, reducing total system cost.

The mathematical model presented in [32] we
consider in this study is as follows. Let W  be
the  set  of  possible  warehouse  locations  and
i ∈W  be the i -th available warehouse in W .

Let  C  be the set of customers to be allocated
to  selected  warehouses  i∈W

+
⊂W .  As  we

mentioned  before,  a  (Q
i
, R P

i
)  inventory

policy is considered. When the inventory level
falls  below  R P

i  level  in  warehouse  i ,  Q
i

items  are  ordered.  L T
i  time  units  after  the

order  Q
i  is  triggered the items are  received.

This  is  known as  lead time.  A probability of
1−α  is considered to ensure a level of service

for  the  system.  This  means  that,  with
probability of  (1−α ) ,  units  below  R P

i  are
enough to satisfy customers demand during the
lead  time.  Stock-out  is  produced  otherwise.
This leads to the following constraint: 

Prob(SD ( L T
i )≤ RP

i
)=1−α (1)

where  stochastic  demand  during  lead  time  at
warehouse  i  is  denoted  by  (SD ( LT

i )) .
Miranda  et.  al.  [32]  assumes  a  normally
distributed  demand  which  allows  them  to
determine R P

i  as 

RP
i
=D

i
LT

i
+Z (1−α ) √LT

i√V
i (2)

Z1−α  corresponds  to  standard  normal
distribution,  D

i  and V
i  are the total demand

and  the  total  variance  at  warehouse  i ,
respectively. Let H C

i  be the holding cost and
OC

i  be the order cost associated to warehouse
i . Thus the inventory cost is 

HC i Z1−α √LT i√V i+HC i (
Q

i

2
)+OC i(

D
i

Q i

) (3)

F
i  denotes  the  fixed  cost  of  opening

warehouse  i  while  RC
ij  and  T C

ij  are the
transportation  unit  cost  and  the  fixed
transportation cost between warehouse  i  and
customer  j , respectively. Thus, the goal is to
minimise  the  total  system  cost  that  can  be
expressed as follows

∑
i=1

N

F i X i+∑
i=1

N

∑
j=1

M

(RC i μ j+T C ij)Y ij

+H C i Z 1−α√L T i √V i

+H C
i (Qi

2 )+OC
i (Di

Q
i
)

(4)

where µf is the customer j mean demand, N and
M are the number of available warehouses and
the number of customers, respectively. 

Miranda  et.  al.  [32]  proposes  two constraints
associated to order quantity  Q

i . The first one
states  the  Q

i  must  be  less  or  equal  that  an
arbitrary value Q

ub . The second one fixes the
maximum inventory level for each warehouse
as follows

Prob (RP i−SDi ( LT i )+Qi ≤ I
cap )=1 – β (5)

which can be restated as

Q
i
+ (Z (1−α)+ Z1−β )√L T

i √V
i
≤ I

cap
X

i (6)

Additional constraints are: 

∑
i=1

N

Y ij=1 , ∀ j=1, … , M (7)

Y
ij
≤ X

i
,

∀ i=1,… , N ; ∀ j=1,… , M
(8)

0≤ Q
i
≤ Q

ub
,

∀ i=1,… , N ; ∀ j=1,… , M
(9)

∑
j=1

M

μ j⋅Y ij=Di , ∀ i=1, … , N (10)

∑
j=1

M

σ j

2
Y ij=V i , ∀ i=1,… , N (11)

X
i
,Y {ij }∈{0,1} ,

∀ i=1,… , N , ∀ j=1,… , M
(12)

Equation (7) states that demand of customer i

is  fully satisfied  by the  system.  Equation  (8)
ensures  that  customers  are  allocated  only  to
installed warehouses.  Equation (9)  provides  a
valid range for Q

i . Equations (10) and (11) set
the total demand D

i  and total variance V
i  for

warehouse  i  based on the allocation variable
Y

ij . Finally Equation (12) states that decision
variables  X  and  Y  are  binary  variables,
which make this problem much harder to solve.

