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1. Introduction

Today, the growth of metadata models in 
the scientific and commercial domains has 
exploded. Metadata models can be described 
as domain specifications with the main goal of 
specifying a metadata language (Coyle, 2010). 
A metadata model can be an XML schema and/
or an ontology (Jung et al., 2012; Sivasankari 
& Shomona, 2016). The World Wide Web 
Consortium (W3C) Semantic Web Activity is 
a continuing endeavor to facilitate metadata 
model integration and sharing among many 
applications and parties. Unfortunately, WEB is 
confronted with databases containing massive 
amounts of data in various representations. 
The issue of managing heterogeneity among 
various information resources is becoming more 
prevalent. Metadata model matching (Mani & 
Annadurai, 2021; Ochieng & Kyanda, 2018) 
handles semantic heterogeneity. It discovers 
correspondences between entities in semantically 
relevant metadata models. Many application 
domains rely on the matching operation, including 
the semantic web, data warehouse, ontology 
integration, e-commerce, sensor networks, peer-
to-peer systems, semantic web services, and 
social networks. However, challenges of metadata 

models matching problem exist in two primary 
categories: (i) accuracy, which measures the 
effectiveness of the matching process; and (ii) 
performance, which measures the time required 
for the matching process to execute (Sellami et 
al., 2008).

Although semantic web researchers have made 
considerable efforts to enhance the accuracy 
of metadata model matching systems, the 
performance of large-scale matching remains a 
concern. Several obstacles arise when matching 
large metadata models. First, matching metadata 
models is a computationally demanding process 
with quadratic computational complexity. Second, 
distinct element measures (matchers) should 
be used to obtain high matching quality. When 
matchers are applied serially, the matching task 
takes a long time. Third, there is a trade-off 
between accuracy and execution speed. As a 
result, to be suited for matching large metadata 
models, a tool must contain strategies for dealing 
with the complex matching process and decreasing 
search space and time computations (Babalou et 
al., 2016; Ochieng & Kyanda, 2018). 
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Approximate string matching (ASM), such 
as Levenshtein Distance (Navarro, 2001) is 
one of the resilient string metrics that has been 
successfully utilized in numerous applications. It 
supports the three most popular edit operations: 
insertion, deletion, and substitution. A dynamic 
solution for the k-difference ASM problem has 
been released to enhance the standard sequential 
algorithm. It is distinguished by its widespread 
usage in metadata model matching (Chong & Lee, 
2022; Xue et al., 2021) and broad applicability 
to different hardware aspects, GPUs being among 
them (Chen et al., 2017; Tran et al., 2016).

Parallel processing with Graphical Processing 
Units (GPUs) has recently attracted a lot of 
attention as an intriguing alternative to standard 
microprocessors in high-performance computer 
systems (HPCs) (Owens et al., 2008). The 
emergence of high-performance matching 
approaches in terms of execution time dedicated 
to large-scale metadata models gives rise to 
harvesting GPU computational power capabilities 
in the realm of metadata model matching.   

To this end, the research is based on an efficient 
hardware-implementable matching algorithm, 
which combines two promising areas, partition-
based and parallel matching strategies. The 
algorithm enhances large-scale metadata models 
matching scalability in terms of speed on 
GPUs, in the presence of clustering methods. 
It mainly parallelizes dynamic approximate 
string matching. It relies on an agglomerative 
hierarchical algorithm (Algergawy et al., 2011), 
with a bottom-up clustering approach to divide the 
parsed model tree into divisions based on context-
based structural node similarities. The efficiency 
of the matcher lies in the size of data remaining 
inside the GPU. Instead of accumulating all 
pairs of the similarity set that emerged from the 
similar clusters detecting stage into bulks on GPU, 
where individual pairs are then split up to occupy 
available cores, only a single pair of the similarity 
set is transferred to the device at a time for parallel 
computing. Furthermore, PPM can parallelize the 
calculation of elements in the same row of the edit 
distance matrix, removing data dependency. 

The merit of the algorithm proposed in this 
paper is demonstrated through experiments on 
varying-sized datasets; some of them have been 
widely used in various matching prototypes in 
the Ontology Alignment Evaluation Initiative 

(OAEI) campaign (Ontology Alignment 
Evaluation Initiative, n. d.). The experimental 
findings revealed that the suggested algorithm 
outperformed the sequential algorithm by up to 
5.21- 30.70 times. The main contributions of the 
paper are the following:

	- It focuses on the problem of executing clustering 
on GPUs and finding the best solution;

	- It presents a fast and scalable matching 
algorithm to deal with clusters and perform 
fast mapping computing for large-scale 
metadata models on GPU, namely, PPM;

	- It links Java programming language to CUDA 
kernels with the JCUDA interface;

	- It conducts some experiments on datasets 
with varying sizes to demonstrate how the 
proposed matching algorithm improves 
matching efficiency.

The following is the outline for the paper. Section 
2 overviews the previous methods for partitioning 
and parallelizing the large-scale metadata models. 
The overall design of the proposed framework is 
depicted in Section 3. Section 4 discusses the 
CUDA implementation of the proposed parallel 
matcher. The experimental results from the most 
commonly used datasets follow in Section 5. 
Finally, Section 6 summarizes the main findings 
and discusses future directions.

