
1. Introduction

A Virtual  Environment  (VE)  imitates  a  certain

real  environment.  It  should  make  user  feel  as

residing  in  the  real  environment.  Hence,  VE

should meet some requirements occurred in the

real  world.  To  involve  many  users  in  a  VE,

Distributed  Virtual  Environment  (DVE)  is

required.  Many  users  in  separated  places  can

come together to collaborate in a VE. DVEs have

many applications used in games, education, war

simulation, medical simulation, etc. 

Virtual  world  is  one  of  the  most  popular

applications of DVE. For instance, Second Life

[1] is state of the art of virtual worlds. On May

2012, the world of Second Life was made up of

thousands of regions, which if they are linked

together  will  spread  over  1,962.93  km2 of

virtual lands [2]. The world consists of avatars,

terrains, trees, buildings, and other objects.

DVEs may have a very large number of objects

and users at a time and that can easily overload a

fast  network,  and  impose  huge  processing

requirements at the server and client computers.

As  computing  resources  are  limited,  there  are

obvious problems that arise once the number of

objects and users in a simulation reach a certain

limit. If no special mechanisms are provided, one

may expect a DVE to produce undesirable effects

such  as  choppy  rendering,  and  loss  of

interactivity.

This  paper  focuses  on  this  scalability  issue.

Scaling  a  DVE  depends  on  two  aspects,  i.e.

scaling the number of concurrent users interacting

with each other, or scaling the scene complexity

(number of objects and the complexity of their

behaviours and appearances). 

Several methods have been generated to scale

DVEs such as dividing simulation workload [3]

[4],  using  dynamic  load  balancing  among
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servers  [5],  and  creating  alternative

architectures  [6][7][8][9].  Scaling  the  DVEs

can be done at the server’s side (using cluster

or cloud computing) or the client’s side (using

peer-to-peer  model).  Unfortunately,  those

techniques are not enough for DVEs with huge

number of objects and thousands of concurrent

users. Some limitations still occur in the current

DVEs.  Increasing  the  number  of  objects  and

users decreases the performance of DVE.

This paper proposes a novel DVE architecture,

called  1P1O  model,  to  scale  up  the  present

DVEs. In the proposed architecture, each object

in DVE is treated as a separated process: one

process for one object (1P1O). This concept is

inspired by the real  world in which there are

many objects composing the world. They may

be static objects and dynamic objects, and there

are interactions among them.  Each object has

control  to  itself  to  determine  what  kind  of

properties  and behaviours  it  should appear  in

the world. 

This  paper  makes  two research contributions.

The  first  is  1P1O  model,  a  novel  DVE

architecture  that  provides  a  large  scale  DVE.

This  model  is  unlike  existing  DVE

architectures, where a simulator manages many

objects.  1P1O  breaks  the  DVE  into  three

components:  object  simulators,  universe,  and

Content  Delivery Network  (CDN).  An  object

simulator just simulates an object. Since object

simulator  is  an  independent  process,  the

workload-balancing  problem  can  be  solved.

DVE researchers  and developers  can use this

architecture  to  scale  up  their  applications  in

order to accommodate many objects and users

in the environment.

The  second  contribution  is  the  mathematical

model  of  1P1O.  It  is  able  to  simplify  the

architecture.  By  means  of  the  mathematical

model,  we  are  able  to  determine  the

characteristics of the architecture including the

model complexity so that we can compare the

1P1O model with others. 

The rest of the paper is organized as follows.

Section 2 presents the current approaches used

by researches in scaling up the DVE. Section 3

explores the 1P1O model as a proposed method

along  with  its  mathematics  model.  The

experimental  results  and  discussion  are

described in Section 4. Finally, Section 5 gives

some conclusive remarks and future work.

2. Related Work

In  present  DVEs,  entities  and  activities  are

managed  by  a  simulator.  When  the  simulator

workload  increases,  the  researchers  use  two

approaches to scale the DVE: splitting the region,

and separating the component of DVE simulator.

2.1 Splitting the region 

To  decrease  the  simulation  workload,  this

approach divides the region into smaller areas and

each area is simulated by a simulator. Thus, the

simulation workload of each area becomes smaller.

