
1. Introduction

During the  last  few  decades  an  increasing
number  of  environmental  issues  have  led  to
changes  in  the  normative  that  regulates  the
logistic  industry.  In  particular,  new
requirements from customers such as recycling
and  proper  items  disposal  cause  that  logistic
industry should not  only look at  the delivery
process but also to the pick-up one. Because of
that,  well-known  Vehicle  Routing  Problem
(VRP)  is  not  an  adequate  model  to  the
integrated  problem  mentioned  before.
Therefore,  several  new  models  have  been
introduced  in  order  to  address  this  new
scenario.  In  this  article  we  consider  one  of
those  models  namely  VRP with  simultaneous
delivery  and  pick-up  (VRPSDP).  VRPSDP
problem  has  been  firstly  introduced  and
modelled  in  [1].  In  [1]  authors  studied  the
VRPSDP  based  on  a  real  case  from  book
distribution  industry.  They  tackled  the  book
logistic activity from one central library to a set
of  local  libraries  and  vice-versa.  They
considered  a  fixed  number  of  vehicles  and a
limited  vehicle  capacity.  Different
mathematical  models  for  the  VRPSDP  have
been proposed in [2], [3] and [4]. Particularly,
authors in [2] modelled the VRPSDP as part of

the reverse logistics process. In this paper we
attempt  to  find  high  quality  solutions  to  this
optimisation problem using the well-known Ant
Colony Systems (ACS) heuristic. 

Ant  Colony  Systems  has  demonstrated  to  be
very  effective  for  routing  problems  [9].  In
general it is able to find near-optimal routes for
many problems such as VRP [14, 15, 20] and
travelling  salesman  problem  [10,  12,  16],
among  others.  One  advantage  of  ACS  over
other heuristics is its rapid convergence, which
means  high  quality  solutions  within  an
acceptable time. To the best of our knowledge,
ACS algorithm has only been used to solve the
VRPSDP problem in [15, 21]. Although similar
strategies  are  considered,  our  algorithm
implements  quite  different  steps  and  rules
which  make  our  approach  substantially
different  from  those  previously  presented
approaches. This article is organised as follows:
Section  2  presents  a  literature  review  and
introduces  the  mathematical  model  for  the
VRPSDP  that  is  considered  in  this  study.
Section  3  reviews  ACS  algorithms  and
describes in detail the proposed ACS algorithm
for  the  VRPSPD.  Section  4  presents  the
benchmark used in this study. Obtained results
are analysed at the end of this section. Finally,
some conclusions are outlined in Section 5.
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2. Literature Review

As mentioned before, the VRPSDP was firstly
introduced  in  [1].  After  that,  several  authors
have  tackled  this  problem  making  use  of
different techniques. The VRPSDP problem is
solved by means of an insertion-based heuristic
in  [2].  Authors  in  [3]  present  the  VRP  with
pickup  and  delivery  (VRPPD),  the  non-
simultaneous  version  of  the  VRPSDP.  They
avoid  traditional  insertion  strategies  and,
instead, propose a strategy that considers both
items  delivery  and  pickups  simultaneously.
Their  strategy  generates,  as  a  first  step,  a
solution  to  the  simplified  VRP. Then  needed
modifications  on  the  obtained  solutions  are
applied  in  order  to  make  these  solutions
feasible  for  the main  problem.  In [5]  authors
consider the well-known bio-inspired algorithm
particle  swarm  optimization  (PSO).  Authors
highlight rapid convergence of PSO over other
heuristic  methods.  Moreover,  in  [6]  authors
propose  a  local  search  heuristic  to  solve  the
VRPSPD  problem  that  makes  some
improvements on the tour partitioning heuristic
commonly applied to the well-known travelling
salesman  problem.  In  [7]  a  hybrid  algorithm
that  combines  two  heuristics  approaches  that
have  shown  to  be  very  efficient  on  solving
routing problem: guided local search and Tabu
Search. The main goal of this hybrid strategy is
to  keep  a  good  balance  between  exploration
and  exploitation  of  promising  regions.  Tabu
Search  algorithm is  also considered  in  [4]  to
solve a variant of the VRPSPD problem which
includes  a  constraint  which  bounds  the
maximum  travel  distance.  More  recently,
authors in [18] implement a Genetic Algorithm
to  solve  the  multi-objective  version  of  the
VRPSDP  problem  where  trade-off  between
transportation  costs  and  vehicles  needed  to
solve the problem is considered. In [19] authors
propose a novel improved differential evolution
algorithm.  They  claim  that  their  differential
evolution approach performs better than other
well-known  Genetic  Algorithms  proposed  in
the literature.

