
1. Introduction

As part of an industrial manufacturing system,
installing an assembly line is a costly decision
and requires a considerable time for execution
and therefore it is important to be well designed
and properly balanced to guarantee maximum
efficiency in operation.

An important assembly design problem is the
assembly line balancing (ALB) problem. This
decisional problem is a classic Operations
Research (OR) optimization problem that aims
to determine the allocation of the tasks to an
ordered sequence of workstations such that
every task is assigned at just one station, the
precedence relations are not violated and
certain objectives are fulfilled.

Since the bin-packing problem, which is an
ALB problem without precedence constraints
[5], is NP-hard, even the simple case of the
ALB problem is NP-hard by nature. Indeed, m
tasks and r preference constraints generate
m!/2r feasible solutions of the problem [2], as
there are m!/2r possible task sequences. As one
can observe, the problem size grows very
rapidly with the number of tasks and/or
workstations. Because of the high
computational complexity, conventional
optimization methods do not seem appropriate
for this simple or multi-objective practical
optimization problem.

Due to the complexity of the ALB problem and
its practical importance for industrial
applications, many approaches based on meta-
heuristics such as Tabu Search, Simulated
Annealing, Evolutionary Algorithms, Agent
-based approaches (Ant Colony Optimization
and Particle Swarm Optimization) or hybrid
Artificial Intelligence methods have been
applied recently in attempts to solve this
manufacturing optimization problem. A survey
study of soft computing applications in ALB
problems is presented in [15]. Other
comprehensive reviews of assembly systems
and different balancing problems are presented
in [2].

This study proposes a model and a solution
approach to a multi-objective ALB problem
considering three evaluation criteria. This
multi-objective problem is solved by a discrete
PSO algorithm whose efficiency is enhanced
due to the development of a fuzzy controller for
tuning inertia weight.

2. Assembly Line Balancing (ALB)

Problems: Basic Concepts and

Typologies

Assembly lines are production lines consisting
of several consecutive workstations (i=1,...,m)
located along a conveyor belt that transports the
production units through the line with a
constant transportation speed.

Studies in Informatics and Control, Vol. 24, No. 3, September 2015 http://www.sic.ici.ro 283

Multi-objective Assembly Line Balancing Using

Fuzzy Inertia-adaptive Particle Swarm Algorithm

Simona DINU

Fundamental Sciences and Humanities Department,
Constanta Maritime University,
104, Mircea cel Batran Street, Constanta, code 900663, Romania,
simona.dinu@cmu-edu.eu

Abstract: The Assembly Line Balancing problem is an industrial optimization problem of considerable importance in lean
systems. It has been extensively studied in literature through classical optimization methods. However, conventional
computing paradigms have not proved practical utility for complex problems. Metaheuristic solutions such as “Tabu
Search”, “Simulated Annealing”, “Genetic Algorithms”, “Evolutionary Programming”, "Ant Colony", "Particle Swarm
Optimization" were a preoccupation mainly for the last two decades. This paper presents a model of a multi-objective
Assembly Line Balancing problem and a solution approach based on Particle Swarm Optimization (PSO) with a fuzzy
controller for tuning inertia weight. This prevents the premature convergence and, in addition, the algorithm demonstrates
improved search features. For the considered test instance, the algorithm obtains a better result compared to the results
reported in the literature, regarding the number of stations actually used, the line efficiency, the total unused time, the
variation in charging stations and the uniformity index of the line.

Keywords: Particle Swarm Optimization (PSO), Assembly Line Balancing (ALB) problem, fuzzy controller, multi-
objective optimization.

The total work necessary to achieve the final
commodity is divided into n elementary
operations, called tasks [23]. Each station
executes successively more tasks (j=1,...,n);
each task requires tj units of time for
completion and certain equipment and human
skills. The precedence restrictions between
tasks can be expressed graphically using a
precedence graph that contains a node for each
task (each node has a corresponding weight
representing the task execution time) and arcs
to express precedence relationships: each arc
(u,v) indicates that task v can not be started
before finishing task u. A sample precedence
graph with n=11 tasks is shown in Figura 1.

