
1. Introduction

As part of an industrial manufacturing system,
installing an assembly line is a costly decision
and requires a considerable time for execution
and therefore it is important to be well designed
and properly balanced to guarantee maximum
efficiency in operation. 

An important  assembly design problem is the
assembly line balancing (ALB) problem. This
decisional  problem  is  a  classic  Operations
Research (OR) optimization problem that aims
to determine the allocation of the tasks to an
ordered  sequence  of  workstations  such  that
every task is  assigned at  just  one station,  the
precedence  relations  are  not  violated  and
certain objectives are fulfilled.

Since  the  bin-packing  problem,  which  is  an
ALB problem without  precedence  constraints
[5],  is  NP-hard,  even  the  simple  case  of  the
ALB problem is NP-hard by nature. Indeed, m
tasks  and  r  preference  constraints  generate
m!/2r feasible solutions of the problem [2], as
there are m!/2r possible task sequences. As one
can  observe,  the  problem  size  grows  very
rapidly  with  the  number  of  tasks  and/or
workstations.  Because  of  the  high
computational  complexity,  conventional
optimization methods do not seem appropriate
for  this  simple  or  multi-objective  practical
optimization problem.

Due to the complexity of the ALB problem and
its  practical  importance  for  industrial
applications, many approaches based on meta-
heuristics  such  as  Tabu  Search,  Simulated
Annealing,  Evolutionary  Algorithms,  Agent
-based  approaches  (Ant  Colony  Optimization
and  Particle  Swarm  Optimization)  or  hybrid
Artificial  Intelligence  methods  have  been
applied  recently  in  attempts  to  solve  this
manufacturing optimization problem. A survey
study of  soft  computing  applications  in  ALB
problems  is  presented  in  [15].  Other
comprehensive  reviews  of  assembly  systems
and different balancing problems are presented
in [2].

This  study proposes  a  model  and  a  solution
approach  to  a  multi-objective  ALB  problem
considering  three  evaluation  criteria.  This
multi-objective problem is solved by a discrete
PSO algorithm whose  efficiency is  enhanced
due to the development of a fuzzy controller for
tuning inertia weight.

2. Assembly Line Balancing (ALB)

Problems:  Basic  Concepts  and

Typologies

Assembly lines are production lines consisting
of several consecutive workstations (i=1,...,m)
located along a conveyor belt that transports the
production  units  through  the  line  with  a
constant transportation speed. 
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The total  work necessary to achieve the final
commodity  is  divided  into  n  elementary
operations,  called  tasks  [23].  Each  station
executes  successively  more  tasks  (j=1,...,n);
each  task  requires   tj units  of  time  for
completion and certain equipment and human
skills.  The  precedence  restrictions  between
tasks  can  be  expressed  graphically  using  a
precedence graph that contains a node for each
task  (each  node  has  a  corresponding  weight
representing the task execution time) and arcs
to  express  precedence  relationships:  each  arc
(u,v) indicates  that  task  v can  not  be  started
before finishing  task  u.  A sample  precedence
graph with n=11 tasks is shown in Figura 1.

Figure 1. Example of precedence graph in
modelling an instance of the ALB Problem

In [2] and [18] the following assumptions for
ALB problems are defined:

- all  operating  parameters  of  the  assembly
line  must  be  known  at  the  time  of  its
design;

- the assembly line is operated with a cycle
time,  i.e.  the  maximum  processing  time
available for each work cycle; 

- a task cannot be split among two or more
workstations;

- the  allocation  of  tasks  to  workstations
should  respect  technological  precedence
requirements;  though  all  tasks  must  be
processed;

- tasks can be assigned to any workstation;
all  workstations  have  technological
capacity to process any task;

- task  processing  times  are  independent  of
the  workstation  at  which  they  are
performed  and  of  the  preceding  or
following tasks;

- each station can process its assigned tasks
within the given cycle time;

- any  task  can  be  processed  at  any
workstation;

- the line is  serial  and processes an unique
model of a single product. 

Considering the characteristics of the line and
according  to  the  optimization  objective

considered,  two  major  classes  of  ALB
Problems can be identified in literature [2, 18]:

1)  Simple  Assembly Line Balancing Problem
(SALB)

SALBP  1:  the  objective  is  to  minimize  the
number of workstations for:

- A given a cycle time CT or

- A given  working  rhythm of  the  line,  RT,
where RT=1/CT.

and the dual problem:

SALBP-2:  Given the number  of  workstations
m, minimize the cycle time CT. 