Second Life as a famous DVE application uses

this approach. The world is divided into a large

number of small regions. Each region has area

of  256m x  256m and  owned  by exactly  one

simulation  server.  OpenSim  [10],  an  open

source  DVE  that  has  a  system’s  architecture

similar  to  and  compatible  to  Second  Life

architecture, also uses this approach. 

Most  current  Massively  Multiplayer  Online

Games  (MMOGs)  use  this  static  region-

partitioning model.  To prevent server crashes,

game operators have resolved to use  sharding

[11].  The  World  of  Warcraft  [12],  the  most

popular MMOG, uses this sharding method. 

To  increase  flexibility  of  resource  allocation

and address the over-provision problem when

the  peak  load  occurs,  managing  each  DVE

region can be integrated with cloud computing

[13][14]. Peer-to-peer (P2P) is a new solution

to scale up the DVE. Generally, it  distributes

the server roles to  peers.  In  [15],  the authors

propose hybrid approaches where the world is

divided into regions and each region is assigned

to a peer belonging to a structured P2P overlay.

Several approaches allow only those peers that

satisfy  particular  requirements  in  term  of

hardware  capability  to  manage  part  of  the

simulation. These special peers are referred as

Super Peers (SP) and usually manage a region

so that each peer in the region is connected to

them [16].

Splitting  the  region  can  also  be  done  by

considering the Area of Interest (AOI). Several

works  [17][18][19]  use  Voronoi  overlays  to

maintain AOI, which eases the identification of

neighbours. To improve the DVE performance,

the hybrid of P2P and Cloud architecture can be

used [20].
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2.2 Separating the components

It is the second approach used by researchers to

scale up the DVE. Even though the region has

been  split  into  sub-regions,  the  problem still

occurred as the number of objects or users in a

sub-region increases dramatically. 

To address the problem, the researches generate

alternative  architectures.  Some  simulator

components  are  separated  from  the  main

simulator so that the workload of main simulator

can decrease. The separated component does its

tasks in independent process and then the results

are sent to main simulator.

Distributed  Scene  Graph (DSG)  [8]  uses  this

approach.  It  views  the  DVE  operations  in

general as a collection of the “Scene” and the

actors  operating  on  the  Scene  using  a  Scene

service  layer.  Actually,  DSG  is  inspired  by

Dakstar  [6]  that  implements  DVE  logic  as

small  transactional  tasks  distributed  across

servers. DSG separates the physics and script

engine  as  well  as  client  managers  from  the

main simulator. Each actor is responsible to do

its task when the simulation runs, and all actors

are mediated by Scene. 

Another  architecture  is  Sirikata  [9][21].

Sirikata’s  architecture  has  three  components:

space,  object  host,  and  Content  Delivery

Network  (CDN).  It  is  different  from  the

traditional approach where all objects together

with their scripts and data are simulated on a

single  server  or  a  cluster.  Sirikata  suggests

using  an  independent  Content  Delivery

Network (CDN), which synchronizes data that

is  mostly static  or  changes rarely,  e.g.  model

meshes  or  textures.  This  allows  reducing  the

network load from the space server.

3. Proposed Model

Different  from the  existing  DVE architectures,

our  proposed  model,  called  1P1O  model,  has

several simulators to manage the object activities

and  appearances.  Object  residing  in  DVE  is

represented by a process. It maintains the object

behaviours and appearances in the environment.

Two subsections below present the 1P1O model

in detail and its mathematics model.

3.1 The 1P1O model

In  present  DVE  architectures,  a  simulator

manages  many  objects.  As  the  number  of

objects  and  users  increase,  the  workload  of

simulator  increases.  Conversely,  in  the

proposed architecture, simulator is no longer a

single process that controls many objects. Each

object  is  treated  as  a  process  or  simulator.

Hence,  this  architecture we call  1P1O model:

one process for one object. This model makes

object be independent in managing itself. 

1P1O model has three components, i.e. object

simulators,  universe  and  Content  Delivery

Network (CDN) as shown by Figure 1.

