
1. Introduction

The successful entry on energy market, recently

liberalized in Romania, depends on the capacity

of  each  producer  to  predict  through  different

methods the future evolution of the quantity of

renewable energy sources. Thus, the integration

of  the  predictive  ability  is  a  very  important

function  in  the  command  and  control  of  a

power  system,  especially  at  the  micro-grid

level, heavily dependent on the consumer and

with reduced availability for storage.

European context. The current energy policy of

the  European  Union  (EU)  considers  the

security  of  supply,  competitiveness  and

sustainability  as  central  targets.  In  order  to

achieve  these  targets,  a  series  of  constraints

("20-20-20  objective")  is  imposed  through

European  strategies  [1]:  20%  reduction  in

emissions  of  greenhouse  gases  compared  to

1990,  providing  20%  of  entire  EU  energy

consumption  by  Renewable  Energy  Sources

(RES) and a 20% reduction in  energy use in

comparison with a similar scenario in which no

action regarding sustainability has been taken.

In  order  to  achieve  these  objectives  and

generate  a  "sustainable  growth",  a  policy  of

encouraging distributed generation from RES,

such as solar power must be followed. Intense

concerns  at  European  level  regarding  the

Distributed Power from RES (DP- RES) were

materialized  by  setting  up  a  giant  cluster  of

projects  called  Integration  of  Renewable

Energy  Sources  and  Distributed  Generation

into  the  European  Electricity  Grid,  IRED

cluster [2]. The studies that were conducted by

this  consortium  highlighted  the  need  for  an

energy management system at micro to macro

level,  the existing control strategies not being

always successfully applied.

National context. The percentage of RES in the

electricity production in  Romania is  currently

of 17.8%. EU has set a 24% target for Romania

for energy generation from RES by 2020, but

needs for investments and large operating costs

as  main  barriers  for  the  successful

implementation  of  an  increased  generating

capacity  have  also  been  identified.  The

compatibility  with  the  EU  objectives  in  the

field  of  clean  energy  and  national  levels  is

achieved  through  a  regional  policy  [3].  The

European  policies  have  had  a  national

resonance since  2003,  when the draft  for  the

Strategy  project  for  the  use  of  renewable

energy [4] was proposed. 

Two  new  important  trends  on  the  national

energy  market  are  to  be  noticed:  firstly,  the

consumers’ involvement in the complex process

of the energy efficient management from RES,

and  secondly,  the  increased  attention  paid  to

both  the technical  plan  and the organizational

and economical plan for the energy production

from  RES.  The  integration  of  RES  in  the

national  energy system structure has created a

favorable context for our researches. 

Unfortunately,  Romania  follows  a  centralized

approach of  the  regional  policy and although
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the  country  is  covered  adequately  with

electricity  networks  and  the  potential

development  for  RES  is  high,  its  aging

infrastructure (30% of it was built in the 1960s)

causes  significant  losses  along  the  energy

supply chain. 

Moreover,  for  a  large  number  of  energy

resources,  the  current  energy  systems  are

hardly  scalable.  The  European  Commission

believes that the current energy infrastructure is

inadequate  to  connect  and  serve  the  entire

Europe and recognizes the challenges [1].

In  these  contexts,  two challenges  have  to  be

met:  monitoring,  diagnosis  and  forecasting

functioning  of  grids,  integrating  renewable

energy sources  in  on-  grid or  off-  grid mode

and  ensuring  the  optimization  of  these  ones

functioning  with  the  integrated,  proactive

management  system based  on  multi-objective

decision-making scheme.

To support these interests, we consider that the

integration  of  the  predictive  ability is  a  very

important function in the command and control

of a power system, especially at the micro- grid

level, heavily dependent on the consumer and

with reduced availability for storage.

The  challenge  and  the  value  added  of  our
paper consist in proposing a forecasting tool to
producers/  consumers  (prosumers)  of
renewable energy resources, based on artificial
intelligence  techniques,  trying  to  obtain
optimal forecasts. 