2)  Generalized  Assembly  Line  Balancing
Problem (GALBP) with different formulations,
which take into account further restrictions and
other attributes of the simple problem.

Studies described in [1], [3] and [6] contain a
comprehensive review of the literature related
to  ALB  problems  and  classification  schemes
according to specific objectives.

3.  Mathematical  Formulation  for

the Multiple-Objective  SALB-1

Problem

In  practical  applications,  there  is  often  a
necessity to optimize a solution over multiple
objectives.  One  of  the  advantages  of  using
novel  metaheuristic  algorithms  for  the  ALB
problems  is  the  ease  of  handling  different
objective  functions.  As  a  result,  these
approaches  have  been  further  explored  by
researchers,  mainly to  cope with the multiple
objectives for these problems [13].

In this paper, a new method for balancing an
assembly  line  is  proposed:  a  fuzzy  inertia-
adaptive Particle Swarm Algorithm is used as
the optimization tool to solve a multi-objective
SALB-1  Problem.  As  in  [7]  and  [22],  three
objectives are simultaneously considered:

- maximization of the line efficiency;

- minimization  of  the  number  of
workstations actually used;

- minimization of the workload variation. 

The problem can be described in mathematical
programming as follows [10]:

3.1 Notations used to model the problem:

indices: i for workstations and j for tasks;
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m: number of workstations actually used; i=1,…,m

n: number of tasks; j=1,…,n

M: number of available workstations;          M≤n

tj:  processing  time  of  task  j,  i.e.  the  time
required by task j for completion;

W: total processing time;

CT (cycle  time)  –  time  interval  between
processing two consecutive production units;

Si : subset of all tasks assigned to workstation i
(workstation load);

t(Si) = workstation time: the sum of the times of
all tasks assigned to workstation i; 

t (S i )=∑
j ∈Si

t j ,∀ i (1)

PD(j) : the set of direct predecessors of task j; 

SC(j) : the set of direct successors of task j;

Notes: 

1. For a given cycle time, CT, a line balance is
feasible only if the station time of neither
station exceeds CT.

2. The  maximum  execution  time  of  each
station is  equal  to  the production rate  R:

R= 1/CT units of product per time unit.

3. If  t(Si)< CT, then station i has an idle time
of (CT. - t(Si)) time units in each cycle. 

3.2 Decision variables:

xij={1, if task  j  is assigned to workstation   i

0, otherwise

3.3 Objective functions:

max E=
1
m⋅CT

∑
j∈S i

t j⋅x
ij (2)

(maximization of line efficiency)

min m=∑
i=1

M

max
1≤ j≤n

{xij} (3)

(minimization  of  the  number  of  workstations
actually used)          

min V = 1
m
∑
i=1

m

[ t (S
i
)−W

m ]
2

(4)

(minimization of workload variation)

3.4 Constraints:

∑
i=1

M

xij=1,∀ j (5)

(every task  j is assigned to one and only one
workstation)

∑
i=1

M

i⋅xik≤∑
i=1

M

i⋅xij ,∀ j , ∀ k∈PD( j ) (6)

(the precedence constraints)

∑
j∈Si

t j=t (Si )=∑
j=1

n

t j⋅xij≤C T ,∀ i (7) 

(the sum of the processing times of the tasks
assigned to workstation  i does not exceed the
cycle time)

4.  Particle  Swarm  Optimization

Algorithm principle

PSO is a metaheuristic optimization algorithm
that  is  inspired  by  a  social  behaviour:  the
cooperative  interaction  among  individuals
within  a  swarm.  Particles  represent  potential
solutions  to  the  optimization  problem.  They
follow a global movement in their environment
(the  search  space)  while  observing  local
movements  in  their  neighbourhood.  If  the
search space is  n-dimensional, the state of the
ith particle of the swarm is characterized by two
n-dimensional  vectors:  position  and  velocity
(speed). The quality of a particle’s position is
expressed by the particle’s fitness value. This
value is assessed according to the optimization
function of the problem.