Exact techniques have also been used. In [17]
the  authors  propose  a  cutting-plane-based
technique  which  allows  them to  find  optimal
solutions for medium size instances. This kind
of techniques becomes very expensive in terms
of  computational  time  as  the  problem  size
increases though. 

Several  mathematical  models  have  been
proposed  in  the  literature  to  the  VRPSDP.
Particularly,  in  [7]  three  different  models
involving the items distribution from a central
depot  to  a  set  of  customers  as  well  as  from
customers  back  to  a  central  depot  have  been
studied. These models are: VRP with backhauls
(VRPB),  VRP  with  mixed  pick-ups  and
deliveries  (VRPMPD)  and,  finally,  the
VRPSDP that  is  considered in this paper. We
briefly  describe  these  three  models  with  the
focus on the VRPSDP model. Interested readers
are referred to [7] for further details on these
three problems.

VRPB is also known as delivery first pick-up
second  VRP.  Here  customers  are  firstly
grouped to  a  set  of  line-hauls  customers,  i.e.
those customers that demand delivery services,
and a set of backhauls customers, i.e. those that
demand pick-up services. Line- and back-hauls
customer demands need to be satisfied by mean
of  a  set  of  vehicles  with  a  limited  capacity
which  operates  between  a  central  depot  and
customers. Vehicles have to, firstly, satisfy the
line-hauls  customers  and,  after  that,  visit  the
back-hauls customers to get the items back to
the  central  depot.  This  model  considers  this
precedence  restriction  because  of  limitations
related  to  re-arrangement  of  items  during
delivery and pick-up activity. Thus, the vehicles
under  this  model  have  to,  firstly,  deliver  all
their carried items and then pick-up items from
back-hauls customers. Under this model study
of  the  capacity  constraint  becomes  easier,
because of the fact that vehicles would always
meet the maximum allowed load assuming that
both total delivery and pick-up items are below
vehicles capacity. 

Similar  to  VRPB  problem,  VRP with  mixed
pick-ups  and  deliveries  (VRPMPD)  problem
allows customers to either receive or take items
back  to  a  central  depot.  Opposite  to  the
problem described above (VRPB), precedence
restriction is  not  required,  i.e.  order in which
deliveries and pick-ups occur is not important
under  this  model.  This  is  possible  because
under this model we can take advantage of rear-
and  side-loading  doors  of  vehicles  which
allows us to include new items on the vehicle
load without rearranging already existing items
on  the  vehicle.  The  fact  that  precedence
constraint  is  no  longer  required  allows  us  to
obtain solutions  that  are  more  useful  for  real
cases  arising  in  industry.  Unfortunately,
maximum load restriction makes  the problem

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 2, June 2015134



harder as deliveries and pick-ups are scheduled
at any order and consequently the load of the
vehicles changes after each customer is served.

Thus,  in  order  to  define  whether  a  particular
route  satisfies  the vehicle  capacity constraint,
we need to evaluate the vehicle load at each arc
that is part of the route, and check if it meets
the vehicle capacity limit.