The  paper  is  organized  in  two  sections:

- first of all, there are recessed the most used

criteria  for  choosing  an  optimal  forecasting

architecture,  in  relation with each step of  the

forecasting tool modeling: data preprocessing,

forecasting  tool  architecture  identification,

parametrization  and  implementation;

- secondly, the identified criteria are tested on

two Adaptive Neuro- Fuzzy Inference System

(ANFIS)  models,  in  order  to  underline  the

effects  of  these  users’  decisions  over  the

forecasting performances. 

2.  Identification  of  the  Criteria
Used  for  Choosing  a
Forecasting Tool 

Our researches  were oriented on identifying

the most used criteria for choosing an optimal

forecasting  tool  based  on  artificial

intelligence techniques. 

The approach was difficult because of the high

numbers  of  variables  and  constraints  that

conditioned the parameterization of this kind of

tool.  The efficiency of using Neural Networks

(NN)  in  the  area  of  energy  forecasting  was

demonstrated  in  our  previous  works  [5  -  7].

Thus, we oriented our work to NN. 

The  parameters  conditioning  the  work  with

these  ones  are:  number  of  hidden  layers,

number of neurons from the NNs input, output

and hidden layers,  the testing/ validation data

sets  dimension,  the  learning  algorithm  to

choose  and  the  method  used  to  measure  the

forecasting made by the tool.

2.1 Data preprocessing 

Input  selection is  a method used often in  the

data  preprocessing.  It  is  an  experimental

method  that  supposes  to  find  the  most

important  input  variables  among  a  large

number of them [8]. 

Some  authors  [9]  assume  that  the  input

information  can  be  classified  into  groups

(hierarchical  structure).  To  realize  such  a

grouping,  there  is  no  general  automatic

approach  but  heuristics  based  on  fusion  of

physical sensors. 

Both input selection and hierarchical structure

presume that  inputs are independent and give

no priority of the selected input variables.

When  the  analyzed  process  is  complex,  it  is

recommended  to  normalize  the  input  and

output  real  values  into  the  interval  between

max  and  min  of  the  transformation  function,

usually  [0,  1]  or  [-1,  1]  intervals.  The  most

popular methods are the following:
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where:

- SV: Scaled Value,

- MAX_VAL: maximum value of data, 

- MIN_VAL: minimum value of data, 

- TFmax: maximum of transformation 

- TFmin: minimum of transformation

- OV: Original Value
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2.2 Identifying the NN’s architecture 

There are many techniques for determining the

forecasting tool architecture. In this section, we

will cover some of the general "rules of thumb"

that  can  be  used.  In  nearly  all  cases,  some

additional experimentation will  be required to

determine the optimal structure.

Every input neuron from the input layer of the

NN  should  represent  some  independent

variable that has an influence over the output. 

If  a pattern is presented to the input layer  of

NN, then the output layer will generate another

pattern. The output layer of the NN presents a

pattern  to  the  external  environment  [10].

Whatever pattern is represented by the output

layer,  this  can  be  directly  traced  back  to  the

input layer.

The number of output neurons is related to the

type of work that the NN has to perform. If it is

to be used to classify items into groups, then it is

often preferable to have one output neuron for

each group that the item is to be assigned into.

If NN is to perform noise reduction on a signal

then it is likely that the number of input neurons

will match the number of output neurons.

One common mistake made by users is to add a

large number of variables and neurons, without

taking into account the number of parameters to

be estimated [11].

The hidden layers are those that don’t interact

directly  with  the  external  environment.  For

many practical problems, there is no reason to

use more than one hidden layer. The NN with

one  hidden  layer  can  approximate  well  any

continuous mapping, from one compact space

to another. NNs without hidden layers are only

capable  of  representing  linear  separable

functions  or  decisions.  Problems  that  require

two hidden layers are rarely encountered. NN

with two hidden layers can represent functions

with any kind of shape. There is currently no

theoretical reason to use neural networks with

any more than two hidden layers. [10]

When  the  number  of  neurons  in  the  hidden

layers  isn’t  correctly  approximate,  two

problems  may  occur:  under-fitting  or  over-

fitting. Under fitting is due to underestimation

of NN neurons of hidden layers. In this case the

input signal  isn’t adequately detected.  On the

other  side,  using  too  many neurons  generate

over-fitting  problems.  The  NN has  too  much

information processing capacity and the limited

amount of information contained in the training

set is not enough to train all of the neurons in

the hidden layers.