At each iteration of the algorithm, the state of
each  particle  is  updated  using  two  different
extreme  values:  pbest and  gbest. The  first  best
value,  pbest, is  the  best  fitness  function  value
that  was  recorded  by  that  particle  along  its
evolution  (its  individual  experience).  The
second one,  gbest,  is the highest recorded value
of the neighbourhood population (the collective
experience).

In a  n-dimensional search space,  Sn, at time  t,
each particle  i has a position  xi

t and it  moves
with  a  speed  vi

t ∈ Sn,  according  to  its
perception  of  the  environment,  based  on  the
components presented above. At the beginning
of  the  algorithm,  the  swarm  is  distributed
randomly  in  the  search  space,  each  particle
having  a  random  position  and  speed.  After
initialization, the iterative optimization process
is carried out: at iteration  t + 1, positions and
velocities  of  the  particles  are  modified
according to the formulas below [20]:

v ij

t+1=ω⋅v ij

t +c1⋅ϕ1
t⋅(y ij

t −xij

t )+c2⋅ϕ2
t⋅( y ¿ tot j

t −xij

t ) (8)
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xij
t+1= xij

t+ vij
t+1 (9)

where:

j=1,…,n //  n =  dimension  of  the  decision
variables

i=1,…,PS  //  PS  =  population  size,  i.e.  the
swarm dimension

- xij
t is  the  position  (decision  variable)  for

dimension j of particle i at iteration t; 

- vij
t is the velocity for dimension j of particle

i at iteration t;

- yij
t is  the  personal  best  position  pbest of

dimension j attained by particle i so far (the
position giving the best fitness value);

- y_totj
t is  the  global  best  position  gbest of

dimension j reached by the particles of the
swarm.  This  study  refers  to  the  global
version of  PSO, where the neighbourhood
of a particle consists of all particles of the
swarm.

- parameters φ1
t and φ2

t are random numbers
uniformly distributed in the interval  [0,1],
that are generated at every iteration;

- coefficients  c1 and  c2 are  acceleration
constants  that  contribute  to  self-learning
(individual  experience)  and  to  the  global
movement (collective experience).

- parameter  ω is  the  inertia  factor;  it  is  a
scaling factor associated with the velocity
in  the  previous  time  step.  The  weight  of
this  factor  defines  the  exploration-
exploitation  compromise:  smaller  values
determine the decrease of particle velocity
⇒ more  exploitation,  while  higher  values
determine the increase of particle velocity
⇒ more exploration.

Each  particle’s  velocity  at  dimension  j is
bounded by the user defined range [-vmax, vmax]. 

A  pseudocode  version  of  the  standard  PSO
algorithm is shown below [20].

During the initialization process, the following
parameters are set by user:

1. The max iteration counter:  gmax (if  this  is
the convergence criterion);

2. The total number of particles in the swarm: PS;

3. The values of the coefficients c1, c2 and ω;

4. The maximum speed;

for i=1,PS  

   initialize  xi randomly; /* randomly generate the
particle  dimension   between  a  minimum  and  a
maximum value */

   initialize vi=0; /*the initial velocity vector is zero
for all particles*/

while (convergence criterion has not been met)

    for i=1,PS

        evaluate f(xi);//fitness value of a particle

        //update personal best:

        if f(xi
t+1)≥f(yi

t) then  yi
t+1⟵ yi

t   

                                 else   yi
t+1⟵xi

t+1;   

        endif

        //update social optimum:

        y_tott←minrecorded in N(i){f(yi
t)}; 

        update the velocity and position for each

        dimension j of particle i based on the

        updated values calculated from (8) and (9)

     repeat

repeat

5. Proposed Algorithm with Fuzzy

Inertia Weight Controller

One disadvantage of the standard PSO algorithm
is  the  lack of  diversity and the  probability of
being trapped in local optima.  In addition, the
use of parameters with fixed values contradicts
the  collaborative  search  paradigm.  This  is  an
adaptive  process  so  that  different  parameter
values can be optimal only at certain stages of
the search process. This means that the use of
static parameters may lead to lower performance
of  the  algorithm.  One  way  of  improving  the
algorithm  was  the  concept  of  inertia.  This
concept  was  not  included  in  the original
formulation  of  the  PSO algorithm  [12].  The
concept was developed in [20] and [21] to better
control exploration and exploitation. 