2. Related Work

There have been many tools developed for large-
scale metadata model matching (Otero-Cerdeira et 
al., 2015). However, as the popularity of metadata 
models has grown, so have the challenges that 
metadata model matching tools must overcome 
in order to establish high-quality correspondences 
between metadata models, while working with 
limited computing resources (Shvaiko & Euzenat, 
2008). As a result, supplemental techniques 
beyond those required for matching medium- and 
small-sized metadata models are necessary for a 
tool to take on the challenge of matching such 
large metadata models. This section will cover 
techniques for matching large metadata models. 
Figure 1 demonstrates the hierarchy of scalability 
techniques for large-scale metadata models. 
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Figure 1. Hierarchy of Scalability Techniques 
(Ochieng & Kyanda, 2018)

2.1 Scalability Techniques

Scalability strategies utilized by metadata 
models matching tools are explored to alleviate 
the high time and space complexity involved 
with matching large metadata models, in 
order to thoroughly assess the state-of-the-art 
methodologies. Tools can be categorized into two 
types (Rahm, 2011), reduction of search space 
techniques and parallel matching.

2.1.1 Reduction of Search Space 

To decrease the search space, metadata model 
matching technologies currently use three 
techniques: partitioning, data structure usage (El 
Abdi et al., 2015; Ngo & Bellahsene, 2016), and 
metadata model structure use (Huber et al., 2011; 
Wang, 2010).

2.1.2 Partitioning

To facilitate the matching process, metadata 
model matching technologies employ two forms 
of partitioning: module extraction and complete 
metadata models partitioning (Ochieng & 
Kyanda, 2018). In module extraction, extracting 
a module from a fragment and reasoning over the 
module rather than the whole metadata model can 
substantially speed up the reasoning process and 
optimize memory usage. For complete metadata 
model partitioning methodologies, a large 
metadata model is broken into smaller divisions 
based on preset criteria. Complete metadata model 
partitioning improves scalability and shrinks 
the search space by supporting parallelization, 
maintaining the effectiveness of a matching tool, 
and reducing time complexity. 

According to (Abadi & Zamanifar, 2011), there 
are two types of metadata model partitioning 
methods: Graph-based Approach and Logic-based 
Approach. Graph-based Approach uses graph-based 
techniques to traverse the metadata model hierarchy 
to extract partitions. Because it avoids the reasoning 
approach, the strategy is scalable, but it may result 
in insufficient partitions, because it ignores the 
semantics modelled in the underlying metadata 
model language. The articles (Kusnierczyk, 2008; 
Schlicht & Stuckenschmidt, 2007) provide graph-
based metadata model partitioning algorithms. 
Logic-based Approach partitions a metadata model 
utilizing description logic. It builds more extensive 
partitions than the Graph-based Approach, by using 
the relationships specified in the metadata model. 
It is less scalable than the Graph-based Approach, 
since it is reliant on reasoning. This approach is 
used in several works, as in (Cuenca Grau et al., 
2007; Cuneca Grau et al., 2008). Partitioning is 
used by several metadata model-matching tools 
to reduce time complexity (Groß et al., 2012; 
Saruladha & Ranjini, 2016). 

2.1.3 Parallel Composition

Parallel matching techniques are primarily 
advocated to reduce ontology matching execution 
time by distributing concept comparisons across 
the resources of a distributed system (Groß et al., 
2010). Ontology matching tool parallelization 
can be examined in two ways: instruction vs. data 
relationship and matcher implementation.

2.1.4 Instruction vs. Data Relationship

This category divides parallelization implementations 
based on whether the same instruction runs on 
various datasets or multiple instructions are 
executed on the same or different datasets. In this 
context, three basic parallelization strategies are 
used (Tenschert et al., 2009): single instruction 
multiple data (SIMD), multiple instruction single 
data (MISD), and multiple instruction multiple data 
(MIMD). In the SIMD paradigm, all processing units 
(PUs) execute the same instruction on different data 
elements. This approach has been implemented in 
ontology matching by several tools at various stages 
of the ontology matching process, as in (Shvaiko et 
al., 2016). In MISD parallelism implementation, 
each PU executes a distinct instruction on the 
same dataset. XMAP++ (Djeddi et al., 2014) and 
MaasMatch (Schadd & Roos, 2014) are some tools 
that implement MISD. MIMD is a parallelism 
implementation in which each PU executes a distinct 
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instruction on a different independent dataset. 
SPHeRe (Amin et al., 2014) implements MIMD 
information of data parallelism during the entity-
matching stage of the ontology matching process.

2.1.5 Matcher Implementation

Parallel matching algorithms are divided into 
inter- and intra-matcher parallelization (Kirsten 
et al., 2011). Inter-matcher matching parallelizes 
the execution of independently executable 
parallel matchers. The number of independent 
matchers limits this type. Intra-matcher divides 
the metadata models required for a particular 
use case into multiple parts. Each part of the 
portioned metadata model is matched with the 
concepts of another one in a distributed manner 
and/or in parallel. In addition, intra-matcher 
parallelism can be applied to sequential and 
independently executable matchers, allowing it 
to be combined with inter-matcher parallelism. 
This approach has been implemented in (Groß et 
al., 2012). Several tools have been presented to 
implement parallel matching (Amin et al., 2016; 
Kirsten et al., 2011). 

GOMMA (Groß et al., 2012; Kirsten et al., 2011) 
is a tool that allows for extremely parallel string 
matching on Graphical Processing Units (GPUs). 
It optimizes n-gram matching for determining the 
similarity of concept names and synonyms, and 
it supports GPU-based parallel matching. To this 
end, another type of string-matching techniques 
is parallelized on GPU, namely the Levenshtein 
distance, commonly used throughout the metadata 
models matching field (Chong & Lee, 2022; Xue et 
al., 2021) to allow efficient execution for matching.

3. The Proposed Matching 
Framework

This section presents an overview of the proposed 
high-performance GPU matching framework 

dedicated to large-scale metadata models. The 
matching framework, as shown in Figure 2, involves 
a set of modules, including parsing, clustering, 
similar cluster determining and data preparation, 
matching, and alignment evaluation modules. 
First, the benefit of each constituting module is 
summarized, followed by a thorough explanation 
of how the matching module is implemented. The 
matching framework is distinguished by its ability 
to match schemas and ontologies.