2.  Inventory  Location  Model:

Literature Review

Many authors have been focused on the DND
problem and on ILM in particular  during the
last two decades. For instance [37, 33, 12, 29,
30] all analyse decision making levels in both
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distribution  network  design  and  supply chain
management  (SCM).  A detailed  FLP reviews
and analysis  is  presented in  [16,  38 and 21].
However, commonly used FLP models neither
consider interactions between facility location
and inventory policy nor the impact of the latter
on distribution network design. An example of
such  interaction  is  the  effect  on  the  final
distribution network design produced by the so
called  risk  pooling  effect.  It  states  that  the
safety stock required by the whole distribution
system will decrease as fewer warehouses are
installed.  Daskin  et.  al.  [17]  and Shen et.  al.
[36]  consider  a  continuous  inventory  policy,
namely  (Q,  RP),  and  the  well  known
uncapacitated  facility  location  problem
(UFLP).  A  safety  stock  at  each  site  is
considered.  While  authors  in  [17]  employ
Lagrangian  Relaxation  to  solve  the  model,
Shen et.  al.  [36]  reformulates the model as  a
Set-Covering  problem  and  solves  it  using  a
column generation method. 

Continuous  inventory  policies  have  been
widely used in DND models. Authors in [30]
consider  order  quantity  Q  as  a  decision
variable and, additionally, they add a capacity
constraint  to  their  model.  A similar  capacity
constraint is considered in [31] and [35].

More recently, in [27] authors have presented
an ILM that incorporates the risk pooling effect
for  both  safety  stock  and  running  inventory.
Additionally,  in  their  model,  the  authors
consider the effect produced when warehouses
and end customers work jointly.

Tancrez et. al. [39] has presented a three-level
supply  chain  non-linear  ILM  that  integrates
location, allocation, and shipment sizes. Firoozi
et.  al.  [22]  develops  a  model  for  the  DND
problem  that  considers  the  short  lifetime  of
perishable products. To solve their model, the
authors  implemented a  Lagrangian relaxation.
One paper that has addressed the DND problem
using periodic inventory review is presented in
[11]. In their paper, the authors consider a  (R,

S) inventory  policy.  A  similar  approach  is
presented in [15], where authors considered a
(R, s, S) inventory policy.

Different techniques to solve these models have
been  considered  so  far  in  the  literature.  For
instance, Bard et. al. [7] proposed a branch and
price  algorithm  for  an  integrated  production
and inventory routing problem. In Badri et. al.
[5], Lagrangian relaxation was used to solve a
mixed  integer  linear  programming  model  for

multiple  echelon  and  multiple  commodity
supply chain network design.

Heuristics have also been used to solve DND
problems.  For  instance,  Aremtano  et.  al.  [2]
solves a model that  integrates production and
distribution  decisions  by  considering  the
capacity  constraints  of  the  plant.  They  solve
such a model by means of the well known TS
algorithm.  Askin  et.  al.  [4]  implements  an
evolutionary  algorithm  to  solve  an  ILM
considering  multi-commodity and  distribution
planning decisions. In their paper, the authors
present  a  very  comprehensive  description  of
their  genetic  algorithm.  In [15]  authors  solve
the resulting non-linear non-convex problem by
mean of the well known Tabu Search heuristic.
To  the  best  of  our  knowledge  no  hybrid
algorithm such as the one presented here has
been  applied  to  the  ILM  that  is  tackled  in
this article. 

3. Solution Approaches

In  this  section  both  ACO  and  Lagrangian
relaxation techniques are studied.

3.1 Ant Colony Optimization. 

Ant colony optimization (ACO) algorithms were
firstly proposed by [18]. They are natural inspired
approaches  that  try to  mimic  the behaviour  of
natural  ants.  In  general  we  can  classify  ACO
algorithms into two different groups:

Ant  Systems (AS).  This  metaheuristic  is
inspired in the behaviour of real ants which use
pheromones  as  a  communication  medium.  It
has been shown to be very effective in solving
complex combinatorial optimisation problems.
Indirect communication between simple agents
(ants)  is  the  cornerstone  of  AS.  This
communication  is  implemented  by  means  of
pheromone trails. In AS, these pheromone trails
serve as distributed, numerical information that
is  used  by  the  (artificial)  ants  to
probabilistically  construct  solutions  to  the
problem that is being solved [13]. AS has been
shown  to  be  very  effective  in  solving  many
combinatorial  optimization  problems.  It
performs particularly well in routing problems
such as travelling salesman problem and VRP
([13] and [20] respectively). AS extracts three
main ideas from natural ant behaviour [19]: 

1. Ants prefer paths with higher pheromone levels, 

2. Higher  rate  of  growth  of  the  amount  of
pheromone deposited on shorter paths, and 
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3. Trail mediates communication among ants.