Because it  affects the exploration-exploitation
equilibrium,  the  inertia  weight  has  attracted
interest  of  researchers.  Over  time,  different
inertia  weight  strategies  for  particle  swarm
optimization have been developed to facilitate
both global  exploration and local  exploitation
during the optimization process. 

The use of fuzzy controllers for tuning inertia
weight  was  motivated  by  the  necessity  of
solving  two  important  issues  that  may
experience a PSO algorithm: very small speed
and premature convergence. 
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The  proposed  fuzzy  controller  for  adaptive
configuration  of  inertia  weight  is  based  on
research results in literature, which showed that
inertia  weight  adjustment  in  accordance  with
the current state of the optimization process can
significantly improve the solution obtained and
the convergence of the algorithm.

According to the main components of a fuzzy
logic  controller:  1.Fuzzification  block,
2.Knowledge  base,  3.Decision  making  block,
4.Defuzzification  block,  the  proposed  fuzzy
controller is characterized as follows:

- Fuzzy  sets  defined  with  the  triangular
membership  functions  for  each  input  and
output variables;

- Fuzzification using continuous universe of
discourse;

- Mamdani's „min  implication;‟

- De-fuzzification  using  the  „centroid  of
area  technique.‟

Two input variables were selected as input to
the fuzzy controller: 

- current inertia weight ωt;

- a statistic expressing the current state of search:
the  coefficient  of  variance  (normalized
deviation of particles’ fitness values):

DEV
norm

t = √ 1
PS

∑
i=1

PS

( p [i ]. val
f

t −val
f

t )2

val
f

t

(10)

where:

val f

t =
∑
i=1

PS

p [ i ]. val f

t

PS

(11)

is the average of fitness values recorded in the
current swarm.

The range of values for the coefficient is [0,1]. 

According to the study presented in [8] these
input  variables  have  five  fuzzy  linguistic
degrees (VL – very low, L – low, M - medium,
H –  high,  VH –  very  high)  with  associated
membership  functions  of  type  left  triangle,
triangle and right triangle.

The  membership  functions  for  the  inputs  are
described in Figure 2.

Table 1 presents the critical parameters  x1 and
x2 for the membership functions of the inputs.

Figure 2. The membership functions for the inputs

Table 1. Values of the critical parameters for the
inputs’ membership functions

ωt

DEVt
norm

x1 and x2

Left Triangle   0            0.3
Triangle 0.1           0.5
Triangle 0.3            0.7
Triangle 0.5            0.9
Right Triangle 0.7            1

The  output  variable  is  the  correction  of  the
inertia weight, Δω.

The universe of discourse of the output variable
is  divided  into  three  linguistic  values  (D –
decrease, UM – unmodified, I - increase). Both
positive  and negative  corrections  are  allowed
for the inertia weight in the range of [-0.1, 0.1].

The  associated  membership  functions  of  the
output are  described in  Figure 3 and Table  2
present the critical parameters x1 and x2 for the
membership functions of the output.

Figure 3. The membership functions for the output

Table 2. Values of the critical parameters for the
output’ membership functions

Δω

     x1 and x2

Left Triangle -0.1            0
Triangle -0.05          0.05
Right Triangle  0               0.1

Considering that in this problem the positions
of  the  particles  are  directly  related  to  their
fitness  values,  the  coefficient  DEVt

norm

expresses the distribution of particles within the
swarm. A large value of this coefficient implies
that  the particles’ locations  are  widely spread
⟹ a divergent swarm, whereas a small value
of  this  coefficient  implies  that  the  particles’
locations are close⟹ a convergent swarm.
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Once  the  correction  of  the  inertia  weight  is
calculated  based  on  the  fuzzy  system,  the
inertia weight of the next iteration is adjusted
as follows:

ωt = ωt-1+Δω  (15)   

From the use of these statistics in the literature,
the following conclusions can be drawn: when
the coefficient of variance is high or very high,
the individual particles are far away from each
other. Then, if the current inertia weight is low
or very low, its value should increase to achieve
a global exploration. 

If  the  current  inertia  weight  has  a  medium
value,  its  value  should  remain  the  same,
whereas if the current inertia weight is high or
very high, its value should decrease in order to
balance the ability of  particles  to  exploit  and
explore the search area. 