Finally,  the  third  model  we  present  in  this
section is the one we are focused on this study,
the VRP with simultaneous deliveries and pick-
ups.  This  problem  can  be  seen  as  a
generalization of the problem mentioned before
(VRPMPD) or, alternatively, the VRPMPD can
be considered as a VRPSDP case where either
delivered or picked-up items is equal to zero. In
VRPSDP  case,  clients  could  ask  for
simultaneous  pick-up  and  delivery  services.
This has some implications on the behaviour of
the  vehicle  load.  While  for  the  VRPB  case
number of items carried by a vehicle decreases
to zero and then increases to some level below
the  vehicle  capacity,  in  the  VRPMPD  the
vehicle load increases and decreases in turns,
i.e. the vehicle delivers items to customer i and
then  picks  items  up  from  customer  i+1.  A
different  situation  occurs  when  VRPSPD  is
considered. In this case items are delivered and
picked up at the same time. We do not know a
priori whether the difference between delivered
and picked items would be positive or negative.
Thus,  we  have  one  situation  where  a)  the
vehicle load only increases after certain number
of customers,  b)  vehicle loads only decreases
after certain number of customers or, a mix of
situations a and b above. Clearly, this situation
makes the problem much harder to solve than
previously  presented  models.  Below,  we
present  the  mathematical  formulation  for
VRPSDP obtained from [2]. 

Let  J  be  the  set  of  all  customer  and
J 0=J ∪ {0 }  be the set  of  all  customer  and a

central depot. Total number of nodes (number
of customers + 1) is denoted by  n=|J 0| . Let
Dj be the number  of items to be delivered to
customer  j∈ J  and  P

j  be  the  number  of
items  to be picked up from customer  j∈ J .
Let V  be the set of all the considered vehicles.
Let  Icap be the vehicle capacity. We assume all
vehicles have same capacity. Distance between
nodes i  and j is denoted by c

ij , where i∈J 0 ,
j∈J 0  and i≠ j . If i= j  then c

ii
=M , where

M  is a large number such as:

M =max {∑j ∈J

(D j+P j) ,∑
i∈J

∑
j∈J 0 , i≠ j

C ij} .

Distance c00=0 . 

The model for the VRPSDP is as follows:

minimise z=∑
i∈J 0

∑
j ∈J 0

∑
v∈V

cij × xijv (1)

Subject to

∑
i∈ J 0

∑
v∈V

xijv=1 ∀ j∈ J (2)

∑
i∈ J 0

xisv= ∑
j∈ J 0

x sjv ∀ s∈ J ,∀ v∈V (3)

l
v

0=∑
i∈ J 0

∑
j∈ J

D
j
× x

sjv
∀ v∈V (4)

l
v

1
≥ l

v

0−D
j
+P

j
−M (1− x0 jv ) ∀ i , j∈ J (5)

lv

j
≥ l v

i −D j+P j−M (1−∑
v∈V

x ijv)
∀ i , j∈ J ,i ≠ j

(6)

l
v

k
≤ I

cap
∀ k={0,… , n } ,∀ v∈V (7)

π j ≥ πi+1−n (1−∑
v∈V

xijv)
∀ i , j∈ J ,i ≠ j

(8)

π
j
≥ 0∀ j∈ J (9)

xijv∈ {0,1 }∀ i , j∈ ,∀ v∈V (10)

Objective  function  (1)  is  the  total  distance
travelled  by  all  the  considered  vehicles.
Constraint (2) makes sure that all customers are
served exactly once. Constraint (3) ensures that
each  customer  is  always  served  by the  same
vehicle  (forward  and  reverse  logistic).
Constraint  (4)  sets  the  starting  vehicle  loads
and  inequalities  (5-6)  limit  the  vehicle  load
after  visiting  customer  one  and vehicle  loads
for all  other arcs considered within the route,
respectively. We can also limit the vehicle loads
as in (7). Equation (8) makes sure that no sub-
tours are allowed. Finally, Equations (9-10) are
integrity constraints.