The scientists [11] propose as starting points to

consider  three  rules:   the  number  of  hidden

neurons should be in the range between the size

of  the  input  layer  and the  size  of  the  output

layer; the number of hidden neurons should be

2/3 of the input layer size, plus the size of the

output  layer;  the  number  of  hidden  neurons

should be less than twice the input layer size. 

One  additional  method  that  can  be  used  to

reduce the number of hidden neurons is called

pruning.  It  involves  evaluating  the  weighted

connections  between  the  layers  and  if  the

network  contains  connections  with  weights

equal with zero, they can be removed.

2.3 Parametrization of NN

The  test  samples  must  be  appropriately

selected. Since NNs are “data-driven” methods,

they typically require large samples in testing.

The  input  selection  reduces  the  testing  data

dimension.  The  NN  are  tested  with  small

subsets that include data from only a few past

days,  selected  through  statistical  measures  of

similarity. This thing results in samples that are

very homogeneous, but also very small [11].

Usually, the dimension of the test data set must

be five times greater than the number of update

parameters.  The  testing  process  is  usually

finished as soon as the testing error is reduced

to a  specified tolerance level  (e.g.,  10-5).  The

adequate  rate  between  the  number  of  testing

samples  and  the  number  of  weights  in  the

network has not been clearly defined yet [12].

The  testing  algorithm  has  to  be  also

established,  the  most  common  in  use  is  the

back propagation algorithm. The purpose of the

backpropagation  testing  is  to  converge  to  a

near-optimal  solution  based  on  the  total

squared error calculated.

K-nearest-neighbor learning algorithm is simpler

than  the  backpropagation  algorithm  because

there  is  no  model  to  test  on  the  data  series.

Instead, the data series is searched for situations

similar to the current one, each time a forecast

needs to be made [13] and [14]. In most of the

papers  reviewed,  testing  was  stopped  after  a

fixed  number  of  iterations  or  after  the  error

decreased below some specified tolerances.

2.4 Assessment of the performance 

The  next  stage  in  modeling  is  the

implementation of the NNs, which means the
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estimation  of  its  parameters.  The  guidelines

proposed in  [15],  for  evaluating  effectiveness

of  implementation,  were  based  on  the  next

question: was the NN properly tested so that its

performance  was  the  best  it  could  possibly

achieve? The choice of error measures to help

comparing forecasting methods has been much

discussed,  as  a  consequence  of  the  many

competitions  that  were  started  in  the  1980’s

[16]. J.G. De Gooijer and R.J. Hyndman [17]

summarized  in  Table  1  the  most  used

performance indicators.

Table 1. The most used performance indicators

Commonly used forecast accuracy measures

MSE
Mean Squared Error:

=mean (et
2)

RMSE
Root mean squared error 

= √MSE

MAE 
Mean Absolute  error 

=mean (|et|)

MdAE
Median absolute error

=median (|et|)

MAPE
Mean absolute  percentage error

=mean (|pt|)

MdAPE
Median absolute percentage error

=median (|pt|)

sMAPE

Symmetric  mean  absolute  percentage

error

=mean (2|Y T −F t|/(Y t+ F t ))

sMdAPE

Symmetric  median  absolute  percentage

error

=median (2|Y T −F t|/(Y t+ F t ))

MRAE
Mean relative absolute error

=mean (|rt|)

MdRAE
Median relative absolute error

=median (|r t|)

GMRAE
Geometric mean relative absolute error 

=gmean (|r t|)

RelMAE
Relative mean absolute error 

=MAE/MAEb

RelRMSE
Relative root mean squared error

=RMSE/RMSEb

LMR
Log mean squared error ratio

=log(RelMSE)

PB
Percentage better

=100mean ( I {|r t|<1})

PB (MAE)
Percentage better (MAE)

=100mean ( I {MAE<MAEb})

PB(MSE)
Percentage better (MSE)

=100mean ( I {MSE<MSE b})
Here I {u}=1  if u is true and 0 other wise

Most  authors  agree  to  use  as  performance

indicators: MSE (Mean Squared Error), RMSE

(Root  mean  squared  error)  and  MAE (Mean

Absolute  Error)  for  training  phase  evaluation

[17].  Only a  few reported  the  MAPE (Mean

Absolute  Percent  Errors)  or  the  standard

deviation of the errors [18] and [19] (Table 1).