Conclusions  corresponding  to  the  other
situations  are  expressed  in  the  corresponding
fuzzy rules.

The inference table is presented below:

Table 3. The inference table

         ω

DEVt
norm

VL L M H VH

VL UM UM UM D D
L UM UM D D D
M I UM UM UM D

H I I UM UM D
VH I I UM D D

6. Proposed PSO Algorithm for the

Multiple-Objective  SALB-1

Problem

The algorithm used in this paper for handling
multiple  objectives  in  the  ALB  problem  is
based on a multi-swarm approach of the PSO
algorithm,  namely  Vector  Evaluated  Particle
Swarm Optimization–VEPSO [16] when each
objective  function  is  optimized  by  a
corresponding swarm;  this  swarm performs  a
PSO independently for its associated objective
function using y_tott from another swarm. More
precisely, the velocity update of the mth swarm
(corresponding  to  the  mth objective  function)
uses y_tott(k) from swarm k as follows [14]:

v
ij

t +1(m)=ω⋅v
ij

t(m)+c1⋅ϕ1
t⋅( y

ij

t (m)−x
ij

t(m))+
+c2⋅ϕ2

t⋅( y _ tot j

t (k )−x ij

t(m))
(16)

M = number of objective functions in the problem

k ={M , if m =1
m- 1, otherwise

The  initial  population  of  particles  (the  initial
swarm) is divided into three sub-populations of
equal size (3 = no. of objectives) according to a
proportionate  selection,  that  performs
consecutively for each objective:

p[i] . probability=
f max−p [ i]. val_ f

∑
r =1+(k−1)⋅q

k⋅q

( f max− p [ r ].val_ f )
(17)

let q=PS/3;

for k=1,..,3 //for every objective function

   for i=1+(k-1)⋅q,...,k⋅q  

      p[i].val_f=objective_functionk ;

      Calculate f max= max
i=1+(k−1)⋅q

k⋅q

{ p [i ].val_f }  

      Calculate  p[i]. probability;

   repeat 

based  on  these  probabilities,  q solutions  are
selected by competitional selection; these solutions
will form the kth sub-population; 

repeat

To eliminate the disadvantage related to the fact
that  a  non-dominated  individual  within  a
generation  may become  dominated  in  a  later
generation, the algorithm handles two archives:

- an archive in which the current generation
non-dominant individuals are saved;

- an  archive  in  which  non-dominated
individuals identified until the current time
search are saved;

In  the  new  generation,  at  iteration  (t+1),  a
percentage of  the population will  be replaced
randomly  with  solutions  from  this  external
archive.

6.1 Solution representation

One of the most important issues in solving an
ALB problem is  to  develop a  good encoding
scheme  in  order  to  obtain  feasible  balancing
solutions,  i.e.  assignments  of  tasks  to
workstations so that the precedence constraints
(the  precedence  relations  specified  in  the
corresponding precedence graph) are verified.

Since ALB problem is a discrete optimization
problem,  a  discrete  PSO  algorithm  must  be
used  in  order  to  deal  with  discrete  variables.
Different  studies  in  literature  implemented
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discrete  PSO algorithms  for  other  production
control optimization problems: [4], [9], [11]. A
comprehensive survey on  PSO algorithm and
its applications is presented in [24].

A particle  p[i], i = 1, .., PS defines a feasible
sequence  of  tasks,  being  implemented  as  a
structure comprising:

- val_f, the  corresponding  value  of  the
objective  function,  obtained  after  the
assignment of tasks to workstations;

- for every task j∊{1,…,n} of the sequence:

- the  task velocity:  v[j] and its
personal best position: y[j]

- the  task  priority;  initially
priorities  are  generated  as
random integers from [1,n];

- the  task  number,  the  task
corresponding execution time,
and the  workstation  to  which
is assigned.

Each component v[j] of the velocity vector will
be  initialized  to  0,  then  ranging  between
[-vmax,vmax], with vmax=n-1.

6.2 Choice of PSO parameters

Swarm  size  PS:  a  common  choice
recommended in literature for small to medium
size  optimization  problem is  PS = 20  to  60.
Accordingly,  this  study  implements  a  swarm
size PS=60.