Figure 1. Example of precedence graph in
modelling an instance of the ALB Problem

In [2] and [18] the following assumptions for
ALB problems are defined:

- all operating parameters of the assembly
line must be known at the time of its
design;

- the assembly line is operated with a cycle
time, i.e. the maximum processing time
available for each work cycle;

- a task cannot be split among two or more
workstations;

- the allocation of tasks to workstations
should respect technological precedence
requirements; though all tasks must be
processed;

- tasks can be assigned to any workstation;
all workstations have technological
capacity to process any task;

- task processing times are independent of
the workstation at which they are
performed and of the preceding or
following tasks;

- each station can process its assigned tasks
within the given cycle time;

- any task can be processed at any
workstation;

- the line is serial and processes an unique
model of a single product.

Considering the characteristics of the line and
according to the optimization objective

considered, two major classes of ALB
Problems can be identified in literature [2, 18]:

1) Simple Assembly Line Balancing Problem
(SALB)

SALBP 1: the objective is to minimize the
number of workstations for:

- A given a cycle time CT or

- A given working rhythm of the line, RT,
where RT=1/CT.

and the dual problem:

SALBP-2: Given the number of workstations
m, minimize the cycle time CT.

2) Generalized Assembly Line Balancing
Problem (GALBP) with different formulations,
which take into account further restrictions and
other attributes of the simple problem.

Studies described in [1], [3] and [6] contain a
comprehensive review of the literature related
to ALB problems and classification schemes
according to specific objectives.

3. Mathematical Formulation for

the Multiple-Objective SALB-1

Problem

In practical applications, there is often a
necessity to optimize a solution over multiple
objectives. One of the advantages of using
novel metaheuristic algorithms for the ALB
problems is the ease of handling different
objective functions. As a result, these
approaches have been further explored by
researchers, mainly to cope with the multiple
objectives for these problems [13].

In this paper, a new method for balancing an
assembly line is proposed: a fuzzy inertia-
adaptive Particle Swarm Algorithm is used as
the optimization tool to solve a multi-objective
SALB-1 Problem. As in [7] and [22], three
objectives are simultaneously considered:

- maximization of the line efficiency;

- minimization of the number of
workstations actually used;

- minimization of the workload variation.

The problem can be described in mathematical
programming as follows [10]:

3.1 Notations used to model the problem:

indices: i for workstations and j for tasks;

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 3, September 2015284

m: number of workstations actually used; i=1,…,m

n: number of tasks; j=1,…,n

M: number of available workstations; M≤n

tj: processing time of task j, i.e. the time
required by task j for completion;

W: total processing time;

CT (cycle time) – time interval between
processing two consecutive production units;

Si : subset of all tasks assigned to workstation i
(workstation load);

t(Si) = workstation time: the sum of the times of
all tasks assigned to workstation i;

t (S i)=∑
j ∈Si

t j ,∀ i (1)

PD(j) : the set of direct predecessors of task j;

SC(j) : the set of direct successors of task j;

Notes:

1. For a given cycle time, CT, a line balance is
feasible only if the station time of neither
station exceeds CT.

2. The maximum execution time of each
station is equal to the production rate R:

R= 1/CT units of product per time unit.

3. If t(Si)< CT, then station i has an idle time
of (CT. - t(Si)) time units in each cycle.

3.2 Decision variables:

xij={1, if task j is assigned to workstation i

0, otherwise

3.3 Objective functions:

max E=
1
m⋅CT

∑
j∈S i

t j⋅x
ij (2)

(maximization of line efficiency)

min m=∑
i=1

M

max
1≤ j≤n

{xij} (3)

(minimization of the number of workstations
actually used)

min V = 1
m
∑
i=1

m

[t (S
i
)−W

m]
2

(4)

(minimization of workload variation)

3.4 Constraints:

∑
i=1

M

xij=1,∀ j (5)

(every task j is assigned to one and only one
workstation)

∑
i=1

M

i⋅xik≤∑
i=1

M

i⋅xij ,∀ j , ∀ k∈PD(j) (6)

(the precedence constraints)

∑
j∈Si

t j=t (Si)=∑
j=1

n

t j⋅xij≤C T ,∀ i (7)

(the sum of the processing times of the tasks
assigned to workstation i does not exceed the
cycle time)

4. Particle Swarm Optimization

Algorithm principle

PSO is a metaheuristic optimization algorithm
that is inspired by a social behaviour: the
cooperative interaction among individuals
within a swarm. Particles represent potential
solutions to the optimization problem. They
follow a global movement in their environment
(the search space) while observing local
movements in their neighbourhood. If the
search space is n-dimensional, the state of the
ith particle of the swarm is characterized by two
n-dimensional vectors: position and velocity
(speed). The quality of a particle’s position is
expressed by the particle’s fitness value. This
value is assessed according to the optimization
function of the problem.