The  functioning  of  an  AS  algorithm  can  be
described as follows [28]. A colony of artificial
agents called  ants moves from one state of the
problem to the next one building a solution to
the  corresponding  problem.  A  particular  ant
moves  independently from the  others.  Such a
movement is done by applying a stochastic rule
based on the so called trails and attractiveness. A
state transition rule guides ants movements. Ants
prefer to move to states which are cheaper in
terms of their associated cost. Such states have a
high amount of pheromone trials.  By moving,
each ant incrementally constructs a solution to
the problem. After an ant built a solution up (and
also during the construction phase), it evaluates
its  solution  and  modifies  trail  value  on
components that are used in its solution.

Trails load will guide future artificial ants. AS
also  considers  two  additional  tools:  trail
evaporation,  which  diminishes  trail  loads  for
each iteration avoiding large trail loads in some
specific state; and daemon actions, that can be
used  to  implement  centralized  actions  which
cannot be performed by single ants, such as the
invocation of a local optimization procedure, or
the update of global information to be used to
decide whether to bias the search process from
a non-local perspective.

The probability pk (r , s )  of ant  k moving from
state r to s will be set to 0 if such a movement is
infeasible. A movement is said to be infeasible if
either  it  leads  to  an  infeasible  solution of  the
problem or it is in the  tabu list of ant  k,  tabuk.
Tabu list is a list containing all moves which are
infeasible or banned according to some criteria.
If  movement  is  not  infeasible,  probability
pk (r , s )  is computed as follows 

pk (r , s)={ [ τ (r , s)][ η(r ,s )]β

∑u∉tabu
k

[ τ(r , u)][η(r ,u)]β
, if s∉tabuk

0 Otherwise

(13)

In  Equation  (13),  the  relative  “weight”  of
pheromone trails w.r.t. the cost associated to a
particular movement is denoted by β . Once all
artificial ants have built a solution pheromone
loads are updated according to equations (14)
and (15)

τ (r , s )=(1−α ) τ ( r , s )+∑
k=1

m

Δτ k (r , s) (14)

where,

Δτk (r , s )={( 1
Lk

) , if (r , s )∈current tour of ant k

0 Otherwise

(15)

is the cumulative contributions of all artificial
ants that include within their final solution the
movement  (r , s) .  Evaporation  coefficient,  a
user defined parameter, is denoted by α , with
0≤ α≤ 1 ,  and  L

k  is  the  length  of  the  tour
performed by ant k , that is its associated cost.
The number of ants is denoted by m . 

How much pheromone is deposited by an ant in
a particular state depends on the quality of the
solutions achieved.  If the solution reached by
an  ant  is  a  high  quality  one,  then  the
contribution will be also high. This means that
the movement the ant is selecting will be more
attractive  for  the  remaining  ants  in  next
iterations of the algorithm. 

Ant  Colony  Systems (ACS).  ACS  has  three
variants w.r.t. the AS algorithm [18]. Firstly, ACS
incorporates a state transition rule that allows the
algorithm to explore new solutions with certain
probability while  more  promising solutions  are
preferred.  In  this  way, knowledge  accumulated
during previous iterations can be used to guide
other ants decision making. As a second variant, a
global updating rule is applied to the best tour.
Finally, ACS implements a local updating rule at
each step of the solution generation. 

s={argmaxu∉tabu
k

{[τ (r ,u)][η(r ,u)]β}, if q≤q0

S , otherwise
(16)

where  q is  a  random  number  uniformly
distributed [0,1].  A user defined parameter q0

with 0≤q0≤1  is set. If  q0 approximates to 0,
then  algorithm  will  prefer  exploration  over
exploitation.  Otherwise  (i.e.  q0 approximating
1),  algorithm  will  prefer  exploitation  over
exploitation. A random value S is also defined.