Figure 1. 1P1O architecture

3.1.1 Object simulator component

The  core  component  of  1P1O  model  is

represented by simulators that comprise several

object  simulators.  Object  simulator  is

responsible  to  simulate  the  appearances  and

behaviours of the object.  Figure 1 shows that

there  are  n object  simulators  simulating  n

objects  in  VE.  The  object  simulator-1  is

simulator  for  the  first  object,  the  object

simulator-2 is simulator for the second object

and finally, object simulator-n is simulator for

nth object. 

The object simulator has two components used

in  managing  an  object:  scripts  and  physics

engine. Scripts engine is used to run the object

scripts  that  determine  the  appearances  and

behaviours  of  object  whereas  physic  engine

runs  the  physics  simulation  of  the  object.  It

ensures  that  the  object  enforces  the  physics

laws.  Examples  are  gravity  pole,  collision

handling, etc.

An  object  simulator  is  a  process  in  DVE,

allowing it to specify their behaviour in scripts

and  providing  it  access  to  the  universe

component.  The  viewer  is  also  an  object  in

DVE so that it is represented by a process too.

Different from other objects, the viewer is able

to display the environment. A user in VE may

be represented by avatar. 

One important thing is that each simulator can

reside  in  different  hardware  since  it  is  an
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independent process.  Thus,  it  is  scalable with

the additional hardware.

3.1.2 Universe component

The  universe  component  in  1P1O  model  is

responsible to determine what objects reside in

the environment, their location, and their physical

properties. This component has similarity to the

scene  in  DSG  architecture  [8]  and  the  space

server in Sirikata architecture [21]. It stores object

properties  in  a  VE  such  as  object  identifier,

position, and physical properties. 

Universe may be run by one or more computers

(called  universe  server)  which  segment  the

geometric  coordinates  of  the  VE.  Similar  to

object  simulator,  the  universe  component  is

scalable to the additional hardware. 

Since  universe component  stores  the  location

and  properties  of  objects,  it  is  able  to

synchronize the objects position and properties

among  interested  simulators.  All  object

simulators send state updates to universe, and

universe just disseminates those updates to the

interested simulators. Universe is then also able

to make an object know the nearest objects.

3.1.3 Content delivery network

Content Delivery Network (CDN) is similar to

CDN component in the Sirikata architecture. It

stores  permanent  data  and  delivers  it  to  the

other  components.  Meshes  that  are  used  to

display objects are example of the data stored

on CDN. Viewers are able to download them to

view the VE. The CDN is able to be as simple

as a web server. It  really needs only to serve

requests for files [21].

3.2 Mathematics modelling

In this  section,  we describe the mathematical

model  for  the present  and 1P1O architecture.

This model is used to determine the complexity

of the 1P1O compared to present architecture.

The complexity of 1P1O architecture depends

on  the  complexity  of  object  simulators  and

universe. Hence, this section is divided into two

categories:  mathematics  model  for  simulator

and universe.

3.2.1 Simulator mathematics model

As described before,  the present  architectures

has  simulator  that  simulates  several  objects.

DSG uses script engine and physics engine that

each  simulates  several  objects.  Although  this

actor  is  able  to  use  multi-servers  but  each

remains simulating several objects in a scene.

Similar  to  DSG,  Sirikata’s  object  host  also

simulates many objects. 

An object in DVE is able to be supposed as a

set  because it  comprises  a  collection of  prim

(primitive object) such as a cube or a sphere.

Computation  component  is  able  to  make  an

object  change  in  either  its  appearance  or

behaviour, so it is a function. 

Let  A,  B be  disjoint  sets  representing  two

objects in VE. Let computation component be a

function  f. The current simulator is able to be

represented by f (A∪B) . This function means

a simulator that simulates many objects (object

A and B) in the environment.

Suppose  that  g (A∪B)   and  h (A∪B)   are

script  and  physics  engine,  respectively.  The

DSG architecture uses those functions as their

simulators  that  are  separated  from  scene

component,  while  Sirikata  just  separates
g (A∪B)  from space.