At each iteration of the algorithm, the state of
each particle is updated using two different
extreme values: pbest and gbest. The first best
value, pbest, is the best fitness function value
that was recorded by that particle along its
evolution (its individual experience). The
second one, gbest, is the highest recorded value
of the neighbourhood population (the collective
experience).

In a n-dimensional search space, Sn, at time t,
each particle i has a position xi

t and it moves
with a speed vi

t ∈ Sn, according to its
perception of the environment, based on the
components presented above. At the beginning
of the algorithm, the swarm is distributed
randomly in the search space, each particle
having a random position and speed. After
initialization, the iterative optimization process
is carried out: at iteration t + 1, positions and
velocities of the particles are modified
according to the formulas below [20]:

v ij

t+1=ω⋅v ij

t +c1⋅ϕ1
t⋅(y ij

t −xij

t)+c2⋅ϕ2
t⋅(y ¿ tot j

t −xij

t) (8)

Studies in Informatics and Control, Vol. 24, No. 3, September 2015 http://www.sic.ici.ro 285

xij
t+1= xij

t+ vij
t+1 (9)

where:

j=1,…,n // n = dimension of the decision
variables

i=1,…,PS // PS = population size, i.e. the
swarm dimension

- xij
t is the position (decision variable) for

dimension j of particle i at iteration t;

- vij
t is the velocity for dimension j of particle

i at iteration t;

- yij
t is the personal best position pbest of

dimension j attained by particle i so far (the
position giving the best fitness value);

- y_totj
t is the global best position gbest of

dimension j reached by the particles of the
swarm. This study refers to the global
version of PSO, where the neighbourhood
of a particle consists of all particles of the
swarm.

- parameters φ1
t and φ2

t are random numbers
uniformly distributed in the interval [0,1],
that are generated at every iteration;

- coefficients c1 and c2 are acceleration
constants that contribute to self-learning
(individual experience) and to the global
movement (collective experience).

- parameter ω is the inertia factor; it is a
scaling factor associated with the velocity
in the previous time step. The weight of
this factor defines the exploration-
exploitation compromise: smaller values
determine the decrease of particle velocity
⇒ more exploitation, while higher values
determine the increase of particle velocity
⇒ more exploration.

Each particle’s velocity at dimension j is
bounded by the user defined range [-vmax, vmax].

A pseudocode version of the standard PSO
algorithm is shown below [20].

During the initialization process, the following
parameters are set by user:

1. The max iteration counter: gmax (if this is
the convergence criterion);

2. The total number of particles in the swarm: PS;

3. The values of the coefficients c1, c2 and ω;

4. The maximum speed;

for i=1,PS

 initialize xi randomly; /* randomly generate the
particle dimension between a minimum and a
maximum value */

 initialize vi=0; /*the initial velocity vector is zero
for all particles*/

while (convergence criterion has not been met)

 for i=1,PS

 evaluate f(xi);//fitness value of a particle

 //update personal best:

 if f(xi
t+1)≥f(yi

t) then yi
t+1⟵ yi

t

 else yi
t+1⟵xi

t+1;

 endif

 //update social optimum:

 y_tott←minrecorded in N(i){f(yi
t)};

 update the velocity and position for each

 dimension j of particle i based on the

 updated values calculated from (8) and (9)

 repeat

repeat

5. Proposed Algorithm with Fuzzy

Inertia Weight Controller

One disadvantage of the standard PSO algorithm
is the lack of diversity and the probability of
being trapped in local optima. In addition, the
use of parameters with fixed values contradicts
the collaborative search paradigm. This is an
adaptive process so that different parameter
values can be optimal only at certain stages of
the search process. This means that the use of
static parameters may lead to lower performance
of the algorithm. One way of improving the
algorithm was the concept of inertia. This
concept was not included in the original
formulation of the PSO algorithm [12]. The
concept was developed in [20] and [21] to better
control exploration and exploitation.

Because it affects the exploration-exploitation
equilibrium, the inertia weight has attracted
interest of researchers. Over time, different
inertia weight strategies for particle swarm
optimization have been developed to facilitate
both global exploration and local exploitation
during the optimization process.