However, recent studies and the experience of

the  system  operators  indicate  that  the  loss

function  in  the  load  forecasting  problem  is

clearly  nonlinear,  and  that  large  errors  may

have  disastrous  consequences  for  utility  [20]

and [21].  Because of this,  measures based on

squared error are sometimes suggested, as they

penalize large errors (RMSE was suggested in

[22], MAPE in [23]). 

Most researchers test their models by examining

their errors in other samples than the one used

for parameter estimation because the goodness-

of-fit  statistics  are  not  enough  to  predict  the

actual performance of a method [12]. 

Also,  it  is  generally  recognized  that  error

measures  should  be  easy  to  understand  and

closely  related  to  the  needs  of  the  decision-

makers. Some papers reported that the utilities

would  rather  evaluate  forecasting  systems  by

the Absolute Errors Produced, and this suggests

that MAE could be useful [11]. The shape of

the  distribution  should  be  suggested.  Some

papers  included  graphs  of  the  cumulative

distribution of the errors [24]. Others suggested

this distribution by reporting the percentage of

errors  above  some  critical  values,  percentiles

[25], the maximum errors [26]. In any case, no

single error measure could possibly be enough

to summarize the efficiency of the forecast. 

3. Simulation of Forecasting Tool

Considering  the  bibliographical  research

presented  above,  in  the  next  sections  we

underline  the  consequences  of  the  choices

made  during  the  tool  modeling  on  the

forecasting  performances.  The  cases  study is

made using an ANFIS network. Neuro- fuzzy

systems  are  a  combination  of  NN and  fuzzy

sets  and  represent  a  powerful  tool  to  model

systems behavior. The NN is used to define the

clustering in the solution space, which results

in the creation of fuzzy sets [27] and [28]. A

particular  architecture  of  neuro-fuzzy systems

is  represented  by  the  Adaptive  Neuro-Fuzzy

Inference System (ANFIS) [29]. 
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ANFIS  is  a  Sugeno-type  fuzzy  inference

system in which the parameters associated with

specific  membership  functions  are  computed

using  a  backpropagation  gradient  descent

algorithm alone or in combination with at least

squares method. It has been widely applied to

random  data  sequences  with  highly  irregular

dynamics  [30]  e.g.  forecasting  non-periodic

short-term stock prices [31] and [32].

3.1 Adaptive neuro-fuzzy inference system

Figure 1 illustrates the ANFIS architecture for

two  inputs  parameters,  where  nodes  of  the

same layer have similar functions, as described

next.  (Here  we denote  the  output  of  the  itch

node in layer j as Oi , j (i) :

Figure 1. ANFIS architecture

Layer  1. Every  i node  in  this  layer  is  an

adaptive node with a node function:

O
1, i=μAi

(x) , for i=1,2or
O

1, i=μBi− 2

( y) , for i=3,4
(3)

where x (or y) is the input to i node and Ai (or

Bi-2) is a linguistic label  (such as "small" or

"large")  associated  with  this  node.  In  other

words,  O1,  i  is  the  membership  grade  of  a

fuzzy  set  A  (=A1,  A2,  B1  or  B2)  and  it

specifies the degree to which the given input x

(or y) meets the quantifier A.

The  membership  function  for  A can  be  any

appropriate  parameterized  membership

function  introduced  in  here,  such  as  the

generalized bell function:

μA( x)=
1

1+|x−ci

ai
|
2 b

(4)

where  {ai , bi ,ci}  is the parameter set. As the

values  of  these  parameters  change,  the  bell-

shaped  function  varies  accordingly,  thus

various  forms  of  membership  function  for

fuzzy set A. 