τ (r , s )=(1−α )τ (r , s )+α Δ τk (r , s) (17)

where

Δ τ (r ,s )={ 1
L gb

, if (r , s )∈globalbest tour

pk (r , s) , Otherwise

(18)

L
gb  is the associated cost of the best solution

found by the algorithm so far. 

As mentioned before, ACS implements a local
updating rule that is as follow.

τ (r , s )=(1− ρ ) τ (r , s )+ ρ Δτ (r , s ) (19)
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with  ρ a  user  defined  parameter  ( 0≤ ρ ≤ 1 ).
The general ACS structure as in [18, 40, 41] is
presented in Algorithm 1.

As we mentioned before,  we use ACS in our
hybrid algorithm in order to allocate the set of
customers  to  a  subset  W

+⊂W  of  open
warehouses.  In  our  algorithm,  each  ant  starts
positioned in a random customer. Then the ant
must  to  allocate  the  current  customer  j to  a
warehouse  i among all possible warehouses in
W+.  Once  the  current  customer  has  been
allocated,  the  ant  'jump'  to  the  next  random
customer and repeat  the same procedure until
all customers have been visited or no feasible
solution  can  be  reached  from  the  current
position.  In  our  representation,  a  'path'
corresponds to the link between a customer and
a  warehouse.  Thus,  when  an  artificial  ant
allocates customer j to warehouse i, pheromone
trails  are  deposited  in  such  a  link.  If  that
allocation results in a good solution, ants from
next iterations will  be more influenced to use
that  link,  i.e.  to  allocate  customer  j to
warehouse  i.  The  opposite  happens  if  the
quality of the resulting solution is not as high as
the ones obtained by other ants.

3.2 Lagrangian relaxation

Lagrangian  relaxation,  or  Lagrangian  heuristic
(LH), has been widely used to solve location-
allocation problems in the literature [6, 10, 23,
25,  26}.  One  key  element  in  the  LH  is  the
chosen relaxation.  Several  different  relaxations
have  been  proposed  so  far  (for  a  survey see
[38]). In this article, we use the same relaxation
as proposed by [32]. Applying a relaxation over
the  primal  problem  leads  to  a  sub-problem
known as the dual problem which, when solved,
usually  provides  lower  bounds  for  the  primal
problem. LH relies on the fact that obtained sub-
problem must be easier to solve than the primal
one. If not the case, other relaxations should be
considered.  Depending  on  the  mathematical
properties of both, the primal and dual problems,
solving the dual problem could lead to feasible
and  (in  some  cases)  optimal  solutions  of  the
primal  problem.  In  most  of  the  cases,  primal
heuristics  still  needed,  and  the  quality  of  the
obtained  solutions  is  measured  as  the  gap
between dual solution value and primal solution
value.  This  gap  is  known  as  duality  gap.  A
duality  gap  equal  to  zero  means  the  optimal
solution of the primal problem has been found.
To solve the dual problem, different techniques
have  been  proposed.  In  this  article  a  sub-

gradient  procedure  is  used  to  solve  the  dual
problem, yielding improvements of the obtained
lower bounds.

As we mentioned above, the relaxation used in
this  article  is  the  one  used  in  [31].  In  their
work, authors relaxed constraints (7), (10) and
(11).  This  means  that  solutions  of  the  dual
problem are not necessarily feasible as they do
not ensure that total demand of every customer
is fully served. Then the objective function of
the dual problem considered in this study is as
follows [32], subject to constraints (6), (8), (9)
and (12).

