
1. Introduction

The goal of this paper is to implement a control

system for  a  class  of  hyper-redundant  robots

with  continuum  components.  This  class  of

robots  represents  one  of  the  most  attractive

domains of robotics during the last decades. In

[1-4], were analyzed the kinematic models by

the “backbone curve”. The papers [5-7] derived

a new kinematic model by using the differential

geometry, [8, 12] studied the manipulability of

continuum  robots.  Cable-driven  continuum

robot  control  with  variable  stiffness  was

studied  in  [13].  In  [14-16]  were  studied  the

kinematics of multi-section continuum robots.

Several  biomimetic  robotic  prototypes  with

undulating  actuation  have  been  developed  in

[17, 18]. The differential kinematic models of a

class  of  continuum  micro-robot  for

endovascular surgery applications are treated in

[19-24].  Other  papers  [26-28,33]  use  the

assumption  that  the  arm bends  with  constant

curvature and propose new control strategies. 

In  our  paper,  the  main  parameter,  the  system

state,  is  determined by the position generalised

variables. The dynamic model is inferred and the

constraints  of  the  state  variables  and  nonliner

components  are  proved.  The  estimation  of

gravitational terms is very difficult in a complex

motion. For this reason, the gravitational forces

are treated as uncertain components that satisfy

the  inequality  constraints.  An  essential  part  of

designing feedback controllers for these models is

designing  practical  controllers  that  are

implementable. The inequality constraints on the

gravitational  components  allow  to  introduce  a

decoupled control system. A PD boundary control

algorithm is used in order to achieve a desired

shape of the arm. The stability analysis and the

resulting controllers are obtained using Liapunov

techniques.  The  exponential  stability  of  the

system (error-observer)  was  proved.  Numerical

simulations  and  experimental  tests  verify  the

effectiveness of the presented techniques.

The paper is organized as follows. In Section 2,

the  dynamic  model  is  presented.  Section  3

concerns  the  formulation  of  the  output-

feedback control  and the design methodology

of  a  PD  output  track  controller.  Section  4

presents  the  simulation  results.  Finally,  a

Conclusion Section ends the article.

2. Model Description

The technological model basis is a light weight

arm  with  a  distributed  mass  and  friction.

Although  the  conventional  hyper-redundant

models  operate  in  3-D  space,  the  motion

control  will  be  first  infer  from  the  planar

models.  The  2D  model  basis  from  Figure  1

consists  of  a  chain  of  vertebrae,  elements,

periodically  spaced,  each  element  having  a

special  joint  that  ensures  the  rotation,  elastic

contact  and  a  controllable  friction  force  with

the  following  element.  All  the  joints  are

passive.  All  these  elements  determine  a

backbone type behavior of the arm. The motion

of the arm, the bending, is determined by a pair

of antagonistic cables (tendons) attached to the

terminal point of the arm and that run through

all the elements. The essence of the arm is the

backbone curve C (Figure 2).  The independent
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parameter  s  is  related  to  the  arc-length  from

origin of the curve C, s∈Ω , Ω=[0, l ] , where

l  is  the  length  of  the  arm. The position  of  a

point  s on curve C  is defined by the position

vector  r=r ( s) ,  s∈[0, l ] .  For  a  dynamic

motion,  the  time  variable  will  be  introduced,
r=r( s ,t ) .  We denote  by  q the  slope of  the

curve,  q=q (s)  is the generalized coordinate,

where  q∈L
2
(Ω)  and  L

2
(Ω)  is  the  Hilbert

space  of  square  integrable  functions  q (s) ,

s∈[0, L]  equipped with L
2  norm

‖q(⋅)‖=√∫0

L

q
2(s)ds

Also,  τ represents  the  equivalent  moment  at

the  end  of  the  arm  (s=l)  exercised  by  the

cable forces.

Figure 1. Technological arm

Figure 2. Ideal planar model

The dynamic model of the arm can be derived

from the Hamiltonian principle [   ] as

I ρ q̈=EIq
ss
−bq̇+cq−h(q ) (2.1)

where q=q (t , s) , s is a mono-dimensional (1-

D) spatial variable, s∈[0, l ] , t≥0  is time, q̇

represents (∂q (t , s)) /∂ t  and q
s
=∂ q (t , s)/∂ s

,  I ρ  is the rotational inertial density, EI is the

bending stiffness coefficient, b is the equivalent

damping matrix of the arm, c characterizes the

elastic  behaviour  and  h (q)  represents  the

nonlinear  term  determined  by  gravitational

components.  The  state  variables  are
q∈L

2
(0, l ) , q̇∈L

2
(0, l ) .

