
1. Introduction

A Virtual Environment (VE) imitates a certain

real environment. It should make user feel as

residing in the real environment. Hence, VE

should meet some requirements occurred in the

real world. To involve many users in a VE,

Distributed Virtual Environment (DVE) is

required. Many users in separated places can

come together to collaborate in a VE. DVEs have

many applications used in games, education, war

simulation, medical simulation, etc.

Virtual world is one of the most popular

applications of DVE. For instance, Second Life

[1] is state of the art of virtual worlds. On May

2012, the world of Second Life was made up of

thousands of regions, which if they are linked

together will spread over 1,962.93 km2 of

virtual lands [2]. The world consists of avatars,

terrains, trees, buildings, and other objects.

DVEs may have a very large number of objects

and users at a time and that can easily overload a

fast network, and impose huge processing

requirements at the server and client computers.

As computing resources are limited, there are

obvious problems that arise once the number of

objects and users in a simulation reach a certain

limit. If no special mechanisms are provided, one

may expect a DVE to produce undesirable effects

such as choppy rendering, and loss of

interactivity.

This paper focuses on this scalability issue.

Scaling a DVE depends on two aspects, i.e.

scaling the number of concurrent users interacting

with each other, or scaling the scene complexity

(number of objects and the complexity of their

behaviours and appearances).

Several methods have been generated to scale

DVEs such as dividing simulation workload [3]

[4], using dynamic load balancing among

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro

A Large Scale Distributed Virtual

Environment Architecture

Elfizar1,2, Mohd Sapiyan BABA3, Tutut HERAWAN1,*

1 Faculty of Computer Science and Information Technology, University of Malaya,

Pantai Valley, Kuala Lumpur, 50603, Malaysia

elfizarmd@gmail.com; tutut@um.edu.my

2 Information System Department, University of Riau,

Kampus Binawidya, Pekanbaru, 28293, Indonesia

3 Gulf University of Science and Technology,

Kuwait City, Kuwait, Kuwait

sapiyan.m@gust.edu.kw

* corresponding author

Abstract: Virtual Environment (VE) is a simulation application that is widely used for the development of computer

generated synthetic environments. A Distributed VE (DVE) allows many users to access a VE concurrently from different

locations. Most current DVEs are still using simulator-centric architecture that views VE operations as a set of

homogenous simulators, each aggregating data structure and all the actors operating on the data structure. This

architecture limits the number of users involved in the DVE. It reduces users’ experiences because the area of VE is

restricted. Also, when the number of objects increases, the VE runs more slowly. Although other architectures such as

Distributed Scene Graph and Sirikata, have become available, the simulator still manages many objects in the simulation.

It also restricts the number of objects and users involved in the VE. This paper proposes a new architecture to enable large

scale distributed virtual environment. A simulator separation method is developed based on objects consisting of one

process for one object (1P1O). The 1P1O architecture has a core component that comprises several simulators. In order to

maintain the object, each simulator has two engines: physics engine and scripts engine. To maintain the consistency of the

simulation, we introduce Universe that stores all objects state generated by simulators. Universe is responsible to store the

state updates and disseminate them to interested simulators. There are two aspects used to evaluate the scalability of the

1P1O model, i.e. the number of objects and the number of concurrent users involved. Parameters such as CPU usages and

memory allocation are used to analyze and evaluate the performance of the model. Experiments are conducted with

varying number of objects and users. Compared with current architecture, the 1P1O model scalability and performance are

better than current existing models in P2P network. The experiment results also comply with the mathematical model of

the simulator and universe.

Keywords: Distributed virtual environment, 1P1O model, Large scale DVE, Architecture.

159

servers [5], and creating alternative

architectures [6][7][8][9]. Scaling the DVEs

can be done at the server’s side (using cluster

or cloud computing) or the client’s side (using

peer-to-peer model). Unfortunately, those

techniques are not enough for DVEs with huge

number of objects and thousands of concurrent

users. Some limitations still occur in the current

DVEs. Increasing the number of objects and

users decreases the performance of DVE.

This paper proposes a novel DVE architecture,

called 1P1O model, to scale up the present

DVEs. In the proposed architecture, each object

in DVE is treated as a separated process: one

process for one object (1P1O). This concept is

inspired by the real world in which there are

many objects composing the world. They may

be static objects and dynamic objects, and there

are interactions among them. Each object has

control to itself to determine what kind of

properties and behaviours it should appear in

the world.