The use of fuzzy controllers for tuning inertia
weight was motivated by the necessity of
solving two important issues that may
experience a PSO algorithm: very small speed
and premature convergence.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 3, September 2015286

The proposed fuzzy controller for adaptive
configuration of inertia weight is based on
research results in literature, which showed that
inertia weight adjustment in accordance with
the current state of the optimization process can
significantly improve the solution obtained and
the convergence of the algorithm.

According to the main components of a fuzzy
logic controller: 1.Fuzzification block,
2.Knowledge base, 3.Decision making block,
4.Defuzzification block, the proposed fuzzy
controller is characterized as follows:

- Fuzzy sets defined with the triangular
membership functions for each input and
output variables;

- Fuzzification using continuous universe of
discourse;

- Mamdani's „min implication;‟

- De-fuzzification using the „centroid of
area technique.‟

Two input variables were selected as input to
the fuzzy controller:

- current inertia weight ωt;

- a statistic expressing the current state of search:
the coefficient of variance (normalized
deviation of particles’ fitness values):

DEV
norm

t = √ 1
PS

∑
i=1

PS

(p [i]. val
f

t −val
f

t)2

val
f

t

(10)

where:

val f

t =
∑
i=1

PS

p [i]. val f

t

PS

(11)

is the average of fitness values recorded in the
current swarm.

The range of values for the coefficient is [0,1].

According to the study presented in [8] these
input variables have five fuzzy linguistic
degrees (VL – very low, L – low, M - medium,
H – high, VH – very high) with associated
membership functions of type left triangle,
triangle and right triangle.

The membership functions for the inputs are
described in Figure 2.

Table 1 presents the critical parameters x1 and
x2 for the membership functions of the inputs.

Figure 2. The membership functions for the inputs

Table 1. Values of the critical parameters for the
inputs’ membership functions

ωt

DEVt
norm

x1 and x2

Left Triangle 0 0.3
Triangle 0.1 0.5
Triangle 0.3 0.7
Triangle 0.5 0.9
Right Triangle 0.7 1

The output variable is the correction of the
inertia weight, Δω.

The universe of discourse of the output variable
is divided into three linguistic values (D –
decrease, UM – unmodified, I - increase). Both
positive and negative corrections are allowed
for the inertia weight in the range of [-0.1, 0.1].

The associated membership functions of the
output are described in Figure 3 and Table 2
present the critical parameters x1 and x2 for the
membership functions of the output.

Figure 3. The membership functions for the output

Table 2. Values of the critical parameters for the
output’ membership functions

Δω

 x1 and x2

Left Triangle -0.1 0
Triangle -0.05 0.05
Right Triangle 0 0.1

Considering that in this problem the positions
of the particles are directly related to their
fitness values, the coefficient DEVt

norm

expresses the distribution of particles within the
swarm. A large value of this coefficient implies
that the particles’ locations are widely spread
⟹ a divergent swarm, whereas a small value
of this coefficient implies that the particles’
locations are close⟹ a convergent swarm.

Studies in Informatics and Control, Vol. 24, No. 3, September 2015 http://www.sic.ici.ro

10.90.70.50.30.10

1
VL L M

L
H V

H

0.10.05

1

-0.1 -0.05 0

D UM I

287

Once the correction of the inertia weight is
calculated based on the fuzzy system, the
inertia weight of the next iteration is adjusted
as follows:

ωt = ωt-1+Δω (15)

From the use of these statistics in the literature,
the following conclusions can be drawn: when
the coefficient of variance is high or very high,
the individual particles are far away from each
other. Then, if the current inertia weight is low
or very low, its value should increase to achieve
a global exploration.

If the current inertia weight has a medium
value, its value should remain the same,
whereas if the current inertia weight is high or
very high, its value should decrease in order to
balance the ability of particles to exploit and
explore the search area.

Conclusions corresponding to the other
situations are expressed in the corresponding
fuzzy rules.