Different from two architectures above, 1P1O

architecture  defines  each  object  simulator  as
g (A)∪h(A) . It means that a simulator which

contains script and physics engine for its object

i.e. A. Hence, we have to show that:

g (A∪B)∪h(A∪B)
=(g (A)∪h(A))∪(g (B)∪h(B))

(1)

To prove the equation (1), we use a set theory

theorem that: 

f (A∪B)= f (A)∪ f (B) (2)

Proof: 

g (A∪B)∪h(A∪B)
=g (A)∪g (B)∪h( A)∪h (B)
=(g (A)∪h (A))∪(g (B)∪h(B)). ■

Suppose that there are  N objects (P1,P2,…,Pn)

in a scene or region, so we should show that:

g ( ∪
i=1

n
P

i
)∪h( ∪

i=1

n
P

i
)

=∪
i=1

n (g (P
i
)∪h(P

i
))

(3)

To prove (3), first we should show that:

f (∪
i=1

n
P

i
)=∪

i=1

n
f (P

i
) (4)

Proof:

Based on associative law:

f (P
1
∪P

2
∪P

3
)= f ((P

1
∪P

2
)∪P

3
)

Then, based on equation (2):

f (P
1
∪P

2
∪P

3
)= f (P

1
)∪ f (P

2
)∪ f (P

3
)
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Using the same way, then: 

f (P
1
∪P

2
∪P

3
∪P

4
)

= f (P1)∪ f (P2)∪ f (P3)∪ f (P4)

Suppose that:

f (P1∪P 2∪⋯∪P k)= f (P1)∪ f (P2)∪⋯∪ f (Pk )

Then, for n=k+1 we have:

f (P
1
∪P

2
∪⋯∪P

n
)

= f ((P1∪P2∪⋯∪Pk )∪P k+1)
= f (P

1
)∪ f (P

2
)∪⋯∪ f (P

k
)∪ f (P

k+1
)

Thus,

f (∪
i=1

n
P

i
)=∪

i=1

n
f (P

i
). ■  

Now, using (4) we can prove (3) as below:

Proof:

g (P
1
∪P

2
∪⋯∪P

n
)∪h(P

1
∪P

2
∪⋯∪P

n
)

=g (P1)∪g (P2)∪⋯∪g (Pn)∪
h(P

1
)∪h(P

2
)∪⋯∪h (P

n
)

=(g (P1)∪h (P1))∪(g (P2)∪h (P2))∪⋯∪
(g (P

n
)∪h(P

n
))

=∪
i=1

n (g (P
i
)∪h (P

i
)) ■

The  left  side  of  equation  (3)  represents  the

present architecture simulator whereas the right

side  is  the  1P1O  object  simulator.  Since

simulator  handles  n objects,  the  present

architecture simulator has script complexity of

O(n)  and  physics  complexity  of  O(n2).  For

1P1O  model,  the  simulator  has  script

complexity of O(1) and physics complexity of

O(log(n)).  Hence,  the  1P1O  simulator

complexity is lower than present architectures.

3.2.2 Universe mathematics model

Universe is one of the important components in

1P1O  architecture.  It  manages  the  overall

environment.  It  receives  sate  updates  from

object simulators and disseminates the updates

to the interested simulators. 

DSG  has  scene  component  whereas  Sirikata

has space to do this task. Sirikata has similarity

to  the  1P1O  model,  therefore  some  space

components can be used in universe but physics

engine. In 1P1O, physics simulation is handled

by object simulators.

Let  Sk be  object  simulators,  k ≤n .  Let
t (S

1
∪S

2
∪⋯∪S

k
)  be  a  function  to  receive

and  disseminate  state  updates  to  object

simulator S1, S2,..., Sk. Since physics simulation

is  integrated  in  the  space,  the  Sirikata  space

component can be represented by:

Space=h (P
1
∪P

2
∪⋯∪P

n
)

∪t (S 1∪S 2∪⋯∪S k )
(5)

Equation  (5)  gives  the  result  that  the  space

component has complexity of O(n2). 

As  illustrated  by  Figure  1,  the  universe

component of 1P1O model has the main task to

receive query from objects and disseminate the

state changes to nearest objects. Thus, it is able

to be represented by:

Universe=t (S
1
∪S

2
∪⋯∪S

k
) (6)

Because  universe  handles  n object  simulator

and only needs to disseminate the state updates

to  the  nearest  objects,  the  complexity  of  this

component is O(n.log(n)).