This paper makes two research contributions.

The first is 1P1O model, a novel DVE

architecture that provides a large scale DVE.

This model is unlike existing DVE

architectures, where a simulator manages many

objects. 1P1O breaks the DVE into three

components: object simulators, universe, and

Content Delivery Network (CDN). An object

simulator just simulates an object. Since object

simulator is an independent process, the

workload-balancing problem can be solved.

DVE researchers and developers can use this

architecture to scale up their applications in

order to accommodate many objects and users

in the environment.

The second contribution is the mathematical

model of 1P1O. It is able to simplify the

architecture. By means of the mathematical

model, we are able to determine the

characteristics of the architecture including the

model complexity so that we can compare the

1P1O model with others.

The rest of the paper is organized as follows.

Section 2 presents the current approaches used

by researches in scaling up the DVE. Section 3

explores the 1P1O model as a proposed method

along with its mathematics model. The

experimental results and discussion are

described in Section 4. Finally, Section 5 gives

some conclusive remarks and future work.

2. Related Work

In present DVEs, entities and activities are

managed by a simulator. When the simulator

workload increases, the researchers use two

approaches to scale the DVE: splitting the region,

and separating the component of DVE simulator.

2.1 Splitting the region

To decrease the simulation workload, this

approach divides the region into smaller areas and

each area is simulated by a simulator. Thus, the

simulation workload of each area becomes smaller.

Second Life as a famous DVE application uses

this approach. The world is divided into a large

number of small regions. Each region has area

of 256m x 256m and owned by exactly one

simulation server. OpenSim [10], an open

source DVE that has a system’s architecture

similar to and compatible to Second Life

architecture, also uses this approach.

Most current Massively Multiplayer Online

Games (MMOGs) use this static region-

partitioning model. To prevent server crashes,

game operators have resolved to use sharding

[11]. The World of Warcraft [12], the most

popular MMOG, uses this sharding method.

To increase flexibility of resource allocation

and address the over-provision problem when

the peak load occurs, managing each DVE

region can be integrated with cloud computing

[13][14]. Peer-to-peer (P2P) is a new solution

to scale up the DVE. Generally, it distributes

the server roles to peers. In [15], the authors

propose hybrid approaches where the world is

divided into regions and each region is assigned

to a peer belonging to a structured P2P overlay.

Several approaches allow only those peers that

satisfy particular requirements in term of

hardware capability to manage part of the

simulation. These special peers are referred as

Super Peers (SP) and usually manage a region

so that each peer in the region is connected to

them [16].

Splitting the region can also be done by

considering the Area of Interest (AOI). Several

works [17][18][19] use Voronoi overlays to

maintain AOI, which eases the identification of

neighbours. To improve the DVE performance,

the hybrid of P2P and Cloud architecture can be

used [20].

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 2, June 2015160

2.2 Separating the components

It is the second approach used by researchers to

scale up the DVE. Even though the region has

been split into sub-regions, the problem still

occurred as the number of objects or users in a

sub-region increases dramatically.

To address the problem, the researches generate

alternative architectures. Some simulator

components are separated from the main

simulator so that the workload of main simulator

can decrease. The separated component does its

tasks in independent process and then the results

are sent to main simulator.

Distributed Scene Graph (DSG) [8] uses this

approach. It views the DVE operations in

general as a collection of the “Scene” and the

actors operating on the Scene using a Scene

service layer. Actually, DSG is inspired by

Dakstar [6] that implements DVE logic as

small transactional tasks distributed across

servers. DSG separates the physics and script

engine as well as client managers from the

main simulator. Each actor is responsible to do

its task when the simulation runs, and all actors

are mediated by Scene.

Another architecture is Sirikata [9][21].

Sirikata’s architecture has three components:

space, object host, and Content Delivery

Network (CDN). It is different from the

traditional approach where all objects together

with their scripts and data are simulated on a

single server or a cluster. Sirikata suggests

using an independent Content Delivery

Network (CDN), which synchronizes data that

is mostly static or changes rarely, e.g. model

meshes or textures. This allows reducing the

network load from the space server.

3. Proposed Model

Different from the existing DVE architectures,

our proposed model, called 1P1O model, has

several simulators to manage the object activities

and appearances. Object residing in DVE is

represented by a process. It maintains the object

behaviours and appearances in the environment.