The inference table is presented below:

Table 3. The inference table

 ω

DEVt
norm

VL L M H VH

VL UM UM UM D D
L UM UM D D D
M I UM UM UM D

H I I UM UM D
VH I I UM D D

6. Proposed PSO Algorithm for the

Multiple-Objective SALB-1

Problem

The algorithm used in this paper for handling
multiple objectives in the ALB problem is
based on a multi-swarm approach of the PSO
algorithm, namely Vector Evaluated Particle
Swarm Optimization–VEPSO [16] when each
objective function is optimized by a
corresponding swarm; this swarm performs a
PSO independently for its associated objective
function using y_tott from another swarm. More
precisely, the velocity update of the mth swarm
(corresponding to the mth objective function)
uses y_tott(k) from swarm k as follows [14]:

v
ij

t +1(m)=ω⋅v
ij

t(m)+c1⋅ϕ1
t⋅(y

ij

t (m)−x
ij

t(m))+
+c2⋅ϕ2

t⋅(y _ tot j

t (k)−x ij

t(m))
(16)

M = number of objective functions in the problem

k ={M , if m =1
m- 1, otherwise

The initial population of particles (the initial
swarm) is divided into three sub-populations of
equal size (3 = no. of objectives) according to a
proportionate selection, that performs
consecutively for each objective:

p[i] . probability=
f max−p [i]. val_ f

∑
r =1+(k−1)⋅q

k⋅q

(f max− p [r].val_ f)
(17)

let q=PS/3;

for k=1,..,3 //for every objective function

 for i=1+(k-1)⋅q,...,k⋅q

 p[i].val_f=objective_functionk ;

 Calculate f max= max
i=1+(k−1)⋅q

k⋅q

{ p [i].val_f }

 Calculate p[i]. probability;

 repeat

based on these probabilities, q solutions are
selected by competitional selection; these solutions
will form the kth sub-population;

repeat

To eliminate the disadvantage related to the fact
that a non-dominated individual within a
generation may become dominated in a later
generation, the algorithm handles two archives:

- an archive in which the current generation
non-dominant individuals are saved;

- an archive in which non-dominated
individuals identified until the current time
search are saved;

In the new generation, at iteration (t+1), a
percentage of the population will be replaced
randomly with solutions from this external
archive.

6.1 Solution representation

One of the most important issues in solving an
ALB problem is to develop a good encoding
scheme in order to obtain feasible balancing
solutions, i.e. assignments of tasks to
workstations so that the precedence constraints
(the precedence relations specified in the
corresponding precedence graph) are verified.

Since ALB problem is a discrete optimization
problem, a discrete PSO algorithm must be
used in order to deal with discrete variables.
Different studies in literature implemented

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 3, September 2015288

discrete PSO algorithms for other production
control optimization problems: [4], [9], [11]. A
comprehensive survey on PSO algorithm and
its applications is presented in [24].

A particle p[i], i = 1, .., PS defines a feasible
sequence of tasks, being implemented as a
structure comprising:

- val_f, the corresponding value of the
objective function, obtained after the
assignment of tasks to workstations;

- for every task j∊{1,…,n} of the sequence:

- the task velocity: v[j] and its
personal best position: y[j]

- the task priority; initially
priorities are generated as
random integers from [1,n];

- the task number, the task
corresponding execution time,
and the workstation to which
is assigned.

Each component v[j] of the velocity vector will
be initialized to 0, then ranging between
[-vmax,vmax], with vmax=n-1.

6.2 Choice of PSO parameters

Swarm size PS: a common choice
recommended in literature for small to medium
size optimization problem is PS = 20 to 60.
Accordingly, this study implements a swarm
size PS=60.

Acceleration constants c1 and c2: this study
follows a parameter automation strategy: time
varying accelerator coefficients–TVAC
(described in [17]) in order to enhance the
global search at the beginning of the
optimization process and to encourage the
particles to converge quickly to the global
optima in later stages:

c1=(0.5−2.5)
gen

genmax

+2.5

c2=(2.5−0.5)
gen

genmax

+0.5
(18)

The convergence criterion: a given number of
iterations; the maximum number of iterations,
genmax, was set to genmax = 50, since higher
values did not lead to an increase in
algorithm performance.

7. Description of Test Problem and

Computational Results

The typical PSO algorithm, the COMSOAL
algorithm and the proposed algorithm were
tested and compared in a computational study
involving 10 problem instances of the standard
ALB data sets from Scholl [19]: medium and
large-scale benchmark problems with 11, 21,
29, 35 and 45 tasks, respectively and two
different cycle time values. The results of the
experiments showed better performance of the
proposed algorithm in all cases.

Figure 4 presents the precedence graph of the
largest multi-objective SALBP1 problem tested

Studies in Informatics and Control, Vol. 24, No. 3, September 2015 http://www.sic.ici.ro 289

Figure 4. Precedence graph of the considered numerical example: „Kilbridge” problem with 45 tasks

 Reprinted from International Journal of Management Science and Engineering Management: Suwannarongsri, S. and Puangdownreong,
D., “Optimal Assembly Line Balancing Using Tabu Search with Partial Random Permutation Technique”, copyright © International
Society of Management Science and Engineering Management , reprinted by permission of Taylor & Francis Ltd.