3. Proposed ACS approach.

In  this  section  we  begin  with  a  general
explanation on the Ant System (AS) algorithm
which  is  the  framework  of  the  Ant  Colony
System implemented in this study. 

AS  metaheuristic  is  based  on  real  ants
behaviour. One distinctive feature in AS is the
indirect  communication  between  so  called
artificial ants by mean of artificial pheromone

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 135



trails. This pheromone trails in AS corresponds
to distributed, numerical data that is used by the
artificial ants to decide among alternative paths
to generate a solution for the problem that  is
being solved [8]. 

Basically,  AS extracts  three  main  ideas  from
natural ant behaviour [10]: (i) An individual ant
prefers  those  paths  which  accumulate  higher
pheromone level, (ii) The shorter the path the
faster pheromone level increases; and (iii) Ants
communication  is  done  by  means  of
pheromone trails.

We  can  describe  AS  strategy  as  follows:  A
colony of independent artificial ants that moves
through states  of  the problem in a  concurrent
and  asynchronous  way  generating  partial
solutions  of  the  optimisation  problem.  This
artificial ants move from one state to another by
means  of  a  probabilistic  local  decision  rule
called state transition rule that is based on two
parameters: trails and attractiveness. This policy
assumes  that  artificial  ants  prefer  to  move
through  paths  that  concentrate  higher
pheromone level. After each iteration, each ant
builds up a solution. After the last iteration, each
ant  evaluates  the  solution  and  modifies  the
pheromone level on the paths that are part of its
solution.  Changing  pheromone  levels  is
important as future ants will make their decision
among different paths based on this information.

Moreover,  trail  evaporation  and,  optionally,
daemon actions are two additional features of
AS.  The  first  one  decreases  all  pheromone
levels  at  each  iteration  to  limit  pheromone
levels  on an arc.  The second mechanism that
could  be  used  when  implementing  an  AS
algorithm is the so called daemon actions. This
mechanism might be considered to implement
centralized actions that  are not possible to be
implemented by a single ant. These centralized
actions includes, among others, a call to a local
optimization  strategy  and  global  information
(such as pheromone levels) updating process, to
decide whether to bias the search process from
a non-local view.

Another mechanism that is implemented in AS
is  the  move  probability  distribution which
defines probability p

k
(r , s)  as the probability

of an ant  k in  r chooses  s  as its  next node.
This probability would be equal to 0 if leg (r,s)
is not feasible for ant  k. A move might be not
feasible if, for instance, source and destination
nodes are both in the tabu list of ant k. Tabu list
corresponds  to  a  list  that  includes  all  those

infeasible moves for ants k  starting from state
r.  If  a  move  is  feasible,  its  probability  is
computed as in Equation (11).

pk (r , s)={ [τ (r ,s ) ] [η (r , s ) ] β

∑
u∈ tabu

k

[τ (r , u ) ] [η (r , u ) ] β
if s∉tab uk

0 otherwise

(11)

In expression (11),  tabuk is the tabu list of ant
k  explained before. Parameter β  corresponds

to  a  number  that  is  a  coefficient  between
pheromone levels and distance. At the end of
each  iteration  t,  i.e.  after  every  ant  has
generated  its  solution,  pheromone  levels  are
modified using the following rule:

τ (r , s)=(1−α) τ (r , s)+∑
k=1

m

Δ τk (r ,s) (12)

where

Δ τk (r , s)={ 1
Lk

if (r , s)∈tour done by ant k

0 otherwise

corresponds to the cumulative contributions of
ants that pass through arc (r , s )  to generate its
solutions.  Evaporation coefficient,  denoted by
α with 0≤  α ≤1, is a parameter defined by the
user. Length of the tour performed by ant  k is
denoted by  L

k . Finally,  m  corresponds to the
total number of ants.