Two subsections below present the 1P1O model

in detail and its mathematics model.

3.1 The 1P1O model

In present DVE architectures, a simulator

manages many objects. As the number of

objects and users increase, the workload of

simulator increases. Conversely, in the

proposed architecture, simulator is no longer a

single process that controls many objects. Each

object is treated as a process or simulator.

Hence, this architecture we call 1P1O model:

one process for one object. This model makes

object be independent in managing itself.

1P1O model has three components, i.e. object

simulators, universe and Content Delivery

Network (CDN) as shown by Figure 1.

Figure 1. 1P1O architecture

3.1.1 Object simulator component

The core component of 1P1O model is

represented by simulators that comprise several

object simulators. Object simulator is

responsible to simulate the appearances and

behaviours of the object. Figure 1 shows that

there are n object simulators simulating n

objects in VE. The object simulator-1 is

simulator for the first object, the object

simulator-2 is simulator for the second object

and finally, object simulator-n is simulator for

nth object.

The object simulator has two components used

in managing an object: scripts and physics

engine. Scripts engine is used to run the object

scripts that determine the appearances and

behaviours of object whereas physic engine

runs the physics simulation of the object. It

ensures that the object enforces the physics

laws. Examples are gravity pole, collision

handling, etc.

An object simulator is a process in DVE,

allowing it to specify their behaviour in scripts

and providing it access to the universe

component. The viewer is also an object in

DVE so that it is represented by a process too.

Different from other objects, the viewer is able

to display the environment. A user in VE may

be represented by avatar.

One important thing is that each simulator can

reside in different hardware since it is an

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 161

independent process. Thus, it is scalable with

the additional hardware.

3.1.2 Universe component

The universe component in 1P1O model is

responsible to determine what objects reside in

the environment, their location, and their physical

properties. This component has similarity to the

scene in DSG architecture [8] and the space

server in Sirikata architecture [21]. It stores object

properties in a VE such as object identifier,

position, and physical properties.

Universe may be run by one or more computers

(called universe server) which segment the

geometric coordinates of the VE. Similar to

object simulator, the universe component is

scalable to the additional hardware.

Since universe component stores the location

and properties of objects, it is able to

synchronize the objects position and properties

among interested simulators. All object

simulators send state updates to universe, and

universe just disseminates those updates to the

interested simulators. Universe is then also able

to make an object know the nearest objects.

3.1.3 Content delivery network

Content Delivery Network (CDN) is similar to

CDN component in the Sirikata architecture. It

stores permanent data and delivers it to the

other components. Meshes that are used to

display objects are example of the data stored

on CDN. Viewers are able to download them to

view the VE. The CDN is able to be as simple

as a web server. It really needs only to serve

requests for files [21].

3.2 Mathematics modelling

In this section, we describe the mathematical

model for the present and 1P1O architecture.

This model is used to determine the complexity

of the 1P1O compared to present architecture.

The complexity of 1P1O architecture depends

on the complexity of object simulators and

universe. Hence, this section is divided into two

categories: mathematics model for simulator

and universe.

3.2.1 Simulator mathematics model

As described before, the present architectures

has simulator that simulates several objects.

DSG uses script engine and physics engine that

each simulates several objects. Although this

actor is able to use multi-servers but each

remains simulating several objects in a scene.

Similar to DSG, Sirikata’s object host also

simulates many objects.

An object in DVE is able to be supposed as a

set because it comprises a collection of prim

(primitive object) such as a cube or a sphere.

Computation component is able to make an

object change in either its appearance or

behaviour, so it is a function.

Let A, B be disjoint sets representing two

objects in VE. Let computation component be a

function f. The current simulator is able to be

represented by f (A∪B) . This function means

a simulator that simulates many objects (object

A and B) in the environment.

Suppose that g (A∪B) and h (A∪B) are

script and physics engine, respectively. The

DSG architecture uses those functions as their

simulators that are separated from scene

component, while Sirikata just separates
g (A∪B) from space.