We assume the following initial conditions

q (0, s)=q
0
(s)∈H

2(0,1)

q̇ (0, s)=q
1
(s)∈H

2(0,1)
(2.2)

and the boundary conditions

q
s
(t ,0)=0 , EIq

s
(t , l )=τ , (2.3)

The  gravitational  component  satisfies  the

inequality [  ]

‖h (q (s))‖≤η‖q‖=ρgL‖q‖ (2.4)

The output of the system is represented by the

weighted average values defined by the relation

y (t)=∫
0

l

w( s)q(t , s)ds , y∈C
2 (0,l ) (2.5)

where  w (s)  is  spatial  weighting  measuring

function,  w∈L
2
(0, l ) .  We  assume  that  w

satisfies the following conditions:

a ) w
ss
=−λ w

b ) w (s)>0, s∈(0, l )
c ) w(0)=0 ; w s=0

(2.6)

where λ is a positive constant.

3. A PD Output-Feedback Control 

We  consider  a  desired  state  q
d ( s) ,

q
d∈L

2
(0, l )  that  satisfies  the  Eq.  (2.1)  with

initial and boundary conditions (2.2), (2.3).

A desired output can be defined as

y
d (t )=∫

0

l

w( s)q
d (t , s)ds (3.1)

The control problem consists in the finding the

control law τ (t ) , on the boundary s=l , such

that  the  output  y(t)  to  track  the  “a priori”

given desired output y
d (t ) .

Definition 1. The control system is stable if

lim
t→∞

(t)= y
d (t ) (3.2)

In terms of this definition we can synthesize a

PD (Proportional – Derivative) output-feedback

controller  that  enforce  output  tracking  and

guarantee  stability  in  the  closed  loop  system

(Figure 3).
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Theorem 1.  An output  –  feedback control  of

the system (2.1) – (2.3) is stable, in the sense of

Definition 1, if the control law is

Δ τ (t)=−(EI )w
s
(0) (q (t ,0)−q

d (t ,0))−

−k 1∫0

l

w( s) (q(t , s)−q
d ( s))ds−

−k 2∫0

l

w( s)q̇(t , s)ds

(3.3)

where  k
1
, k

2  are  the  control  coefficients,

k
1
>0 , k

2
>0

k
1
>(c−λ EI )+η (3.4)

k 2>
γ
β ⋅I ρ−b (3.5)

α,  β,  and γ are positive constants that  verify

the conditions

α >γ⋅
I ρ

4
, β >γ (3.6)

α+(c−λ EI )−γ b−βk
1
−γk

2
+βη>0

Δ τ (t)=τ (t)−τd (3.7)

τd  is the desired moment applied at s=l .

Proof. Denote  by  e(t)  the  weighted  output

error variable

e(t)=∫
0

l

w( s) (q(t , s)−q
d ( s) )ds (3.8)

Substituting  (3.8)  into  (2.1)  and  integrating

by parts,

q
ss

w= ∂
∂ s

(q
s
w)− ∂

∂ s
(qw

s
)+qw

ss (3.9)

the error dynamics will be described by

I ρ ë=−b ė+(c−λ EI )e−Δh
*(e)+

+Δ τ+(EI )w
s
(0)q (0)

(3.10)

where

Δh
*(e)=∫

0

l

w (s) (h(q )−h(qd ) )ds (3.11)

(variables  s, t are omitted in order to simplify

the notation). From (2.4) can be inferred that 

‖Δh
*(e)‖≤√2 η‖q‖ (3.12)

Consider the following Liapunov function

V (t)=
1

2
(α e

2+β Iρ ė
2+ γ Iρ e ë ) (3.13)

and  using  the  conditions  in  (3.6),  (3.13)  is

positive definite.

The time derivative of (3.13) will be

V̇ (t)=α e ė+β Iρ ė ë+ γ I ρ ė
2+γ I ρe ë (3.14)

The following inequalities can be obtained by

using the gravitational inequality (3.12)

|−ėΔ h
*(e)|<η|ė||e| (3.15)

|−ėΔ h
*(e)|<ηe

2
(3.16)

Now, substituting the error dynamics (3.10) into

(3.14), the control law Δ τ (t)  from (3.3), after

simple additional manipulations, it is obtained

V̇ (t )< (α+(c−λ EI )−λb−β k1−γ k 2+β η)|ė||e|−
−(βb−γ Iρ+βk 2) ė

2−

−γ (k 1−(c−λ EI )−η )e2

(3.17)

Using  the  conditions  (3.4),  (3.5),  (3.7),  this

inequality is negative definite

V̇ (t)<0 (3.18)

Remark 1 The control system (3.3) – (3.7) is

exponentially stable.

Proof.  The Liapunov function (3.13) satisfies

the following inequality

V (t)<V
* (t )=

M
*

2
(e2+ė

2 ) (3.19)

where M
*=max (α ,β Iρ) .