In order to make those paths that are better in
terms  of  the  objective  function  value  more
attractive for future ants,  contribution of each
ant  is  proportional  to  the  quality  of  its
solutions. In this way, arcs that generate better
solutions  will  have  higher  pheromone  levels
and,  consequently,  will  be  more  attractive  to
future  ants.  This  is  also  important  for  the
algorithm convergence speed.

AS  algorithms  including  all  mechanism
described before have demonstrated to be very
effective  in  solving  complex  routing
optimisation problems such as the well-known
travelling salesman problem and VRP (see [8]
and [9] respectively for further details).

Ant Colony System (ACS) has three variants w.r.t.
the AS algorithm [12] explained above. Firstly,
ACS  incorporates  a  state  transition  rule  that
allows us to keep a balance between exploration
of  new edges  and exploitation  of  a  priori  and
accumulated  knowledge  about  the  problem.
Moreover, we apply the global updating rule only
to  the  best  tour  in  ACS.  This  means  that
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pheromone levels in those arcs that are not part of
the best tour can only decrease due to the trail
evaporation  mechanism.  Finally,  ACS
implements a local updating rule that is applied at
each step of the solution generation.  Equations
(13), (14) and (15) show these variants.

s={argmax
u∉tab uk

[τ(r , u)] [η(r , u)]β if q⩽q 0

S otherwise
(13)

Where q is a pseudo-random number uniformly
distributed  [0,  1]  and  q0  is  a  user  defined
parameter,  with  0⩽q0⩽1 .  On  the  one  hand
parameter  q0   close  to  0  means  that  more
exploration  over  the  search  space  would  be
performed.  On the other  hand,  parameter  q0

near  to  1  means  more  exploitation  over  a
specific neighbourhood. S is a random value.

τ (r , s )=(1−α )τ (r , s )+α Δ τ k (r , s) (14)

Where

Δ τ (r , s)={ 1
Lgb

if (r , s)∈global best tour

0 otherwise

L
k  is  the  global  best  tour  length.  A local

updating  rule  is  also  implemented  in  ACS
algorithm.  This  local  rule  is  applied  at  each
iteration and is as follows,

τ (r , s)=(1−ρ) τ (r , s)+ρΔ τ( r ,s) (15)

where 0 ≤ ρ ≤1. Finally, Algorithm 1 shows the
ACS structure.

Algorithm 1: Ant_Colony_System
Algorithm Framework

4. Computational Results

In  this  paper  an  ACS  heuristic  has  been
implemented using C language. We use a well-
known benchmark  consisting  of  20  VRPSPD
instances  to  test  our  approach.  This  section
presents results obtained by our ACS approach
for those benchmark instances.

The  problem  set  consists  of  20  problem
instances  of  50  customers  each  one.  These
instances  are  divided  into  two  different
geographical  scenarios:  the  scattered  one
namely  SCA3-x  and  the  concentrated  one
CON3-x.  In the scattered scenario,  a uniform
distribution [0, 100] is used to randomly locate
customer  over  a  100x100  geographical  area.
For the concentrated instances, again a uniform
distribution [0, 100] is used to randomly locate
customer half of the customer population, while
a uniform distribution [100/3, 100/3] is used to
randomly locate the other half of the customer
population. Urban distributions where most of
the customers are concentrated into 1/9th of the
area  are  very  similar  to  the  concentrated
scenario. Figures 1 and 2 show both scattered
and concentrated scenarios respectively.

Figure 1. Customer randomly distributed over a
100x100 geographical area

using a scattered distribution.