Different from two architectures above, 1P1O

architecture defines each object simulator as
g (A)∪h(A) . It means that a simulator which

contains script and physics engine for its object

i.e. A. Hence, we have to show that:

g (A∪B)∪h(A∪B)
=(g (A)∪h(A))∪(g (B)∪h(B))

(1)

To prove the equation (1), we use a set theory

theorem that:

f (A∪B)= f (A)∪ f (B) (2)

Proof:

g (A∪B)∪h(A∪B)
=g (A)∪g (B)∪h(A)∪h (B)
=(g (A)∪h (A))∪(g (B)∪h(B)). ■

Suppose that there are N objects (P1,P2,…,Pn)

in a scene or region, so we should show that:

g (∪
i=1

n
P

i
)∪h(∪

i=1

n
P

i
)

=∪
i=1

n (g (P
i
)∪h(P

i
))

(3)

To prove (3), first we should show that:

f (∪
i=1

n
P

i
)=∪

i=1

n
f (P

i
) (4)

Proof:

Based on associative law:

f (P
1
∪P

2
∪P

3
)= f ((P

1
∪P

2
)∪P

3
)

Then, based on equation (2):

f (P
1
∪P

2
∪P

3
)= f (P

1
)∪ f (P

2
)∪ f (P

3
)

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 2, June 2015162

Using the same way, then:

f (P
1
∪P

2
∪P

3
∪P

4
)

= f (P1)∪ f (P2)∪ f (P3)∪ f (P4)

Suppose that:

f (P1∪P 2∪⋯∪P k)= f (P1)∪ f (P2)∪⋯∪ f (Pk)

Then, for n=k+1 we have:

f (P
1
∪P

2
∪⋯∪P

n
)

= f ((P1∪P2∪⋯∪Pk)∪P k+1)
= f (P

1
)∪ f (P

2
)∪⋯∪ f (P

k
)∪ f (P

k+1
)

Thus,

f (∪
i=1

n
P

i
)=∪

i=1

n
f (P

i
). ■

Now, using (4) we can prove (3) as below:

Proof:

g (P
1
∪P

2
∪⋯∪P

n
)∪h(P

1
∪P

2
∪⋯∪P

n
)

=g (P1)∪g (P2)∪⋯∪g (Pn)∪
h(P

1
)∪h(P

2
)∪⋯∪h (P

n
)

=(g (P1)∪h (P1))∪(g (P2)∪h (P2))∪⋯∪
(g (P

n
)∪h(P

n
))

=∪
i=1

n (g (P
i
)∪h (P

i
)) ■

The left side of equation (3) represents the

present architecture simulator whereas the right

side is the 1P1O object simulator. Since

simulator handles n objects, the present

architecture simulator has script complexity of

O(n) and physics complexity of O(n2). For

1P1O model, the simulator has script

complexity of O(1) and physics complexity of

O(log(n)). Hence, the 1P1O simulator

complexity is lower than present architectures.

3.2.2 Universe mathematics model

Universe is one of the important components in

1P1O architecture. It manages the overall

environment. It receives sate updates from

object simulators and disseminates the updates

to the interested simulators.

DSG has scene component whereas Sirikata

has space to do this task. Sirikata has similarity

to the 1P1O model, therefore some space

components can be used in universe but physics

engine. In 1P1O, physics simulation is handled

by object simulators.

Let Sk be object simulators, k ≤n . Let
t (S

1
∪S

2
∪⋯∪S

k
) be a function to receive

and disseminate state updates to object

simulator S1, S2,..., Sk. Since physics simulation

is integrated in the space, the Sirikata space

component can be represented by:

Space=h (P
1
∪P

2
∪⋯∪P

n
)

∪t (S 1∪S 2∪⋯∪S k)
(5)

Equation (5) gives the result that the space

component has complexity of O(n2).

As illustrated by Figure 1, the universe

component of 1P1O model has the main task to

receive query from objects and disseminate the

state changes to nearest objects. Thus, it is able

to be represented by:

Universe=t (S
1
∪S

2
∪⋯∪S

k
) (6)

Because universe handles n object simulator

and only needs to disseminate the state updates

to the nearest objects, the complexity of this

component is O(n.log(n)).

4. Result and Discussion

The 1P1O model actually represents the DVE

as a real world that consists of many objects,

continuous space. It is different from the

current DVE architectures which are based on

partitioned, shared-nothing designs. This paper

implements 1P1O model in peer-to-peer (P2P)

network. The experimental setup, results,

model verification, and discussion are

presented in four subsections below.