Min∑
i=1

N

(F i X i)

+∑
i=1

N

∑
j=1

M

(RC i μ j +TC ij+ λi μ j+ω i σ j−ψ j)Y ij

+∑
i=1

N

( HC i Z 1−α√LT i √V i )

+∑
i=1

N

HC i(Q i

2 )+OC i( Di

Qi
)

−∑
i=1

N

(λi Di +ω i V i )+∑
j=1

M

ψ j

(20)

Once this problem has been solved by mean of
the well-known sub-gradient method, the set of
open facilities  W + is stored in memory so the
ACS  algorithm  can  solve  the  associated
allocation  sub-problem.  As  we  mentioned
before,  we  need to  be  sure  that  the  installed
capacity, i.e.  the  total  capacity of  the  system
considering  only  W + facilities,  is  enough  to
satisfy the entire customer demand. If not, we
need to include additional facilities into W +, so
the ACS method can find feasible solutions for
the primal problem. 
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Algorithm 1:

General algorithmic frame for ant colony system

Begin

  Do{

    For Each (ant k ∈K ){
      Initialise solution;
    }
    Do{

      For Each (ant k ∈K ){

Apply Rule (η(r , s), τ (r , s)) ;

LocalUpdate();
      }

      GlobalUpdate (τ (r , s )) ;

    }while(all ants completed their solutions)

  }while(stop criterion is reached)

End
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3.3 Proposed hybrid approach

In the proposed method, LH is used to find a
promising  subset  of  possible  locations
W

+⊂W . This leads to an associated allocation
problem that is easier to solve. We solve such a
sub-problem by mean of ACS. This means that
artificial  ants  can  only  allocate  customers  to
those locations i∈W

+ . Algorithm 2 shows the
general framework of our hybrid approach.

Algorithm 2:

Algorithmic Frame for the Hybrid ACS-LH method

Begin

  Do{

    (W +, Zlb) = solveDualProblem();
    If (W + is not feasible){

      W + = addFacilities(W\W +);
    }

    (X
i
,Y

ij
, Z

ub
)  = ACS(W +);

    ( λ ,ω ,ψ)  = update Lagrange Multipliers 

                              (Xi ,Y
ij
, Z

ub
) ;

  }until(stop criterion is reached)

End

As we can see in Algorithm 2, at each iteration
Lagrange multipliers are updated based on the
solution  obtained  by  the  ACO  algorithm,
helping  to  speed  up  the  convergence  of  our
hybrid approach. 

4. Computational Results

In order to test our hybrid ACO-LH algorithm,
two instance classes  are considered.  The first
class  of  instances  corresponds  to  a  set  of  8
small  instances  with  15  customers  and  4
possible facilities.  Optimal solutions for these
instances  are  known,  so we can check if  our
hybrid  algorithm is  able  to  find  the  optimal
solution  for  our  small  instances.  The  second
class  of  instances  consists  of  98  instances
generated following the same procedure as in
[32]. All these instances have 40 customer and
20 possible facilities.

We first make some experiments in a subset of
instances in order to establish the best values
for our algorithm parameters. In particular, we
try different values for h (number of ants in the
ACO  method)  and  q0 (exploration  /
exploitation index). 

We perform 10  runs  for  each  studied  value.
Reported  values  correspond  to  the  average
values obtained in those runs. Figures 1 and 2
show the obtained results of the corresponding
sensitivity analysis.

Figure 1. Sensitivity analysis for ACS parameter h,
number of ants.

Figure 2. Sensitivity analysis for ACS parameter q0,
exploration-exploitation index.

As we can see in Figures 1 and 2 above, the
value used for these two parameters can have a
great  impact  on  the  performance  of  our
algorithm. It is also interesting to note that best
obtained  values  ( h=10  and  q0=0.1 )
corresponds to the same values proposed for a
completely different problem by [18].

After  set  parameter  values,  we  test  our
algorithm over the set of small instances. For
all  instances the obtained dualityGap value is
equal  to  zero,  i.e.  the  optimal  solution  was
found. We need to point out at this point that
ACS and LH separately are also able to find the
optimal  solutions  for  all  the  small  instances.
Our hybrid algorithm needs less than 1s to find
the optimal solution though. 

We then  apply our  algorithm to  the  medium
size instances. We compare the results with the
ones  reported  in  [32]  where  the  same  LH is
used  although  a  simple  2  k-opt  heuristic  is
implemented instead our ACS algorithm. Table
1  shows  the  obtained  results  for  the  all  98
medium size instances considered in this study.