It includes the XSOM parser for schemas (Java 
Enterprise Edition, n d.) and the Jena API parser 
(Apache Jena, n. d.) for ontologies. The input 
metadata models should be depicted internally 
using a common data model in order to build a 
generic matching framework. The data model 
should be capable of normalizing metadata 
models represented by diverse metadata model 
languages, reducing syntax inconsistencies across 
metadata models. Graphs are used as an internal 
representation for matching metadata models. 
There are several reasons for selecting graph 
as an internal representation for the metadata 
models to be matched. First, graphs are well-
known data structures and have their algorithms 
and implementations. Second, the metadata 
model matching problem is turned into another 
standard problem, namely, the graph matching, by 
using the graph as a common data model (Do & 
Rahm, 2007; Zhang et al., 2006). Using a set of 
predetermined transformation rules similar to those 
in (Lee et al., 2002), a graph can be turned into 
a tree representation by dealing with nesting and 
repetition problems. The graph contains a finite 
number of nodes and edges. An object identifier 
uniquely identifies each node, which expresses 
component attributes such as element name, data 
type, and constraint. On the other hand, each edge 
reflects the relationship between every two nodes.

As explained in (Algergawy et al., 2011), a 
hierarchical decomposition clustering approach 

Figure 2. Proposed matching framework
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with an agglomerative nature is used. It builds a 
tree depicting the cluster hierarchy in a bottom-up 
way. It computes the structural similarity between 
every pair of nodes, υi and υj, using the concept 
of node context. The node context is described 
as the surroundings of the node, including the 
node itself and all the parents and children of 
the node. For detecting the most similar clusters, 
the framework is adopted with two methods: 
Vector Space Model (VSM) and Latent Semantic 
Indexing (LSI) (Algergawy et al., 2014). This step 
reduces matching overhead by excluding dissimilar 
partition pairs from further matching processing.

To fully use the huge number of CUDA cores, the 
data reproduced from the clustering stage has to 
be well organized. Consider two metadata models, 
𝓜Ɗ1, 𝓜Ɗ2, which are partitioned into two sets 
of clusters Cset1 = [1, ..., m], Cset2 = [1, ..., n], 
respectively. A similarity set has to be constructed, 
Rsim as a 2-tuple such that Rsim = (C, BC), where C is 
a cluster that belongs to Cset2 and BC is a non-empty 
finite set of similar clusters correspondences which 
pertain to Cset1. Then, for each entry pair inside Rsim, 
three strings/sequences are generated during data 
preparation, an input source (S), a target pattern (P), 
and a distinct pattern, (PR). They are created by 
applying normalization methods to  C  and its 
related  BC. The input source,  S,  and the target 
pattern,  P, are formed by concatenating tokens 
and prefacing them with a separator. The separator 
facilitates GPU token differentiation and matching, 
while a distinct pattern, PR, removes the repetition 
of the character set in the target pattern P.   

The proposed matching algorithm, PPM, is based 
around two scalability techniques (Rahm, 2011) 
used in the specialized literature to reduce the time 
and space complexity involved in matching large-
scale metadata models: partitioning and parallel 
strategies. It is responsible for dispatching pairs of 
the similarity set consecutively and evolving the 
concept of SIMD to flow through cores in order to 
take advantage of the robust GPU architectures to 
improve the performance of a Levenstein distance 

matcher. The F-measure is used to assess the 
alignment quality, defined as follows:
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where R is the alignment produced from the 
domain and A is the alignment generated by the 
matching process. Metrics of Rec and Prec show 
the completeness and accuracy of the alignments, 
which are often balanced by their reconciliation 
mean, i.e., F-m.

4. PPM Matching Algorithm

The transition from traditional sequential 
algorithms for ASM with k-differences to 
their dynamic programming model allows for 
widespread usage in numerous applications 
(Navarro, 2001). Nonetheless, it suffers from data 
dependency, making it challenging to design a 
parallel algorithm for approximate string matching 
with k-differences (Guo et al., 2013). This risk 
has to be discarded when matching the large-scale 
scene of metadata models. Hence, this section 
introduces PPM, a parallel matching approach for 
large-scale metadata models with several benefits. 
It is a pairwise matching approach for metadata 
models, which delivers sequential pairings of the 
similarity set to the GPU. Thus, it reduces the 
amount of data transmitted through the GPU. 
Then, using the proposed parallel methodology of 
dynamic approximate string matching, each cluster 
string P is matched to its associated bulk of similar 
clusters string S. Furthermore, PPM removes 
data dependency impediments in the matching 
space. The algorithm can be implemented by 
constructing a set of similarity matrices with 
varying parallel matching performance, as shown 
in Figure 3. The edit distance component of the 
parallel pairwise clustering matching approach, 
PPM, significantly relies on the work described 
in (Guo et al., 2013). However, this effort must 

Figure 3. PPM matching algorithm
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be modified to accommodate the structured data 
of the given metadata models so relevant entities 
can be easily distinguished on the GPU.

The edit distance calculation consists of two 
primary steps: a parallel building of matrix X and a 
parallel filling of the edit distance matrix ED. After 
establishing ED matrix, getting relevant entities 
across concatenated strings within the GPU is 
necessary. This stage develops parallel construction 
for a different set of similarity matrices, including 
the tokens similarity matrix T_Sim, words-tokens 
similarity matrices, WT_Sim1, WT_Sim2, and words 
similarity matrices, W_Sim Matrices.