4.1 Experimental setup

Figure 2 illustrates the 1P1O model

implemented in P2P network using super peer

(SP). The SP is chosen because this topology is

suitable to run the universe component. Each

simulator is assigned to a physical node, i.e. a

peer. A node is also able to manage some

simulators. All peers locating in a region are

managed by the same SP. The SP is responsible

to collect state changes of the objects and

disseminate them to all interested peers.

Figure 2. 1P1O implementation

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 163

The implementation of 1P1O in P2P network

allows users maintain their objects. Users are able

to add computational resources to run objects.

They may run objects on hosts they control. It is

absolutely able to deliver a large number of

objects and users residing in the DVE.

A number of three applications are used in the

experiment: object simulator, viewer, and

universe. The objects used in the experiment

are boxes with varying sizes and masses. The

experiment simulates the objects falling from a

certain hight to the ground and colliding with

each other (see Figure 3). The collision is able

to occur between object and ground or among

objects. The object appearances and behaviours

are simulated by an object simulator.

Figure 3. Falling Objects

The objective of this experiment is to evaluate the

1P1O model when it is run in P2P network. The

parameters used in the evaluation process are:

- Scalability of the model; It is measured by

using the frame rate of simulation with

respect to varying number of objects and

users involved in the DVE.

- Performance of the model; It is measured

by using the CPU usage and memory

allocation for simulator.

As illustrated by Figure 2, simulators are

executed on each peer computer. The

experiment uses two computers with dual core

1.6 GHz processor to execute the simulators

and viewers. The number of simulator and

viewer in each computer is the same. The

universe component runs on a computer with

processor 1.6 GHz.

To compare the 1P1O results, we use Sirikata

model that the object host runs on a computer

with dual core 1.6 GHz, and the viewers run on

another dual core computer 1.6 GHz. The space

server uses the similar computer specification

to universe. The experiment uses varying

number of objects and concurrent users.

Some variables measured in this experiment are

the frame rates of universe and space with

respect to the number of objects and users,

CPU usage of simulator for both models, CPU

usage of universe and space, memory allocation

for simulator of both models, and memory

allocation for universe and space. The first

variable is used to determine the scalability of

the model. We use this parameter to know the

effect of increasing the number of objects and

users with respect to the frame rate of

simulation. The other variables measured in

this experiment are used to determine the

performance of both models.

4.2 Experiment results

The subsections below are presented based on

the variables measured in the experiment.

4.2.1 Frame rates of model based on objects

Table 1 shows the frame rate of 1P1O model

for varying number of objects. These frame

rates are measured from the condition where

universe has already received all updates and

disseminated the updates to interested objects

to thirty seconds after that condition. Hence,

there are six measurements because the frame

rate is displayed in every five second. The

frame rates are stated in frame per second (fps),

and the average frame rates is provided at the

right side of table. From Table 1, we note that

the increasing number of objects decreases the

frame rate of simulation.

Table 2 illustrates the frame rates of space in

Sirikata model. These frame rates are measured

by using the same manner as 1P1O model.

Thus, they also consist of six measurements for

varying number of objects. This table also

shows that the frame rates of simulation

decrease with the increasing number of objects.

The comparison between average frame rates of

1P1O model and Sirikata is illustrated in Figure 4.

In fact, the 1P1O model has frame rates higher

than Sirikata. 1P1O model frame rates also do not

strictly decrease as occurred to Sirikata.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 2, June 2015164

Figure 4. Average frame rates of models based on

varying number of objects

4.2.2 Frame rates of model based on users

The frame rate of 1P1O model based on the

number of users can be seen in Table 3. The

increasing number of users also decreases

the frame rates of simulation. Further, the

frame rates of Sirikata are drawn by Table 4.

They are measured from frame rates of

space that determines other components in

Sirikata architecture. In fact, similar to

1P1O, the Sirikata frame rates also decrease

with the increasing number of users in VE.