4. Result and Discussion

The 1P1O model actually represents the DVE

as a real world that consists of many objects,

continuous  space.  It  is  different  from  the

current DVE architectures which are based on

partitioned, shared-nothing designs. This paper

implements 1P1O model in peer-to-peer (P2P)

network.  The  experimental  setup,  results,

model  verification,  and  discussion  are

presented in four subsections below.

4.1 Experimental setup

Figure  2  illustrates  the  1P1O  model

implemented in P2P network using super peer

(SP). The SP is chosen because this topology is

suitable  to run the universe  component.  Each

simulator is assigned to a physical node, i.e. a

peer.  A  node  is  also  able  to  manage  some

simulators.  All  peers  locating  in  a  region  are

managed by the same SP. The SP is responsible

to  collect  state  changes  of  the  objects  and

disseminate them to all interested peers.

Figure 2. 1P1O implementation
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The  implementation  of  1P1O  in  P2P  network

allows users maintain their objects. Users are able

to  add computational  resources  to  run  objects.

They may run objects on hosts they control. It is

absolutely  able  to  deliver  a  large  number  of

objects and users residing in the DVE.

A number of three applications are used in the

experiment:  object  simulator,  viewer,  and

universe.  The  objects  used  in  the  experiment

are boxes with varying sizes and masses. The

experiment simulates the objects falling from a

certain hight to the ground and colliding with

each other (see Figure 3). The collision is able

to occur between object and ground or among

objects. The object appearances and behaviours

are simulated by an object simulator.

Figure 3. Falling Objects

The objective of this experiment is to evaluate the

1P1O model when it is run in P2P network. The

parameters used in the evaluation process are: 

- Scalability of the model; It is measured by

using  the  frame  rate  of  simulation  with

respect  to varying  number  of objects and

users involved in the DVE.

- Performance of the model; It is measured

by  using  the  CPU  usage  and  memory

allocation for simulator.

As  illustrated  by  Figure  2,  simulators  are

executed  on  each  peer  computer.  The

experiment uses two computers with dual core

1.6  GHz  processor  to  execute  the  simulators

and  viewers.  The  number  of  simulator  and

viewer  in  each  computer  is  the  same.  The

universe component  runs on a computer  with

processor 1.6 GHz. 

To compare the 1P1O results, we use Sirikata

model that the object host runs on a computer

with dual core 1.6 GHz, and the viewers run on

another dual core computer 1.6 GHz. The space

server uses the similar  computer specification

to  universe.  The  experiment  uses  varying

number of objects and concurrent users. 

Some variables measured in this experiment are

the  frame  rates  of  universe  and  space  with

respect  to  the  number  of  objects  and  users,

CPU usage of simulator for both models, CPU

usage of universe and space, memory allocation

for  simulator  of  both  models,  and  memory

allocation  for  universe  and  space.  The  first

variable is used to determine the scalability of

the model. We use this parameter to know the

effect of increasing the number of objects and

users  with  respect  to  the  frame  rate  of

simulation.  The  other  variables  measured  in

this  experiment  are  used  to  determine  the

performance of both models.

4.2 Experiment results

The subsections below are presented based on

the variables measured in the experiment.

4.2.1 Frame rates of model based on objects

Table 1 shows the frame rate of 1P1O model

for  varying  number  of  objects.  These  frame

rates  are  measured  from the  condition  where

universe has already received all  updates  and

disseminated  the updates to interested objects

to  thirty  seconds  after  that  condition.  Hence,

there are six measurements because the frame

rate  is  displayed  in  every  five  second.  The

frame rates are stated in frame per second (fps),

and the average frame rates is provided at the

right side of table. From Table 1, we note that

the increasing number of objects decreases the

frame rate of simulation. 

Table 2 illustrates the frame rates of space in

Sirikata model. These frame rates are measured

by  using  the  same  manner  as  1P1O  model.

Thus, they also consist of six measurements for

varying  number  of  objects.  This  table  also

shows  that  the  frame  rates  of  simulation

decrease with the increasing number of objects.

The comparison between average frame rates of

1P1O model and Sirikata is illustrated in Figure 4.