4.1 Approximate String Matching

Let Σ be the alphabet and Σ∗ is the set of strings 
over Σ. λ ∉ Σ is the null string. A string x ∈ Σ∗ 
is denoted as x = x1x2x3...xn, where xi is the ith 
symbol of x,xi...xj, is referred as the substring 
of x including the symbols from xi to xj,1 ≤ i ≤ 
j ≤ n, its length is defined as | xi...xj |= j − i + 
1 and it is the null string λ(|λ| = 0) if i > j. An 
edit operation is a pair (a, b) ≠ (λ, λ) of strings 
less than or equal to 1 and usually written as  
a → b. a → b is called a change operation if a 
≠ λ and b ≠ λ, a delete operation if b = λ; and an 
insert operation if a = λ. An edit transformation 
of two strings x and y is a sequence of elementary 
edit operations which converts x into y and it is 
denoted as Tx,y = T1T2...Tl. Let v be an arbitrary 
cost function which assigns to each edit operation 
a → b a non-negative real number v (a→b), and 
the weight of an edit transformation ,x yT  can be 

computed by , ( )
l

x y i
i

v y T(Τ ) =∑ . Then, let the 

edit distance ϱ (x, y) from string x to string y be the 
minimum cost of all sequences of edit operations 
which transform x to y. The approximate string 
matching (ASM) problem is to find the edit 
distance between two strings.

4.2 Dynamic Programming Problem

Given two tokens tokP ∈ P, tokS ∈ S, tokP = [0, …, 
p −1], tokS = [0, …, q − 1], and a non-negative 
integer k, 0 ≤ k ≤ q, the minimum edit distance 
between the two tokens is to find out all locations 
l and t − 1 in tokS where 0 ≤ l ≤ t − 1 ≤ q − 1, such 
that the edit distance ED (tokP = [0, . . . , p − 1], 
tokS = [l, . . . , t − 1]) ≤ k. The edit distance formula 

( , )ED u v  can be represented by the recurrence in 
equation 1. ( , )ED u v  is the distance between the 
first u characters of tokP and the first v characters 

of tokS. Dynamic programming of traditional 
approximate string matching with k-differences is 
not optimal due to its severe limitations. Initially, 
the sequential calculation of the table requires O 
(pq) time and q+3p+4 sequential complexity (Guo 
et al., 2013). As demonstrated by equation 1, each 
element of the edit distance matrix is dependent 
on its predecessors in the same row or column 

( 1, 1)ED u v− − , ( 1, )ED u v− , and ( , 1)ED u v − . 
In the present work, the prior neighboring element 
on the same row poses the most significant barrier 
to developing an ASM algorithm with k-differences 
based on row parallelization suitable for large-scale 
metadata models.

4.3 Edit Distance Calculation

It is known that the computation of ED [u, v] in 
the sequential technique depends on the value that 
resides in the same row or column; therefore, this 
is not adaptable to parallel processing.

, 0
, 0

( , ) ( 1, 1), ( 1) ( 1)
1 min( ( , 1), ( 1, 1), ( 1, )), . .

p s

v if u
u if v

ED u v ED u v if tok u tok v
ED u v ED u v ED u v o w

=
 == − − − = −
 + − − − −
   

(1)

GPU solutions have been developed to accelerate 
the ASM task, which may be categorized into 
two primary forms of parallel processing: 
diagonal flow computing (Chen et al., 2017) 
and row flow computing (Guo et al., 2013). The 
computation of the diagonal flow is based on the 
parallel processing of the edit distance matrix 
for each element in the same diagonal flow. The 
length of the input pattern limits the maximum 
number of threads processed concurrently. This 
parallel scheme suffers from insufficient parallel 
expandability, especially when adopting GPUs.

On the other hand, row flow computing 
parallelizes the processing of the edit distance 
matrix elements in the same row. Row flow 
computing increases parallelism and decreases 
synchronization compared to the diagonal parallel 
technique. The proposed PPM offers a method for 
removing the data dependency problem based on 
row flow computing.

A matrix X has to be constructed whose dimension 
is |Σ| × SL, where |Σ| is the size of the character 
set in the PR  string, abbreviated as PRL, and SL is 
the length of the input string S. PR[0,...,|Σ| − 1] 
refers to characters in Σ. The matrix X [u, v] can be 
calculated using equation (2), where u and v are the 
indices devoted for each matching inside GPU. Each 
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character in the character set of the input string S is 
indexed, assuming that each token is viewed as an 
independent matching unit. At the start of each token, 
the index becomes 0. This set is known as SIndices. 

0, [ ]
( , ) [ ], [ ] [ ]

[ , 1], . .

if S v
ED u v SIndices v if S v PR u

X u v o w

= ′,′
= =
 −   

(2)

To compute matrix X, because the data of each 
row are independent, data in each row can be 
computed in parallel. Additionally, the barrier 
sync, BS, is called to verify completing all rows 
before calculating the edit distance matrix.

According to matrix X, it is possible to redraft 
equation (1) such that computation of the data 
of the u-th row of the edit distance matrix, ED 
depends exclusively on the data of the (u-1)-
th row. minVal represents the minimum value 
between the neighboring elements in the previous 
row, ( 1, )ED u v− , ( 1, 1)ED u v− − . This can be 
explained using equation (3), where PIndices is 
a set of indices for characters inside the target 
pattern, P, regenerated for each token. k is the 
location of P[u] inside matrix X where 1 ≤ u ≤ 
PL and PL is the total length of the target pattern. 
All elements in each row can be processed in 
parallel. In contrast to matrix X computation, each 
row has to be finished before proceeding to the 
next. Barrier sync, BS, ensures that all threads can 
process all elements of a row before proceeding 
to the next row. Algorithm 1 is used to implement 
both steps of the proposed PPM matching strategy: 

construction of the matrix X and computation of 
the ED matrix.