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 165

Table 1. Universe frame rates based on objects

Number of

object

Universe frame rates (fps)

1 2 3 4 5 6 Avrg

10 59.157 59.325 59.204 59.105 59.686 59.421 59.316

20 58.898 59.324 59.647 59.635 58.720 59.439 59.277

30 59.260 58.957 59.438 59.121 58.904 59.313 59.166

40 59.132 58.889 59.507 59.011 59.283 58.745 59.095

50 58.799 59.206 59.147 58.958 59.075 59.241 59.071

60 58.645 58.850 58.903 59.472 59.212 59.366 59.075

70 59.206 59.112 58.758 59.037 58.845 59.221 59.030

80 59.050 58.824 59.318 59.156 58.912 58.860 59.020

90 58.932 59.155 58.876 59.033 58.812 59.149 58.993

100 58.878 58.975 59.261 58.980 59.186 58.774 59.009

Table 2. Space frame rates based on objects

Number of

object

Space frame rates (fps)

1 2 3 4 5 6 Avrg

10 59.378 58.613 58.472 58.528 59.363 59.187 58.924

20 59.152 59.330 58.965 58.749 58.207 59.047 58.908

30 59.251 57.769 58.340 58.384 58.186 58.518 58.408

40 56.988 58.077 57.598 58.952 57.993 57.787 57.899

50 56.551 57.767 56.330 57.154 56.823 57.549 57.029

60 57.092 56.890 56.956 56.881 57.192 56.166 56.863

70 56.767 57.362 57.327 56.712 56.322 56.767 56.876

80 57.533 56.122 55.833 55.512 56.598 56.165 56.294

90 56.516 56.255 56.578 55.580 55.783 56.966 56.280

100 55.321 55.913 55.780 55.986 56.184 55.477 55.777

It means that increasing the number of users

increases the workload of simulation.

The comparison of average frame rates

between 1P1O and Sirikata model is able to be

seen in Figure 5. Similar to the last section

results, this figure shows that the frame rate of

1P1O model is higher than Sirikata. The frame

rates of 1P1O model do not strictly decrease as

occurred to Sirikata.

Figure 5. Average frame rates of models based on

varying number of users

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 2, June 2015166

Table 3. Universe frame rates based on users

Number of

object

Universe frame rates (fps)

1 2 3 4 5 6 Avrg

10 59.544 59.540 59.440 59.532 59.586 59.622 59.544

20 59.482 59.530 59.577 59.545 59.550 59.539 59.537

30 59.360 59.372 59.338 59.410 59.304 59.313 59.350

40 59.530 59.529 59.530 59.527 59.533 59.520 59.528

50 59.366 59.206 59.347 59.336 59.342 59.414 59.335

60 59.381 59.238 59.290 59.272 59.252 59.266 59.283

70 59.417 59.381 59.408 59.387 59.403 59.415 59.402

80 59.249 59.253 59.285 59.256 59.232 59.246 59.254

90 59.198 59.212 59.196 59.245 59.234 59.156 59.207

100 59.178 59.205 59.216 59.195 59.186 59.198 59.196

Table 4. Space frame rates based on users

Number of

object

Space frame rates (fps)

1 2 3 4 5 6 Avrg

10 59.189 59.240 59.248 59.230 59.566 58.519 59.165

20 58.709 59.095 58.994 59.664 58.395 59.041 58.983

30 58.161 58.766 57.554 57.530 58.715 58.074 58.133

40 57.902 57.912 57.113 58.169 57.551 57.647 57.716

50 58.183 57.829 57.530 58.534 58.351 58.185 58.102

60 57.993 57.704 57.167 58.126 57.107 56.561 57.443

70 56.198 57.690 56.768 57.185 58.111 57.570 57.254

80 56.117 56.918 57.199 57.200 57.827 58.461 57.287

90 55.981 56.364 56.338 57.521 57.793 57.323 56.887

100 56.971 56.372 55.913 56.182 56.567 57.033 56.506

4.2.3 CPU usage of simulator

The CPU usages of both 1P1O object simulator

and Sirikata object host for varying number of

objects are able to be seen in Figure 6.

From this figure, we note that CPU usage of

1P1O simulator is lower than Sirikata.

Furthermore, the difference of the CPU usage

between both models is striking. For example,

the CPU usage of 1P1O simulator for 100

objects is 38.17% and this value is almost equal

to CPU usage of Sirikata simulator for 30

objects (39.87%). Thus, there is significant

decreasing of CPU usage of 1P1O simulator

compared to Sirikata simulator.

Figure 6. CPU usage of 1P1O & Sirikata Simulator

4.2.4 CPU usage of model

The CPU usage of universe and space for both

models for varying number of objects are

depicted by Figure 7. The Sirikata model has

CPU time longer than 1P1O model. This

behaviour is the same as CPU usage of

simulator. It means that CPU usage of

simulator influences the CPU usage of model.