In fact, the 1P1O model has frame rates higher

than Sirikata. 1P1O model frame rates also do not

strictly decrease as occurred to Sirikata.
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Figure 4. Average frame rates of models based on

varying number of objects

4.2.2 Frame rates of model based on users

The frame rate of 1P1O model based on the

number of users can be seen in Table 3. The

increasing  number  of  users  also  decreases

the  frame  rates  of  simulation.  Further,  the

frame rates of Sirikata are drawn by Table 4.

They  are  measured  from  frame  rates  of

space  that  determines  other  components  in

Sirikata  architecture.  In  fact,  similar  to

1P1O, the Sirikata frame rates also decrease

with the increasing number  of users in VE.
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Table 1. Universe frame rates based on objects

Number of

object

Universe frame rates (fps)

1 2 3 4 5 6 Avrg

10 59.157 59.325 59.204 59.105 59.686 59.421 59.316

20 58.898 59.324 59.647 59.635 58.720 59.439 59.277

30 59.260 58.957 59.438 59.121 58.904 59.313 59.166

40 59.132 58.889 59.507 59.011 59.283 58.745 59.095

50 58.799 59.206 59.147 58.958 59.075 59.241 59.071

60 58.645 58.850 58.903 59.472 59.212 59.366 59.075

70 59.206 59.112 58.758 59.037 58.845 59.221 59.030

80 59.050 58.824 59.318 59.156 58.912 58.860 59.020

90 58.932 59.155 58.876 59.033 58.812 59.149 58.993

100 58.878 58.975 59.261 58.980 59.186 58.774 59.009

Table 2. Space frame rates based on objects

Number of

object

Space frame rates (fps)

1 2 3 4 5 6 Avrg

10 59.378 58.613 58.472 58.528 59.363 59.187 58.924

20 59.152 59.330 58.965 58.749 58.207 59.047 58.908

30 59.251 57.769 58.340 58.384 58.186 58.518 58.408

40 56.988 58.077 57.598 58.952 57.993 57.787 57.899

50 56.551 57.767 56.330 57.154 56.823 57.549 57.029

60 57.092 56.890 56.956 56.881 57.192 56.166 56.863

70 56.767 57.362 57.327 56.712 56.322 56.767 56.876

80 57.533 56.122 55.833 55.512 56.598 56.165 56.294

90 56.516 56.255 56.578 55.580 55.783 56.966 56.280

100 55.321 55.913 55.780 55.986 56.184 55.477 55.777



It means that increasing the number of users

increases the workload of simulation.

The  comparison  of  average  frame  rates

between 1P1O and Sirikata model is able to be

seen  in  Figure  5.  Similar  to  the  last  section

results, this figure shows that the frame rate of

1P1O model is higher than Sirikata. The frame

rates of 1P1O model do not strictly decrease as

occurred to Sirikata.

Figure 5. Average frame rates of models based on

varying number of users
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Table 3. Universe frame rates based on users

Number of

object

Universe frame rates (fps)

1 2 3 4 5 6 Avrg

10 59.544 59.540 59.440 59.532 59.586 59.622 59.544

20 59.482 59.530 59.577 59.545 59.550 59.539 59.537

30 59.360 59.372 59.338 59.410 59.304 59.313 59.350

40 59.530 59.529 59.530 59.527 59.533 59.520 59.528

50 59.366 59.206 59.347 59.336 59.342 59.414 59.335

60 59.381 59.238 59.290 59.272 59.252 59.266 59.283

70 59.417 59.381 59.408 59.387 59.403 59.415 59.402

80 59.249 59.253 59.285 59.256 59.232 59.246 59.254

90 59.198 59.212 59.196 59.245 59.234 59.156 59.207

100 59.178 59.205 59.216 59.195 59.186 59.198 59.196

Table 4. Space frame rates based on users

Number of

object

Space frame rates (fps)

1 2 3 4 5 6 Avrg

10 59.189 59.240 59.248 59.230 59.566 58.519 59.165

20 58.709 59.095 58.994 59.664 58.395 59.041 58.983

30 58.161 58.766 57.554 57.530 58.715 58.074 58.133

40 57.902 57.912 57.113 58.169 57.551 57.647 57.716

50 58.183 57.829 57.530 58.534 58.351 58.185 58.102

60 57.993 57.704 57.167 58.126 57.107 56.561 57.443

70 56.198 57.690 56.768 57.185 58.111 57.570 57.254

80 56.117 56.918 57.199 57.200 57.827 58.461 57.287

90 55.981 56.364 56.338 57.521 57.793 57.323 56.887

100 56.971 56.372 55.913 56.182 56.567 57.033 56.506



4.2.3 CPU usage of simulator

The CPU usages of both 1P1O object simulator

and Sirikata object host for varying number of

objects are able to be seen in Figure 6.