The parameters in this layer are referred to as

premise parameters.

Layer 2. Every node in  this  layer  is  a  fixed

node labelled Oi,j, whose output is the product

of all the incoming signals:

O
2, i=w i=μA i

( x )⋅μB i
( y) , i=1,2 (5)

Each node output represents the firing strength

of  a  rule.  In  general,  any  other  T-norm

operators that performs fuzzy and can be used

as the node function in this layer.

Layer 3.  Every node in this layer is a fixed

node  labeled  N.  The  ith node  calculates  the

ratio of the  ith firing strength and the sum of

all firing strengths:

O3, i=w i=
w i

w1+w2

, i=1,2

For convenience, the outputs of this layer are

called normalized firing strengths.

Layer  4.  Every  i  node  in  this  layer  is  an

adaptive node with a node function: 

O
4,1

=w i⋅f i=wi ( pi x+qi y+r i) (6)

where  wi  is  a normalized firing strength from

layer 3 and {pi , qi , r i}  is the parameter set of

this  node.  The  parameters  in  this  layer  are

referred to as consequent parameters.

Layer 5. The single node in this layer is a fixed

node  labeled  O5,1 (overall  output),  which

computes the overall output as the summation

of all incoming signals:

O
5,1

=∑
i

w i f i=
∑

i
w i f i

∑
i

wi

(7)

Thus,  the  adaptive  network  is  functionally

equivalent to a Sugeno fuzzy model.

The  ANFIS  learning  algorithm. When  the

premised  parameters  are  fixed,  the  overall

output  is  a  linear  combination  of  the

consequent parameters. In symbols, the f output

can be written as:

f =(w
1
⋅x )⋅c

11
+(w

1
⋅y )⋅c

12
+w

1
⋅c

10
+

+(w2⋅x )⋅c21+(w2⋅y )⋅c22+w2⋅c20

(8)

which is linear in the consequent parameters ci,j

(i  =  1,  2;  j  =  0,  1,  2).  A hybrid  algorithm

adjusts  the  consequent  parameters  ci,j  in  a

forward  pass  and  the  premise  parameters
{ai , bi ,ci}  in a backward pass [27]. 
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In  the  layer  4  the  consequent  parameters  are

identified by the least-squares  method.  In the

backward  pass,  the  error  signals  propagate

backwards  and  the  premise  parameters  are

updated by gradient descent.

Because the update rules for the premise and

consequent  parameters  are  decoupled  in  the

hybrid learning rule, a computational speedup

may  be  possible  by  using  variants  of  the

gradient  method  or  other  optimization

techniques on the premise parameters.

The success of ANFIS is given by aspects such

as: the designated distributive inferences stored

in  the  rule  base,  the  effective  learning

algorithm for adapting the system’s parameters

or by the own learning ability to fit irregular or

non-periodic  time  series.  On  the  other  hand,

used in application alone to non-periodic short-

term  forecasting,  ANFIS  predictions  make

large  residual  errors  due  to  high  residual

variance,  consequently  degrading  prediction

accuracy [33]. It is very difficult to interpret for

a  non-expert  the  fuzzy  rules  generated  by

ANFIS  because  of  the  form  of  consequents

(linear combination of inputs).

3.2 Simulation conditions and strategy

The ANFIS is applied on a data base obtained

from  an  experimental  photovoltaic  system,

where  the  difference  between  the  electricity

produced  and  consumed  from  renewable

energy sources (DPcg) is considered as output

to be forecast by ANFIS - y (t) and the exterior

temperature as input - u (t).

The  used  data  base  has  296  data  points

{(y(t),u(t))│t=1,…,  296}.  The  estimation

procedure is carried out as two ANFIS Models:

- Model  1  represents  an  ANFIS  structure

with 2 inputs: {(y(t-a), u(t-b))} 

- Model  2  represents  an  ANFIS  structure

with  3  inputs:  {(y(t-a),  u(t-b),  u(t-c))},
a=1,..4; b; c=1,..6.) (Figure 2).