4.4 Computation of Entities Similarities

This stage aims to retrieve corresponding entities 
across concatenated strings inside the GPU. This 
can be realized across the parallel construction 
for a set of similarity matrices; tokens similarity 
matrix T_Sim, words-tokens similarity matrices, 
WT_Sim1 Matrix, WT_Sim2 Matrix, and words 
similarity matrices W_Sim Matrices. 

Tokens similarity matrix, T_Sim, calculation 
has to be performed after finalizing ED matrix 
construction. Through ED matrix, the bottom-
right elements of the edit distance spaces of the 
pairs of tokens are collected. Due to the non-
dependency between rows, threads work on the 
same row to compute all elements in parallel 
without synchronization. However, the barrier 
sync must be applied after the entire matrix 
building for the next step. T_Sim(u, v) can be 
determined through equation (4). It is based 
upon two parameters, var1, and var2, given 
in equations (5) and (6), respectively. Token 
counts are stored in TSN and TPN. SSIndices and 
PSIndices represent the occurrence of a separator 
along the input string S, and the target pattern P, 
respectively. STL and PTL are abbreviations for 
the lists of all token lengths of the input string S, 
and the target pattern P, respectively.

[ ], [ ] 0
[ ], [ ] 0

( , ) ( 1, 1), [ ] [ ]
1 min(min , [ ] [ ] 1), [ , ] 0
1 min(min , [ 1, [ ] [ , ] 1) [ ] 1 [ , ],

SIndics v if PIndices u
PIndices u if SIndices v

ED u v ED u v if S v P u
Val PIndices u SIndices v if X k v
Val ED u v SIndices v X k v SIndices v X k v o

=
=

= − − =
+ + − =
+ − − + − + − − . .w







   

(3)

(var1, var 2)_ [ , ] 1
max( [ ], [ ])

EDT Sim u v
STL v PTL u

= −
              (4)

where var1 and var2 can be determined as follows:

1, 1
var1

[ 1] 1, . .
PL if u TPN

PSIndices u o w
− = −

=  + −   
(5)

1, 1
var 2

[ 1] 1, . .
SL if v TSN

SSIndices v o w
− = −

=  + −   
(6)

Algorithm 1. GPU kernel pseudo-code of Matrix X 
construction and ED Matrix computation of PPM Algorithm
1.	 Input: SL, S, SIndices, PL, P, PIndices, PRL, PR.
2.	 Output: X, ED.
3.	 FOR ALL u ∈ PRL PARALLEL DO  //Matrix X
4.	    FOR v ← 0 to SL DO
5.	       Compute X[u, v] using equation 2;
6.	    END FOR
7.	 END PARALLEL FOR
8.	 Barrier synchronization;
9.	 FOR u ← 0 to PL DO	                     //ED Matrix
10.	    FOR ALL v ∈ SL PARALLEL DO
11.	       Compute ED(u, v) using equation 3;
12.	   END PARALLEL FOR
13.	    Barrier synchronization;
14.	END FOR
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Words-tokens similarity matrices are of two kinds: 
the first words-tokens similarity matrix, WT_Sim1, 
and the second words-tokens similarity matrix, WT_
Sim2. They have different parallelization natures 
subject to their subordinate to the input string S or 
the target pattern P. In WT_Sim1, a single thread 
works on the same row inside the matrix. Each 
S token must be compared to all tokens of each 
word of P in their matching area. Hence, the entries 
of the matrix are filled with the largest similarity 
values. On the contrary, WT_Sim2 has all threads 
working on the same row within the matching area 
without synchronization. Each P token is compared 
to all tokens of each word of S in their matching 
area, and then the greatest similarity values are 
computed. Finally, the barrier sync BS must be used 
after each matrix construction to complete the next 
step. Tokens similarity and words-tokens similarity 
matrices are implemented using Algorithm 2. 
SWTSFIndices and PWTSFIndices hold the start 
and end indices for each word token in the input 
string and the target pattern, respectively.

Three-word similarity matrices are filled in the 
same parallelization manner. Parallelization is 
performed in all matching regions on a single row. 
The first matrix W_Sim1 is based on the first words-
tokens similarity matrix WT_Sim1, in which each 
thread sums the maximum similarities of a single 
word in P against its tokens in S in their matching 
area. The second matrix W_Sim2 is based on the 
second words-tokens similarity matrix WT_Sim2. 
Each thread sums the maximum similarities of a 
single word in S against its tokens in P in their 
matching area. The third matrix W_Sim stores the 
final output transferred from the device to the host. 
A single thread sums the values in the prior two 
matrices for a pair of words divided by the sum of 
counts of their tokens. Thus, the final output holds 
the similarity values between words of the input 
string against words of the target pattern and can 
be estimated using equation 7. Algorithm 3 is used 
to implement words similarity matrices. The counts 
of words of the input string and the target pattern 
are set into WSN and WPN, respectively.

1 2( _ [ , ] _ [ , ])
(( [ 1] [ ]) ( [ 1] [ ]))

W Sim u v W Sim u vsumFinal
SWTSFIndices v SWTSFIndices v PWTSFIndices u PWTSFIndices u

+
=

+ − + + −     
(7)

Algorithm 2. General GPU kernel pseudo-code of 
Tokens Similarity and Words-Tokens Similarity Matrices

1.	 Input: SL, TSN, SWTSFIndices, SSIndices, WSN PL, 
TPN, PWTSFIndices, PSIndices, WPN.

2.	 Output: T_Sim, WT_Sim1, WT_Sim2.
3.	 FOR  u  ← 0 to TPN  DO	         //T_sim
4.	    FOR All  v  ∈ TSN PARALLEL DO
5.	       Compute T_sim[u, v] using equation 4;
6.	    END PARALLEL FOR
7.	 END FOR
8.	 Barrier synchronization;                       
9.	 FOR ALL u ∈ WPN PARALLEL DO  //WT_Sim1
10.	   FOR  v  ← 0 to TSN DO	           
11.	       max = 0.0f;
12.	       FOR  k  ← PWTSFIndices [u] to PWTSFIndices 