(with 45 tasks) and Figure 5 describes the
solution obtained for this problem considering
a cycle time CT = 80 minutes.

An additional criterion for assessing the results
achieved by the proposed algorithm is the
uniformity index. The uniformity index, SI,
expresses the uniformity of balancing and is
calculated as [10]:

SI =√∑i=1

m

[t (S)max−(t (S i)]
2

m

, (20)

where

t (S)max=max
1≤i≤m

{t (S
i
)} (21)

Table 4 presents the results obtained by this method,
compared to [22] and COMSOAL method
(Computer Method of Sequencing Operations for
Assembly Lines) of WinQSB software.

Notice: The algorithm generates another 3
different solutions with the same optimal
values of objective functions, i.e.: No. of
workstations actually used=7; Line efficiency =
98.5714%; Workload variation=0.693878 and
the additional criteria: Total idle time=8;
Uniformity index=1.41421.

C++ is used to realize the PSO algorithm. The
interface is written in C# using Microsoft
Visual Studio 2010. The average computation
time of the algorithm is 15 seconds.

The configuration of computer is CPU Intel(R)
Core(TM)2 Duo, CPU Clock Speed 2.20GHz,
4.00 GB RAM, and Windows 7 operating system.

As it can be observed in Table 4, the proposed
algorithm is able to provide efficient solutions
within reasonable computational time.

8. Conclusions

A multi-objective PSO approach combined
with a fuzzy controller has been proposed to
achieve optimal solutions for a multi-objective
SALB-1 problem. The fuzzy module is applied
to fine-tune dynamically the inertia weight in
order to improve the performance of the PSO
algorithm. The proposed algorithm minimizes
the number of workstations for a given cycle
time, minimizes the workload variation and
furthermore maximizes the line efficiency.

The algorithm is easy to implement and is able
to solve large test instances without additional
computational complexity. It generates a set of
optimal solutions and allows a decision to be
made by the decision maker. The computational
results and comparisons confirmed that the
proposed algorithm is effective and efficient.

The hybridization of fuzzy and swarm
intelligence technique supports a wide range of
applications in industrial engineering and
provides solutions to current Assembly Line
problems. The extension of the proposed multi-
objective SALB 1 model through the inclusion
of other features which are typical for real-

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 3, September 2015290

Figure 5. Solution obtained by the proposed approach for the Kilbridge problem

Table 4. Results obtained by the proposed algorithm

No. of workstations
actually used

Line
efficiency

Total idle
time

Workload
variation

Uniformity
index

Proposed method 7 98.57% 8 min 0.69 1.41

[22] 8 89.61% 88 min 84.25 N.A.

COMSOAL 8 89.61% 88 min 113 N.A.

world industrial applications (stochastic task
times, workstation length restrictions, multiple
equipments, etc.) necessitates further research.

Additions to the algorithm should include
integration of other assembly process engineering
issues, from the design phase of a product to the
complex assembly building process.

REFERENCES

1. AMEN, M., Heuristic Methods for Cost–

oriented Assembly Line Balancing: A

Comparison on Solution Quality and

Computing Time, Int. J. of Production
Economics, Vol. 69, 2001, pp. 255-264.

2. BAYBARS, I., A survey of exact

algorithms for SALBP, Management
Science, Vol. 32, 1986, pp. 11-17.

3. BETANCOURT, L. C., ASALBP: the

Alternative Subgraphs ALBP,

Formalization and Resolution

Procedures, Doctoral thesis, Technical
University of Catalonia, 2007.

4. BOUKEF, H., BENREJEB, M., BORNE,
P.: Flexible Jobshop Scheduling

Problems Resolution Inspired From

PSO, Studies In Informatics And Control,
Vol. 17(3), 2008, pp.241-252.

5. BOUTEVIN, C., GOURGAND, M. and
NORRE, S., Bin Packing Extensions for

Solving an Industrial Line Balancing

Problem, Proceedings of the 5th IEEE
International Symposium on Assembly and
Task Planning, France, 10-11, 2003.

6. DELICE, Y., AYDOGAN, E.K., ÖZCAN,
U., ILKAY, M.S., A modified PSO

algorithm to mixed-model two sided

assembly line balancing, Journal of
Intelligent Manufacturing, 2014, pp. 1-22.