The inequality (3.17) can be rewritten as

V̇ (t)<−m*(e2+ ė2)=−2 m
*

M *
V *≤−2 m

*

M *
V (t ) (3.20)
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Figure 3. Control system



From (3.20) it can be then concluded that the

system (3.6)-(3.7) is exponentially stable 

V (t)≤V (0)e
−2

m
*

M
*
t

(3.21)

Remark 2 The conditions (3.4),  (3.5) can be

rewritten as

k
1
>c+η (3.22)

k 2>
γ
β I ρ (3.23)

Remark 3. The analyze of the motion stability

can  be  obtained  by  the  describing  functions

associated to the nonlinear components of the

gravitational term. The describing functions of

the nonlinear gravitational component Δh
*  are

represented  by  the  fundamental  components

with respect to a sinusoidal input A
*
sin (ω*

t) ,

where  A*,  ω* are the amplitude and frequency,

respectively [35].

h
G
=h

G1
+ jh

G 2 (3.24)

where

hG1=
1

π A
*
⋅

⋅∫
0

2π

Δ h
*

A
*
sin (ω*

t )sin(ω*
t )d (ω*

t )
(3.25)

hG1=
1

π A
*
⋅

⋅∫
0

2 π

Δh
*
A

*
sin (ω*

t)cos(ω*
t )d (ω*

t )
(3.26)

The describing functions are computed for the

mechanical  parameters  I ρ=0.001 kg⋅m
2

,

EI=1.2 N⋅m
3 ,  b=0.06 Nms / rad .  From

(3.24) – (3.26) yields,

h
G
=0.85+ j⋅0 (3.27)

For  a  desired  position  y
d=0  and  the

describing function (3.27), the transfer function

(s* is  Laplace  variable)  of  the  arm  with  n

segments can be approximated as

G( s
*)=

e( s
*)

Δ τ( s
*)

≅

≅

1

I ρ s
* 2+bs

*+(λ EI−c+nhG 1)

(3.28)

The  instability  of  the  arm  segment  is

determined by the elastic component EI and the

gravitational  component  hG1.  This  instability

increases  with  respect  to  the  number  of

segments (n) in the structure of the arm. The

closed loop transfer function of the controller

and the arm segment is evaluated as

G SA( s
*) ≅

k
1
+k

2
s

*

I ρ s
*2+Bs

*+(λ EI−c+nhG 1)
(3.29)

The  polar  plots  of  G
SA
( jω*)  for  the  1-

segment,  2-segment,  3-segment  arms,

respectively,  are  represented  in  Figure  4.

Clearly, by virtue of Nyquist stability criterion,

the  closed-loop  system is  stable  because  the

number  of  counterclockwise  encirclements  of

the (-1, 0) point is equal to one, the number of

poles with positive real parts [34,35].

4. Numerical Simulations 

Consider  the  dynamic  model  of  a  hyper-

redundant continuum robotic arm described by

(2.1)  where the length of the arm is  l=1, the

rotational inertial density is  Iρ=1, the bending

stiffness  EI=1.5,  the  equivalent  damping

coefficient b=−0.5  and the elastic coefficient

is  c=15. These constants are scaled to realistic

ratios  for  long  thin  arm.  The  initial  and
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Figure 4. Polar plots of G
SA
( jω*)  for the 1-segment arm, 2-segment arm, 3-segment arm



boundary conditions are  q
0
( s)=0 ,  q

1
( s)=0 ,

q
s
(t ,0)=0 , EIq

s
(t , l )=τ . The desired state is

q
d ( s)=1.8cos (1.5s) ,  that  satisfies  the

stationary desired state for τd=−3.8 .

A  spatial  weighting  measuring  function

w (s)=sin ( π s

2 )  that  satisfies  the  conditions

(2.6) for λ=( π2 )
2

 and a control law (3.3) with

k1=18,  k2=2  are  used.  Figure  6  and Figure  7

reports three-dimensional plots of the solution

q(t,s) and of  the tracking weighted error  e(t).

Good  performances  of  the  proposed  control

algorithm is concluded from the graphics. 
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Figure 5. Polar plots of G
SA
( jω*)  for a 2-segment arm (control by k

2 )

Figure 6. The state evolution q(t,s) for the desired state q
d ( s)=1.8 cos (1.5 s)

Figure 7. Tracking weighted error e(t)



5. Conclusion

This paper deals with the control problem of a

class  of  robots  constituted  by  a  chain  of

continuum segments. The technological model

basis is a central, long and thin, highly flexible

and  elastic  backbone.  The  paper  studies  the

output  tracking control  problem of  a  class  of

DPS  described  by  hyperbolic  DPE.  The

stability analysis  and  the resulting controllers

are obtained by using the concept of boundary

geometric  control  and  an  output  track

technique.  A  conventional  PD  control  is

proposed and analyzed. Numerical  simulations

are also provided to verify the effectiveness of

the presented approach.
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