[ u + 1] DO
13.	         Result = T_sim[k , v];
14.	         IF Result > max THEN
15.	            max = Result;
16.	       END FOR
17.	       WT_Sim1[u, v] = max;
18.	   END FOR
19.	END PARALLEL FOR
20.	Barrier synchronization;
21.	FOR  u  ← 0 to TPN DO	                        //WT_Sim2
22.	   FOR ALL  v  ∈ WSN PARALLEL DO
23.	      max = 0.0f;
24.	      FOR  k ← SWTSFIndices[v] to SWTSFIndices 

[v + 1] DO
25.	         Result = T_sim[ u , k];
26.	         IF Result > max THEN
27.	            max = Result;
28.	      END FOR
29.	      WT_Sim2[u, v] = max;
30.	   END PARALLEL FOR
31.	END FOR
32.	Barrier synchronization;

Algorithm 3. GPU kernel pseudo-code of Words 
Similarity Matrices

1.	 Input: WPN, SWTSFIndices, WSN, PWTSFIndices.
2.	 Output:  W_Sim1, W_Sim2, W_Sim.
3.	 FOR  v  ← 0 to WSN DO                          //W_Sim1 
4.	    FOR ALL  u  ∈ WPN PARALLEL DO         
5.	       Sum = 0.0f;
6.	       FOR  k ← SWTSFIndices[v] to  

SWTSFIndices[v + 1] DO
7.	             Sum+ = WT_Sim1[u , k];
8.	       END FOR
9.	       W_Sim1[u, v] = Sum;
10.	    END PARALLEL FOR
11.	END FOR
12.	Barrier synchronization;
13.	FOR  u ← 0 to WPN DO	                           //W_Sim2
14.	   FOR ALL  v  ∈ WSN PARALLEL DO
15.	      Sum = 0.0f;
16.	      FOR  k ←PWTSFIndices[u] to PWTSFIndices 

[u+1] DO
17.	            Sum+ = WT_Sim2[k, v];
18.	       END FOR
19.	      W_Sim2[u, v] = Sum;
20.	    END PARALLEL FOR
21.	END FOR
22.	Barrier synchronization;
23.	FOR  u ← 0 to WPN DO	                            //W_Sim 
24.	   FOR ALL  v ∈ WSN PARALLEL DO
25.	      Calculate sumFinal using equation 7
26.	      W_Sim [u, v] = sumFinal;
27.	   END PARALLEL FOR
28.	END FOR
29.	Barrier synchronization;
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As a supplemental contribution, all independent 
matching tasks can be accumulated and sent to the 
device into two batches, one for the input string 
and another for the target pattern. Then individual 
matching tasks can be isolated and executed in 
parallel, one after the other. It is called the Parallel 
Accumulated Matching strategy for metadata 
models, PAM. PPM and PAM have the same 
implementation except for displacements that 
enable accessibility through clusters and structures 
inside GPU in the PAM alternative.

5. Experimental Evaluation

In this section, PPM matching algorithm is tested 
on various real-world schemas and ontologies, 
in order to determine if the matching efficiency 
could be improved, while preserving quality 
regarding precision, recall, and F-measure. In all 
experiments, PPM has been compared against 
dynamic approximate string matching, ASM, and 
parallel accumulated matching strategy, PAM.  
The experiments have been carried out on Intel 
Core i7-4710HQ, 2.5GHz, and installed memory 
(RAM) of 16 GB. It has dual display adapters, 
Intel(R) HD Graphics 4600, and NVIDIA GeForce 
GTX 860M. The algorithm has been implemented 
using JCuda 10.0.0, CUDA 10.0 on the Java 
environment of jdk-15.0.1, and Apache-NetBeans 
12.0 for Windows 10.

5.1 Schemas Test

Schemas describe the structure and legal building 
blocks of XML documents. In the proposed 
evaluation, a dataset that consists of a number of 
real-world mapping tasks from various domains 
is exploited (Institute for Informatics. Georg-
August-Universität Göttingen, n. d.; UW CSE 
Department Data Set, n. d.), ranging in size from 
small to large.

5.1.1 Efficiency Evaluation

In this track, the performance of the proposed 
parallel matching strategy PPM is compared to 
those of the PAM and ASM strategies. A threshold 
of 0.2 is used to detect the most comparable 
clusters, and a threshold of 0.5 is utilized for 
matching. Each matching task was executed five 
times with identical parameters, and the average 
value for each test was calculated.

According to the number of matching candidates, 
the efficiency results are listed in descending 
order, as shown in Figure 4. 

Figure 4. Efficiency on schemas

The graph shows that execution times increase 
as cluster size increases, but decrease as GPU 
performance improves. The graph shows that 
MONDIAL achieves the best timing performance, 
while FINANCE achieves the worst, across 
all the tested algorithms. For MONDIAL, the 
performance of PAM and PPM on GPU was 
achieved 13.48 and 17.77 times faster than that 
of ASM. For GENEX, PAM and PPM attained 
the performance 26.89 and 30.70 times faster than 
ASM. For WEB, the speedups of PAM and PPM 
achieved 19.97 and 20.25 times faster than those 
of ASM. For TPC_H, PAM and PPM achieved 
speedups 19.6 and 22.47 times faster than 
those of ASM. For SPICY, parallel algorithms 
PAM and PPM are estimated to be 16.03 and 
18.57 times faster than those of ASM. For the 
popular UNIVERSITY schema, PAM and PPM 
outperformed those of ASM by 12.89 and 14.84 
times. Finally, for FINANCE, PAM and PPM 
perform 16.29 and 19.48 times faster than those 
of ASM. In this regard, the PPM parallel matching 
strategy outperforms the PAM parallel matching 
algorithm on GPU and the ASM serial algorithm 
on CPU. 