7. DELORME, X., BATTAÏA, O., DOLGUI,
A., Multi-objective Approaches for

Design of Assembly Lines, Multi-criteria
and Game Theory Applications in
Manufacturing and Logistics, Springer,
2014, pp. 31-56.

8. DINU, S. and POMAZAN, C.C., A New

Hybrid Fuzzy G.A. Optimization

Method For Dynamic Economic

Dispatch With Valve-Point Loading

Effects, MEQAPS '13, 2013, pp. 217-222.

9. DURAN, O. and PEREZ, L., Solution of

the spare parts joint replenishment

problem with quantity discounts using a

discrete particle swarm optimization

technique, Studies in Informatics and
Control, Vol. 22(4), 2013, pp. 319–328.

10. GEN, M., CHENG, R. and LIN, L.:
Network Models and Optimization:

Multiobjective Genetic Algorithm

Approach, Springer, Heidelberg, 2008.

11. GUILLERMO CABRERA, G., SILVANA
RONCAGLIOLO, D., RIQUELME, J.P.,
CUBILLOS, C. and SOTO, R., A hybrid

PSO simulated annealing algorithm for

the probabilistic travelling salesman

problem, Studies in Informatics and
Control, vol. 21(1), 2012, pp. 49–58.

12. KENNEDY, J. and EBERHART, R.C.,
Particle Swarm Optimization, Proc. of
the IEEE International Conference on
Neural Networks, 1995, pp. 1942-1948.

13. LEVITIN, G., RUBINOVITZ, J. and
SHNITS, B., A genetic algorithm for

robotic assembly line balancing,
European Journal of Operational Research,
Vol. 168(3), 2006, pp. 811–825.

14. LIM, K.S., BUYAMIN, S., AHMAD, A.,
NAWAWI, S.W., IBRAHIM, Z., NAIM, F.,
GHAZALI, K.H. and MOKHTAR, N., An

improved VEPSO algorithm for multi-

objective optimization problems,
Malaysia Japan Academic Scholar
Conference (MJASC201), Springer, 2013.

15. MATONDANG, M. and JAMBAK, M.I.,
Soft computing in optimizing assembly

lines balancing, Journal of Computer
Science, Vol. 6, 2010, pp.141-162.

16. PARSOPOULOS, K.E. and VRAHATIS,
M.N., Particle swarm optimization

method in multi-objective problems,
Proceedings of the 2002 ACM symposium
on applied computing, 2002, pp.603–607.

17. RATNAWEERA, A., HALGAMUGE, S.K.
and WATSON, H.C., Self-organizing

hierarchical particle swarm optimizer

with time-varying acceleration

coefficients, IEEE Transactions on
Evolutionary Computation, Vol. 8(3), 2004,
pp. 240-255.

18. SCHOLL, A., Balancing and

Sequencing of Assembly Lines, Physica,
Heidelberg, 1999.

Studies in Informatics and Control, Vol. 24, No. 3, September 2015 http://www.sic.ici.ro 291

19. SCHOLL, A., Data of assembly line

balancing problems, http://alb.mansci.de,
Accessed: March 2015.

20. SHI, Y.H. and EBERHART, R.C.,
Empirical study of particle swarm

optimization, Proceedings of the IEEE
International Conference on Evolutionary
Computation, Washington, DC, USA,
1999, pp. 1945–1950.

21. SHI, Y. H. and EBERHART, R.C., A
modified particle swarm optimizer,
Proceedings of the IEEE International
Conferences on Evolutionary Computation,
Anchorage, Alaska, USA, 1998, pp. 69–73.

22. SUWANNARONGSRI, S. and
PUANGDOWNREONG, D., Optimal

Assembly Line Balancing Using Tabu

Search with Partial Random

Permutation Technique, Int. Journal of
Management Science and Engineering
Management, Vol. 3(1), 2008, pp. 3-18.

23. YAZDANPARAST, V. and
HAJIHOSSEINI, H., Multi-manned

production Lines with labour

Concentration, Australian Journal of
Basic and Applied Sciences, Vol. 5(6),
2011, pp. 839-846.

24. ZHANG, Y., WANG, S., and JI, G., A
Comprehensive Survey on PSO

Algorithm and Its Applications,
Mathematical Problems in Eng., Article ID
931256, in press, 2015.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 3, September 2015292

http://alb.mansci.de/