Figure 7. CPU usage of models

4.2.5 Memory allocation for simulator

The memory allocation for 1P1O simulator

compared to Sirikata simulator is drawn by

Figure 8. From the figure, we note that the

1P1O object simulator uses less memory

than Sirikata.

Figure 8. Memory allocation for simulator

The memory allocation for Sirikata simulator is

linear whereas 1P1O simulator has constant

trend-line for a certain interval.

4.2.6 Memory allocation for model

The comparison of memory allocation between

1P1O and Sirikata model can be seen in Figure

9. From the figure, 1P1O model uses less

memory than Sirikata. For 1P1O model, we

note that increasing number of object in VE has

“delaying time” for increasing memory

allocation. The memory allocation for 1P1O

model is unchanged from 10 to 90 objects. The

value just increases as the number of objects is

100 and this value remains less than Sirikata.

Figure 9. Memory allocation for models

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 167

4.3 Model verification

In this section, we verify two mathematics

models: simulator and universe model. To

verify these models, CPU usages resulted in the

last section are required.

4.3.1 Simulator model verification

Consider Figure 6 that illustrates the CPU

usage of simulator for 1P1O and Sirikata

model. Sirikata is one of the current

architectures that has object host for simulating

the object scripts. With this figure, Figure 10

shows the trend-line of both simulators.

Figure 10. Trend-line of Simulator CPU Usage

From Figure 10, we note that the trend-line of

Sirikata object host is linear so that its

complexity is O(n). Further, the trend-line of

the 1P1O model is logarithmic so that the

complexity of 1P1O object simulator is

O(log(n)). Thus, they comply with mathematics

model in the equation (3).

4.3.2 Universe model verification

To verify the mathematical model in equation (5)

and (6), consider the CPU usage of space and

universe in Figure 7. By drawing the trend-line of

the graph, the complexity of current model

(Sirikata) approaches O(n2) and the complexity of

the 1P1O model approaches O(n.log(n)) as

illustrated by Figure 11. Thus, they comply with

equation (5) and (6), respectively.

Figure 11. Trend-line of models CPU usage

4.4 Discussion

Based on the experiment results, the frame rate of

1P1O model implemented in P2P is higher than

Sirikata for both simulator and model. It occurs

for varying number of objects and users. The

results show that 1P1O model is more scalable

than Sirikata. The increasing number of objects

and users still provide rich user experiences.

The good results are also shown by CPU usage

and memory allocation. The CPU usage of

1P1O model is less than the current model. It

has relationship to CPU usage of simulator that

is also less than current model. Further, the

memory allocation for simulator and model of

1P1O are also less than the current model. With

these results, they show that the 1P1O model

has better performance than current model.

5. Conclusion

We have proposed a new DVE architecture,

called 1P1O, which is able to scale the

distributed virtual environment. Treating an

object as a process and this process can be

distributed over the network. This architecture

may allow additional hardware in the network.

The mathematical model of 1P1O has also been

provided to ease determining the complexity of

model. We have demonstrated that 1P1O model

has frame rate improvement compared with

current DVE model. The results also show that

our model performs better than existing models

for both CPU usage and memory allocation.

The results comply with the mathematical

model.

Finally, we can conclude that the 1P1O model

is more scalable with better performance than

the current DVE architecture. The 1P1O model

can be used by researchers and developers to

accommodate many objects and users in their

DVE without degrade the DVE performance

and user experiences. Our future work is to

implement the 1P1O model in client-server

network and compare the results with P2P

implementation.

Acknowledgments

The paper was funded partly by University of

Riau. The helpful comments and suggestions of

the reviewers are acknowledged.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 2, June 2015168

REFERENCES

1. SECOND LIFE, Second Life, from

http://www.secondlife.com, 2014, accessed

on 27-09-2014.

2. SHEPHERD, T., Second Life Grid Survey

– Region Database, from

http://www.gridsurvey.com, 2012, accessed

on 05-10-2012.

3. FAROOQ, U., GLAUERT, J., Scalable

and Consistent Virtual Worlds: An

Extension to the Architecture of

OpenSimulator, Proceedings of 2011

International Conference on Computer

Networks and Information Technology,

2011, pp. 29-34.

4. CARLINI, E., RICCI, L., COPPOLA, M.,

Flexible Load Distribution for Hybrid

Distributed Virtual Environments,

Future Generation Computer Systems, vol.

29, no. 6, 2013, pp. 1561-1572.