The  investigation  uses  MAPE,  RMSE,  and

MAE, changing each time the number of inputs

(2 or 3) and the model’s membership functions

(Gaussian or Gauss Bell type). For ANFIS the

input  selection  method  is  based  on  the

assumption  that  the  ANFIS  model  with  the

smallest RMSE [28] after one epoch of training

has  a  greater  potential  of  achieving  a  lower

RMSE when  given  more  epochs  of  training.

This assumption is not absolutely true, but it is

heuristically  reasonable.  ANFIS  can  usually

generate satisfactory results right after the first

epoch of  training,  that  is,  only after  the  first

application of the least-squares method.

Figure 2. ANFIS models used for simulation

4. Evaluation of Tool’s Performance

Considering  the  metrics  described  above,  we

have  observed  through  simulations  that

“classical”  ANFIS  with  two  selected  inputs

(Model 1),  has satisfactory results  for a short

term prediction (Figure 3) [2].

Figure 3. Error prediction distributions for ten,

twenty and forty steps ahead forecasting

Figure 4. Prediction error and real measurements

for Model 1 and Model 2

For medium and long term,  the obtained errors

have become bigger and bigger and this affects the

forecasting in terms of accuracy and confidence. 

The  performance  metrics  related  to  Model  1

and  Model  2  show  that  these  models  don’t

achieve  a  satisfactory  compromise  between

short-term  accuracy  and  long-term  stability

(Table 2, Figure 5a and Figure 5b).
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Table 2. RMSE and MAE values

Figure 5a. MAE for model 1 and model 2 on

different prediction on test data set 

Figure 5b. RMSE for model 1 and model 2 on

different prediction on test data set 

The second simulation scenario identifies in

terms  of  forecasting  performance  (RMSE

and  MAE)  the  effect  of  membership

function type changing. 

The  models  have  been  configured  with  2

respectively  3  Membership  Functions (MFs)

and the type of MFs are Gaussian and Gaussian

Bell. (Table 3 and Table 4).

The testing parameters in each case remain the

same:  number  of  epochs=  20,  ss=  0.01,
ss_dec_rate=  0.5,  ss_inc_rate=1.5,  training/
test data set= 145/145.

Changing the type of MFs, for each model case,

does not improve the forecasting and the error in

terms of MAE or RMSE who remain the same.

This is also the consequence of the small number

of MFs used in test. A bigger number of MFs will

refine  the  partitioning  but  will  increase  the

computational  time  with  no  relevant  influence

over the forecasting precision. 

Table 3. MAE and RMSE values for MFs models

with 2 inputs

Table 4. MAE and RMSE values for MFs models

with 3 inputs

We have compared the effects of  MFs number

and type changing for the two models (Figure 6a

and  Figure  6b).  The  MAE and  RMSE put  in

relation the target and network’s output on testing

data set and give an overview of generalization

and memorization abilities of ANFIS.

Figure 6a. MAE for Gaussian Bell of

MFs typologies
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Figure 6b. RMSE for Gaussian Bell of

MFs typologies

As expected, the error values in case of Model

1 are higher.

5. Conclusions

The  added  value  of  our  paper  consists  in

proposing  a  forecasting  tool  to  producers/

consumers (prosumers) of renewable resources

energy,  based  on  artificial  intelligence

techniques, trying to obtain optimal forecasts.

The exploration and the assessment of criteria

used for choosing a forecasting tool were made

in the neural networks context. 

In  this  respect,  firstly,  the  criteria  used  for

choosing  the  best  forecasting  tool  in  relation

with  each  step  of  the  modeling  process  were

presented.  Considering  the  identified  aspects

from the bibliographical research, in the second

section we have proposed two case studies based

on ANFIS models, underlining the consequences

of  the  choices  made  by users  during  the  tool

modeling over the forecasting performances. 

The  work  is  still  in  progress  and  the

developments  are  at  present  extended  in

designing  and  implementing  an  intelligent

informatics platform for forecasting and control

of energy generation and load, in a distributed

power system from renewable energy resources.
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