As we can see in Table 1, our hybrid ACS-LH
algorithm is quite competitive in terms of the
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primal  solution values.  In  almost  half  of  the
instances,  our algorithm was able to find the
same  or  even  better  results  than  its
counterpart. Moreover, our algorithm exhibits
a  very good exploration level,  which can be
seen in the variety of solutions visited during
the algorithm execution.

Table 1. Results for all the 98 instances. Solution values
for both primal and dual problems are reported as well as

its duality Gap.

Zlb LH Zub LH
gap

(%)

Zlb ACS-

LH

Zub

ACS-

LH

gap

(%)

171,174 180,040 4.92 171,201 180,135 4.96 

171,122 178,604 4.19 171,146 178,208 3.96 

175,092 184,029 4.86 175,026 183,938 4.85 

174,941 182,278 4.03 175,064 182,449 4.05 

179,103 187,882 4.67 179,193 188,135 4.75 

178,948 186,131 3.86 179,118 186,603 4.01 

182,929 191,735 4.59 183,197 192,134 4.65 

183,026 189,984 3.66 183,131 190,603 3.92 

186,485 195,587 4.65 187,075 196,134 4.62 

186,414 193,836 3.83 187,018 194,602 3.9 

190,229 199,440 4.62 191,108 199,931 4.41 

191,050 197,689 3.36 191,070 198,547 3.77 

194,494 202,942 4.16 194,961 202,942 3.93 

194,459 201,542 3.51 194,919 201,558 3.29 

172,679 180,692 4.43 172,737 180,692 4.4 

172,534 179,359 3.8 172,664 179,000 3.54 

176,696 184,616 4.29 176,625 184,692 4.37 

176,528 183,070 3.57 176,682 183,172 3.54 

180,513 188,469 4.22 180,294 188,692 4.45 

180,658 186,923 3.35 180,636 187,358 3.59 

184,511 192,321 4.06 184,640 192,691 4.18 

184,402 190,775 3.34 184,645 191,358 3.51 

188,391 196,174 3.97 188,482 196,174 3.92 

188,194 194,628 3.31 188,334 195,357 3.6 

192,524 200,027 3.75 192,581 200,413 3.91 

192,533 198,481 3 192,490 199,518 3.52 

196,399 203,424 3.45 196,621 203,424 3.34 

196,355 202,333 2.95 196,614 202,552 2.93 

174,216 181,216 3.86 174,216 181,216 3.86 

174,212 180,018 3.22 174,212 180,114 3.28 

178,215 185,167 3.75 178,215 185,215 3.78 

178,212 183,870 3.08 178,212 184,114 3.21 

182,184 189,020 3.62 182,215 189,215 3.7 

182,181 187,723 2.95 182,211 188,113 3.14 

186,213 192,872 3.45 186,206 193,215 3.63 

186,180 191,575 2.82 186,211 192,113 3.07 

190,161 196,725 3.34 190,105 197,214 3.6 

189,911 195,428 2.82 190,207 196,113 3.01 

194,035 200,578 3.26 194,158 200,881 3.35 

194,210 199,281 2.54 194,066 200,122 3.03 

198,106 203,892 2.84 198,112 203,892 2.83 

197,825 203,133 2.61 198,167 203,534 2.64 

175,641 181,710 3,34 175,641 181,710 3.34 

175,641 180,619 2,76 175,641 180,851 2.88 

179,641 185,689 3,26 179,641 185,589 3.21 

179,641 184,684 2,73 179,641 184,765 2.77 

183,547 189,541 3,16 183,640 189,710 3.2 

183,606 188,537 2,62 183,640 188,851 2.76 

187,640 193,394 2,98 187,640 193,709 3.13 

187,538 192,390 2,52 187,640 192,850 2.7 

191,640 197,246 2,84 191,640 197,709 3.07 

191,554 196,242 2,39 191,640 196,850 2.65 

195,597 201,099 2,74 195,639 201,709 3.01 

195,595 200,095 2,25 195,639 200,850 2.59 

199,570 204,856 2,58 199,639 206,712 3.42 

199,236 203,948 2,31 199,639 204,532 2.39 

177,016 182,212 2,85 177,017 182,212 2.85 

177,016 181,652 2,55 177,017 181,591 2.52 

181,016 186,211 2,79 181,016 186,211 2.79 

181,014 185,590 2,47 181,016 185,590 2.46 

185,016 190,211 2,73 185,016 190,211 2.73 

185,016 189,371 2,3 185,016 189,590 2.41 

189,016 193,890 2,51 189,016 194,211 2.68 