5. LIU, H., BOWMAN, M., Scale Virtual

Worlds Through Dynamic Load

Balancing, Proceedings of IEEE/ACM

Symposium on Distributed Simulation and

Real Time Applications, 2010, pp. 43-52.

6. WALDO, J., Scaling in Games and

Virtual Worlds, Communications of ACM,

vol. 51, no. 8, 2008, pp. 38-44.

7. BYELOZYOROV, S., JOCHEM, R.,

PEGORARO, V., SLUSALLEK, P., From

Real Cities to Virtual Worlds using an

Open Modular Architecture, The Visual

Computer, vol. 28, no. 1, 2012, pp. 1-13.

8. LAKE, D., BOWMAN, M., LIU, H.,

Distributed Scene Graph to Enable

Thousands of Interacting Users in a

Virtual Environment, Proceedings of

Annual Workshop on Network and System

Support for Games, 2010, pp. 140-148.

9. HORN, D., CHESLACK-POSTAVA, E.,

MISTREE, B.F.T., AZIM, T., TERRACE,

J., FREEDMAN, M.J., LEVIS, P., To

Infinity and Not Beyond: Scaling

Communication in Virtual Worlds with

Meru, Stanford Computer Science

Technical Report, CSTR 2010-01, 2010.

10. OPENSIMULATOR, Open Simulator,

from http://www.opensimulator.org, 2014,

accessed on 15-07-2014.

11. DEBEAUVAIS, T., VALADARES, A.,

LOPES, C.V., RCAT: A Scalable

Architecture for Massively Multiuser

Online Environments, from

http://www.ics.uci.edu/~tdebeauv/files/201

3-RCAT.pdf, 2013, accessed

on 12-05-2013.

12. WORLD OF WARCRAFT., World of

Warcraft, from

http://www.worldofwarcraft.com, 2014,

accessed on 12-05-2014.

13. NAJARAN, M.T., HU, S.Y.,

HUTCHINSON, N.C., SPEX: Scalable

Spatial Publish/Subscribe for

Distributed Virtual Worlds Without

Borders, Proceedings of 5th ACM

Multimedia Systems Conference, 2014,

pp. 127-138.

14. RICCI, L., CARLINI, E., Distributed

Virtual Environments: From Client

Server to Cloud and P2P Architectures,

Proceedings of International Conference on

High Performance Computing and

Simulation (HPCS), 2012, pp. 8-7.

15. OLANDA, R., PEREZ, M., ORDUNA,

J.M., Hybrid P2P Schemes for Remote

Terrain Interactive Visualization System,

Future Generation Computer Systems, vol.

29, no.6, 2013, pp. 1522-1532.

16. KIM, K.C., YEOM, I., LEE, J., HYMS: A

Hybrid MMOG Server Architecture,

IEICE Transactions on Information and

Systems, vol. E87, 2004, pp. 2706-2713.

17. ALMASHOR, M., KHALIL, I., TARI, Z.,

ZOMAYA, A.Y., Automatic and

Autonomous Load Management in Peer-

To-Peer Virtual Environments, IEEE

Journal on Selected Areas in

Communications, vol. 31, no. 9, 2013,

pp. 310-324.

18. CARLINI, E., COPPOLA, M., RICCI, L.,

Evaluating Compass Routing Based

AOI-Cast by MOGs Mobility Models,

Proceedings of SIMUTools’11, 2011,

pp. 328-335.

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 169

http://www.gridsurvey.com/
http://www.ics.uci.edu/~tdebeauv/files/2013-RCAT.pdf
http://www.ics.uci.edu/~tdebeauv/files/2013-RCAT.pdf
http://www.opensimulator.org/

19. VAN DEN BOSSCHE, B., DE

VLEESCHAUWER, B., VERDICKT, T.,

DE TURCK, F., DHOEDT, B.,

DEMEESTER, P., Autonomic Microcell

Assignment in Massively Distributed

Online Virtual Environments, Journal of

Network and Computer Applications, vol.

32, no. 6, 2009, pp. 1242-1256.

20. RANJAN, R., ZHAO, L., Peer-To-Peer

Service Provisioning in Cloud

Computing Environments, The Journal of

Supercomputing, vol. 65, no. 1, 2013,

pp. 154-184.

21. SIRIKATA, Sirikata, from

http://sirikata.com, 2014, accessed

on 20-05-2014.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 2, June 2015170