5.1.2 Effectiveness Evaluation

Through the experiment, the consistency of 
the matching quality was evaluated across 
the compared implementations utilized in the 
efficiency evaluation test, at varying threshold 
numbers (0.1-0.9). It is deduced that all parallel 
matching techniques have maintained the same 



https://www.sic.ici.ro

26 Seham Moawed, Ali Eldosouky, Amany Sarhan, Sally Elghamrawy

matching quality at any selected threshold. As 
it can be seen in Figure 5, the threshold that 
produces the maximum quality of matching was 
selected for each schema.

Figure 5. Matching Quality Comparisons

5.2 Ontology Test

Additional tests were conducted to validate 
the performance of the proposed parallel PPM 
algorithm using real-world ontologies from the 
OAEI dataset (Ontology Alignment Evaluation 
Initiative, n. d.). To determine which matcher is 
superior for accelerating GPU performance, all 
matchers are evaluated using benchmarks and 
anatomy matching tracks. These tracks vary in 
size and cover various facets of the ontology 
matching problem.

5.2.1 Benchmarks Track
The benchmark test set is based on a seed ontol-
ogy and its many variants. Variations are created 
by removing and modifying features from the 
seed ontology. Entity names, comments, special-
ization hierarchy, instances, properties, and class-
es are all considered features.

Table 1. Efficiency Evaluation of Benchmarks at threshold 0.2 for VSM, 0.5 for matching (ms)

Test Prec. Rec. ASM PAM PPM Test Prec. Rec. ASM PAM PPM Test Prec. Rec. ASM PAM PPM

101 0.5 1.0 51.26 7.23 6.12 248-6 0.48 0.22 33.56 4.26 3.55 257-2 0.44 0.76 40.88 3.99 3.16

201 0.41 0.27 37.03 5.02 4.10 248-8 0.48 0.21 42.62 4.72 3.99 257-4 0.48 0.58 31.71 3.56 2.83

201-2 0.48 0.84 50.73 7.36 5.93 249 0.33 0.01 13.53 1.81 1.54 257-6 0.47 0.42 27.00 3.33 2.64

201-4 0.47 0.72 50.93 7.11 5.44 249-2 0.49 0.77 51.73 6.83 5.60 257-8 0.50 0.21 20.00 2.39 1.91

201-6 0.45 0.60 48.09 6.69 5.52 249-4 0.48 0.58 53.91 6.48 5.34 258 0.33 0.01 13.24 1.38 1.17

201-8 0.44 0.43 39.89 6.00 5.01 249-6 0.47 0.40 48.38 6.12 5.04 258-2 0.51 0.77 56.70 6.89 5.60

202 0.33 0.01 13.63 1.84 1.66 249-8 0.48 0.21 35.68 4.51 3.73 258-4 0.51 0.58 50.78 6.52 5.29

202-2 0.49 0.77 45.30 6.73 5.45 250-2 0.44 0.76 36.85 3.82 3.02 258-6 0.51 0.39 45.05 6.09 5.93

202-4 0.49 0.58 56.65 6.53 5.32 250-4 0.46 0.58 34.30 3.70 2.96 258-8 0.49 0.20 36.25 4.94 4.08

202-6 0.46 0.4 50.30 5.99 5.08 250-6 0.45 0.42 23.97 3.22 2.57 259 0.33 0.01 14.60 1.90 1.60

202-8 0.48 0.21 38.91 4.77 3.95 250-8 0.5 0.21 19.34 2.37 1.97 259-2 0.45 0.77 66.49 7.40 5.93

221 0.51 1.0 60.55 8.0 6.40 251 0.33 0.01 12.04 1.79 1.54 259-4 0.44 0.76 59.50 7.06 5.80

222 0.52 1.0 56.21 7.67 6.15 251-2 0.51 0.77 53.74 6.92 5.65 259-6 0.44 0.77 61.76 7.26 5.94

223 0.41 0.99 76.4 8.67 6.90 251-4 0.5 0.58 49.04 6.35 5.13 259-8 0.45 0.77 55.08 6.99 5.76

224 0.5 1.0 51.18 7.64 6.34 251-6 0.51 0.4 41.19 5.97 4.84 260 0.0 0.0 13.08 1.38 1.14

225 0.5 1.0 62.11 8.00 6.59 251-8 0.48 0.22 33.56 4.26 3.55 260-2 0.42 0.76 35.41 3.56 2.84

228 0.41 1.0 41.52 4.37 3.44 252 0.33 0.01 13.65 1.84 1.62 260-4 0.47 0.59 30.46 3.47 2.82

232 0.5 1.0 60.28 7.98 6.45 252-2 0.4 0.77 58.16 7.26 5.84 260-6 0.48 0.41 26.04 3.06 2.40

233 0.44 1.0 37.13 4.71 3.67 252-4 0.4 0.77 62.76 7.19 5.83 260-8 0.41 0.24 19.66 2.38 1.91

236 0.42 1.0 50.43 4.31 3.37 252-6 0.4 0.77 62.07 7.20 5.80 261 0.0 0.0 11.85 1.25 1.03

237 0.52 1.0 59.44 7.64 6.17 252-8 0.4 0.77 59.37 7.33 5.86 261-2 0.33 0.76 44.50 5.42 4.34

238 0.4 0.99 84.70 8.95 7.11 253 0.33 0.01 10.25 1.48 1.22 261-4 0.32 0.73 43.50 5.48 4.38