189,015 193,224 2,18 189,016 193,590 2.36 

193,015 197,742 2,39 193,015 198,210 2.62 

192,396 197,077 2,38 193,015 197,589 2.32 

197,015 201,595 2,27 197,015 202,210 2.57 

197,014 200,929 1,95 197,015 201,589 2.27 

201,014 205,447 2,16 201,014 205,958 2.4 

200,807 204,782 1,94 201,015 205,575 2.22 

178,346 182,860 2,47 178,346 182,860 2.47 

178,346 182,448 2,25 178,344 182,225 2.13 

182,346 186,859 2,42 182,346 186,859 2.42 

182,344 186,448 2,2 182,346 186,353 2.15 

186,344 190,716 2,29 186,345 190,859 2.36 

186,344 190,447 2,15 186,345 190,352 2.11 

187,302 194,569 3,73 190,345 194,859 2.32 

189,386 194,087 2,42 190,322 194,352 2.07 

194,344 198,421 2,05 194,345 198,858 2.27 

194,168 197,939 1,91 194,345 198,352 2.02 

198,335 202,274 1,95 198,344 202,858 2.23 

198,344 201,792 1,71 198,344 202,351 1.98 

202,344 206,126 1,83 202,342 206,886 2.2 

202,256 205,645 1,65 202,344 206,351 1.94 
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179,635 183,672 2,2 179,635 183,654 2.19 

179,633 183,142 1,92 179,601 183,085 1.9 

183,543 187,654 2,19 183,630 187,654 2.14 

183,576 187,270 1.97 183,633 187,142 1.87 

186,818 191,433 2.41 187,634 191,654 2.1 

187,595 191,141 1.86 187,635 191,141 1.83 

191,613 195,286 1.88 191,632 195,653 2.06 

190,882 194,982 2.1 191,632 195,141 1.8 

195,597 199,139 1.78 195,623 199,653 2.02 

195,569 198,835 1.64 195,634 199,141 1.76 

199,615 202,991 1.66 199,633 203,653 1.97 

199,629 202,688 1.51 199,632 203,140 1.73 

203,619 206,844 1.56 203,616 207,652 1.94 

203,627 206,540 1.41 203,632 207,140 1.69

Figures 3 and 4 show the networks obtained by
ACSLH and LH respectively. In this particular
instance,  ACSLH  obtained  a  solution  value
better than the one obtained by LH algorithm.

Figure 3. Network obtained by ACSLH algorithm
for a particular instance.

Figure 4. Network obtained by LH algorithm for a
particular instance.

Beside  the  fact  that  our  hybrid  algorithm
obtained a better solution for the case showed
in Figures 3 and 4,  we can see that  the final
obtained networks are quite similar one to each
other in terms of the warehouses that are open
as well as in terms of the customer allocation.
However,  in  this  particular  case,  the
exploitation ability of our approach allows us to
better  inspect  the  solution  space  around  the

current solution and consequently to find better
solution within the 'neighbourhood'. 

4. Conclusions and Future Work

In this paper a hybrid approach combining ACS
and Lagrangian method is presented and tested on
an Inventory Location  Model.  Obtained  results
show  that  the  hybrid  approach  is  quite
competitive  w.r.t.  other  techniques  proposed
previously in the literature. While LH provides a
promising subset of warehouses by means of the
solution  of  a  relaxed  sub-problem,  the
implemented ACS allows us to allocate the set of
customers to those warehouses provided by the
LH. Furthermore, solutions obtained by ACS help
back LH to fine tune values of its multipliers. 

As  a  future  work,  our  approach  could  be
applied  to  other  combinatorial  problems  such
as  Inventory  Routing  problems,  Vehicle
Routing  problems,  among  others.  Moreover,
larger  instance could be tested as  size  of  the
problem should  not  be  a  major  issue  for  the
hybrid algorithm performance. 
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