Figure 2. Customer randomly distributed over a
100x100 geographical area using a concentrated

distribution.
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Begin{

 Do{

  For each ant: initialize its solution

   Do{

    For each ant: 

     Apply rule (η(r,s),τ(r,s)) 

     Local Update

    End for

   }Until all  ants  have  completed

their solutions

   Global_update (τ (r , s))

  }Until stop criterion is reached

}End



Items  to  be  delivered  to  the  customers  are
uniformly distributed over the interval [0,100].
Items to be picked-up  Pj corresponding to the
delivery  demand  Dj is  computed  by  using  a
random number  rj that is uniformly distributed
over the interval [0, 1] such that  Pj=(0.5+rj)Dj

[2]. The transportation cost matrix is calculated
as the Euclidean distance. The problem set we
use  to  evaluate  our  ACS  approach  was
introduced in [2] was also used in [4] and [13],
where authors apply a TS strategy to solve the
problem.  Solution  values  obtained  for  each
considered algorithm are summarized in Table 1.
Our algorithm is run 20 times for each instance.
Results showed here correspond to the average
values obtained from those experiments.

As Table 1 shows, our ACS algorithm performs
very  well  especially  when  compared  to  the
algorithm presented  in  [2].  In  that  case,  our
algorithm reaches, in average, solution values
that  are  5,62%  below  results  previously
obtained in [2].  Moreover, when compared to
the Tabu Search algorithm presented in [6], our
algorithm is only better for some few instances.
Despite our algorithm is, in average, 1% more
expensive  than  the  one  presented  in  [6]  it
converges  significantly faster  which is  also a
desirable feature.  

5. Conclusions and Future Work

The  VRPSDP  problem  is  a  very  important
problem  arising  in  the  logistic  industry.
Unfortunately,  this  problem is  quite  complex
from  a  mathematical  point  of  view  and
obtaining optimal solutions for instances with a
large  number  of  decision  variables  using
traditional  mathematical  programming
techniques is not possible within a reasonable
computational time. Thus, we need to explore
other techniques different than the exact ones.
In this context heuristic approaches allow us to
obtain  high  quality  solutions  within  an
acceptable  computational  time.  In  this  article
we have considered an ACS algorithm to solve
the problem. 

Our  ACS  algorithm  is  shown  to  be  quite
competitive when compared to other techniques
in  literature.  In  this  article,  our  ACS
implementation  outperforms  results  obtained
previously  in  [2].  Furthermore,  it  is  quite
competitive when compared to other well-known
approaches such as the one presented in [6]. 

Moreover, our algorithm converges faster than
other well-known local search strategies, which
is also important particularly when very large
scale problems are addressed. 

As  a  future  work,  improved  movements  and
rules  could  be  implemented  to  improve  the
exploration  features  of  our  algorithm.
Moreover,  variants  of  the  VRPSDP  problem
such as the one that incorporates time windows
could  be  considered,  this  make  the  problem
much more complex though.
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Table 1. Obtained Results for all the 20 instances
considered in this study.

Instance
RCRS[2] TS-Heuristic ACS

Best Veh. Best Veh. Best Veh.

SCA3-0 689.0 - 640.6 4 656.4 4

SCA3-1 765.6 - 697.8 4 705.5 4

SCA3-2 742.8 - 659.3 4 662.2 4

SCA3-3 737.2 - 680.0 4 695.8 4

SCA3-4 747.1 - 690.5 4 712.2 4

SCA3-5 784.4 - 659.9 4 669.0 4

SCA3-6 720.4 - 653.8 4 669.9 4

SCA3-7 707.9 - 659.1 4 682.1 4

SCA3-8 807.2 - 719.5 4 733.3 4

SCA3-9 764.1 - 681.0 4 694.5 4

CON3-0 672.4 - 631.4 4 622.2 4

CON3-1 570.6 - 554.5 4 570.9 4

CON3-2 534.8 - 522.9 4 525.4 4

CON3-3 656.9 - 591.2 4 596.3 4

CON3-4 640.2 - 591.1 4 602.1 4

CON3-5 604.7 - 563.7 4 583.2 4

CON3-6 521.3 - 506.2 4 520.0 4

CON3-7 602.8 - 577.7 4 588.9 4

CON3-8 556.2 - 523.1 4 541.2 4

CON3-9 612.8 - 580.1 4 600.7 4
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