239 0.4 1.0 47.65 4.21 3.13 253-2 0.47 0.77 61.51 7.30 5.9 261-6 0.31 0.73 47.36 5.55 4.48

240 0.26 0.97 78.31 7.7 6.19 253-4 0.46 0.58 54.14 6.70 5.44 261-8 0.34 0.76 42.81 5.47 4.31

241 0.43 1.0 42.46 4.84 3.71 253-6 0.45 0.40 46.42 6.15 5.08 262-2 0.46 0.76 31.94 4.00 3.05

246 0.4 1.0 45.55 4.26 3.33 253-8 0.47 0.21 38.22 4.94 3.96 262-4 0.49 0.58 28.74 3.57 2.76

247 0.26 0.97 77.52 7.45 7.45 254-2 0.46 0.76 29.88 3.90 3.06 262-6 0.45 0.42 23.16 3.10 2.42

248 0.33 0.01 12.19 1.8 1.62 254-4 0.44 0.58 32.85 3.43 2.68 262-8 0.5 0.21 19.22 2.09 1.73

248-2 0.48 0.78 58.29 6.86 5.69 254-6 0.45 0.42 24.46 3.02 2.43 265 0.0 0.0 14.08 1.44 1.19

248-4 0.47 0.58 51.95 6.47 5.18 254-8 0.5 0.21 17.54 2.15 1.81 266 0.0 0.0 13.32 1.20 0.98
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To perform the test, the bibliographic seed 
ontology is chosen. Since the beginning of OAEI 
campaigns, it has served as the primary reference 
ontology. The data set contains 94 ontology pairs. 
First, the performance of the proposed parallel 
PPM matching strategy is evaluated through 
a series of experiments using ontologies from 
the OAEI benchmarks track. A 0.2 threshold 
determines the most similar clusters, and a 0.5 
threshold is used for matching. Each matching 
task was done with the same settings five times, 
and the average value was calculated for each test. 
Table 1 shows the comparisons of the present tests. 
It conveys the precision, recall, and F-measure 
values for each pair in the benchmarks track. PPM 
and PAM have demonstrated the same matching 
quality as their serial counterpart ASM. Table 1 
also compares the efficiency of PPM and PAM to 
that of ASM.  Compared to ASM, PAM achieves 
speedups ranging from 6.64 to 11.70 times, and 
the performance of PPM was improved, ranging 
from 7.79 to 14.95 times.

5.2.2 Anatomy Track

The primary goal of the anatomy matching track 
is to find an alignment between the Adult Mouse 
Anatomy (2744 concepts) and a part of the NCI 
Thesaurus (3304 concepts) describing human 
anatomy. Due to the limited resources of the GPU, 
it was not feasible to match the anatomy data set 
using PPM and PAM parallel matching strategies. 
Therefore, for the whole anatomy dataset, the 
final similarity structure of the preparation 
module, Rsim is divided into 12 divisions; each is 
treated as a standalone dataset and is emitted to 
GPU individually. 

A 0.6 threshold is used to discover the most 
comparable clusters and a 0.5 threshold is used 
to match them. Each matching task was run five 
times with the same settings, and the average time 
for each test was calculated in milliseconds. The 
quality and efficiency evaluation tests are collected 
in Table 2. For PAM, the achievements in timing 
performance due to divisions attain speedups 
ranging from 4.76 to 7.52 times faster than 
dynamic ASM, while PPM enhances the speed 
from 5.84 to 11.85 times compared to dynamic 
ASM. The achievement in timing performance 
of the whole anatomy track acquires 5.21 times 
more rapidly than dynamic ASM for the proposed 
parallel PPM matching algorithm. Still, for PAM, 
it reaches 4.26 times faster than dynamic ASM.

Table 2. Efficiency Evaluation of Anatomy at 
threshold 0.6 for VSM, 0.5 for matching (ms)

Part. 
No Prec. Rec. ASM PAM PPM

1 0.22 0.02 35.72 6.47 5.23
2 0.15 0.01 30.96 6.24 5.09
3 0.13 0.02 34.20 7.18 5.85
4 0.18 0.04 102.98 13.69 11.63
5 0.15 0.06 250.65 25.53 21.16
6 0.2 0.05 129.07 18.00 14.91
7 0.18 0.03 114.88 14.51 12.10
8 0.24 0.04 93.09 13.48 11.24
9 0.23 0.04 89.03 13.39 10.93
10 0.22 0.04 104.00 14.19 11.89
11 0.16 0.03 123.09 16.21 13.32
12 0.18 0.03 86.75 14.74 12.26

Total 0.18 0.40 699.24 164.00 134.31

6. Conclusion 

Metadata models are becoming increasingly 
popular to share and reuse knowledge. This 
has resulted in the developing of large-scale 
independent metadata models within the same 
or separate domains, with some information 
overlapping. Automatic matching has become 
a mandatory solution. However, the process of 
matching large metadata models is time and space-
consuming. To this end, the work proposed in this 
paper presents PPM (Parallel Pairwise Matching), 
an efficient hardware implementable matching 
algorithm on GPU for large-scale metadata models 
when clustering techniques exist. It is based on 
approximate string-matching using k-difference 
(ASM). It dispatches pairs of the similarity set 
to GPU in a consecutive manner and relies upon 
row flow computing that hinders data dependency 
obstacles. It is proven that PPM is a promising 
approach to accelerate large-scale metadata model 
matching. It overcomes ASM and the parallel 
accumulated matching algorithm, PAM that 
simultaneously migrates all structures and clusters 
to the device. To maintain stability, a method for 
dividing long bulks should be included so that 
entities cannot be intersected. This improves 
matching efficiency while maintaining matching 
quality without requiring it to be promoted to a 
higher resource level.
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