Acceleration  constants  c1 and  c2:  this  study
follows a parameter automation strategy: time
varying  accelerator  coefficients–TVAC
(described  in  [17])  in  order  to  enhance  the
global  search  at  the  beginning  of  the
optimization  process  and  to  encourage  the
particles  to  converge  quickly  to  the  global
optima in later stages:

c1=(0.5−2.5)
gen

genmax

+2.5

c2=(2.5−0.5)
gen

genmax

+0.5
(18)

The convergence criterion: a given number of
iterations; the maximum number of iterations,
genmax,  was set  to  genmax = 50,  since higher
values  did  not  lead  to  an  increase  in
algorithm performance.

7. Description of Test Problem and

Computational Results

The  typical  PSO  algorithm,  the  COMSOAL
algorithm  and  the  proposed  algorithm  were
tested and compared in a computational study
involving 10 problem instances of the standard
ALB data sets from Scholl [19]: medium and
large-scale  benchmark  problems  with  11,  21,
29,  35  and  45  tasks,  respectively  and  two
different cycle time values. The results of the
experiments showed better performance of the
proposed algorithm in all cases.

Figure 4 presents the precedence graph of the
largest multi-objective SALBP1 problem tested
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(with  45  tasks)  and  Figure  5  describes  the
solution obtained for this problem considering
a cycle time CT = 80 minutes.

An additional criterion for assessing the results
achieved  by  the  proposed  algorithm  is  the
uniformity  index.  The  uniformity  index,  SI,
expresses  the  uniformity  of  balancing  and  is
calculated as [10]:

SI =√∑i=1

m

[ t (S )max−(t (S i )]
2

m

, (20)

where

t (S )max=max
1≤i≤m

{t (S
i
)} (21)

Table 4 presents the results obtained by this method,
compared  to  [22]  and  COMSOAL  method
(Computer Method of Sequencing Operations for
Assembly Lines) of WinQSB software. 

Notice:  The  algorithm  generates  another  3
different  solutions  with  the  same  optimal
values  of  objective  functions,  i.e.:  No.  of
workstations actually used=7; Line efficiency =
98.5714%;  Workload  variation=0.693878  and
the  additional  criteria:  Total  idle  time=8;
Uniformity index=1.41421. 

C++ is used to realize the PSO algorithm. The
interface  is  written  in  C#  using  Microsoft
Visual  Studio 2010.  The average computation
time of the algorithm is 15 seconds. 

The configuration of computer is CPU Intel(R)
Core(TM)2  Duo,  CPU Clock  Speed  2.20GHz,
4.00 GB RAM, and Windows 7 operating system.

As it can be observed in Table 4, the proposed
algorithm is able to provide efficient solutions
within reasonable computational time.

8. Conclusions

A  multi-objective  PSO  approach  combined
with a  fuzzy controller  has  been proposed to
achieve optimal solutions for a multi-objective
SALB-1 problem. The fuzzy module is applied
to fine-tune dynamically the inertia weight  in
order to improve the performance of the PSO
algorithm.  The proposed algorithm minimizes
the number of workstations for a given cycle
time,  minimizes  the  workload  variation  and
furthermore maximizes the line efficiency.

The algorithm is easy to implement and is able
to solve large test instances without additional
computational complexity. It generates a set of
optimal solutions and allows a decision to be
made by the decision maker. The computational
results  and  comparisons  confirmed  that  the
proposed algorithm is effective and efficient.

The  hybridization  of  fuzzy  and  swarm
intelligence technique supports a wide range of
applications  in  industrial  engineering  and
provides  solutions  to  current  Assembly  Line
problems. The extension of the proposed multi-
objective SALB 1 model through the inclusion
of  other  features  which  are  typical  for  real-
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Figure 5. Solution obtained by the proposed approach for the Kilbridge problem

Table 4.  Results obtained by the proposed algorithm

No. of workstations
actually used

Line
efficiency

Total idle
time

Workload
variation

Uniformity
index

Proposed method 7 98.57% 8 min 0.69 1.41

[22] 8 89.61% 88 min 84.25 N.A.

COMSOAL 8 89.61% 88 min 113 N.A.



world  industrial  applications  (stochastic  task
times, workstation length restrictions, multiple
equipments, etc.) necessitates further research.

Additions  to  the  algorithm  should  include
integration of other assembly process engineering
issues, from the design phase of a product to the
complex assembly building process.
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