From this figure,  we note that  CPU usage of

1P1O  simulator  is  lower  than  Sirikata.

Furthermore, the difference of the CPU usage

between both models is striking. For example,

the  CPU  usage  of  1P1O  simulator  for  100

objects is 38.17% and this value is almost equal

to  CPU  usage  of  Sirikata  simulator  for  30

objects  (39.87%).  Thus,  there  is  significant

decreasing  of  CPU usage  of  1P1O simulator

compared to Sirikata simulator.

Figure 6. CPU usage of 1P1O & Sirikata Simulator

4.2.4 CPU usage of model

The CPU usage of universe and space for both

models  for  varying  number  of  objects  are

depicted by Figure 7. The Sirikata model has

CPU  time  longer  than  1P1O  model.  This

behaviour  is  the  same  as  CPU  usage  of

simulator.  It  means  that  CPU  usage  of

simulator influences the CPU usage of model.

Figure 7. CPU usage of models

4.2.5 Memory allocation for simulator

The memory  allocation  for  1P1O simulator

compared to Sirikata simulator is  drawn by

Figure 8.  From the figure,  we note that  the

1P1O  object  simulator  uses  less  memory

than Sirikata. 

Figure 8. Memory allocation for simulator

The memory allocation for Sirikata simulator is

linear  whereas  1P1O  simulator  has  constant

trend-line for a certain interval.

4.2.6 Memory allocation for model

The comparison of memory allocation between

1P1O and Sirikata model can be seen in Figure

9.  From  the  figure,  1P1O  model  uses  less

memory  than  Sirikata.  For  1P1O  model,  we

note that increasing number of object in VE has

“delaying  time”  for  increasing  memory

allocation.  The  memory  allocation  for  1P1O

model is unchanged from 10 to 90 objects. The

value just increases as the number of objects is

100 and this value remains less than Sirikata.

Figure 9. Memory allocation for models
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4.3 Model verification

In  this  section,  we  verify  two  mathematics

models:  simulator  and  universe  model.  To

verify these models, CPU usages resulted in the

last section are required.

4.3.1 Simulator model verification

Consider  Figure  6  that  illustrates  the  CPU

usage  of  simulator  for  1P1O  and  Sirikata

model.  Sirikata  is  one  of  the  current

architectures that has object host for simulating

the object  scripts.  With this figure,  Figure 10

shows the trend-line of both simulators. 

Figure 10. Trend-line of Simulator CPU Usage

From Figure 10, we note that the trend-line of

Sirikata  object  host  is  linear  so  that  its

complexity is  O(n).  Further,  the  trend-line  of

the  1P1O  model  is  logarithmic  so  that  the

complexity  of  1P1O  object  simulator  is

O(log(n)). Thus, they comply with mathematics

model in the equation (3).

4.3.2 Universe model verification

To verify the mathematical model in equation (5)

and (6),  consider the CPU usage of space and

universe in Figure 7. By drawing the trend-line of

the  graph,  the  complexity  of  current  model

(Sirikata) approaches O(n2) and the complexity of

the  1P1O  model  approaches  O(n.log(n))  as

illustrated by Figure 11. Thus, they comply with

equation (5) and (6), respectively. 

Figure 11. Trend-line of models CPU usage

4.4 Discussion

Based on the experiment results, the frame rate of

1P1O model implemented in P2P is higher than

Sirikata for both simulator and model. It occurs

for  varying  number  of  objects  and  users.  The

results show that 1P1O model is more scalable

than Sirikata. The increasing number of objects

and users still provide rich user experiences.

The good results are also shown by CPU usage

and  memory  allocation.  The  CPU  usage  of

1P1O model is less than the current model. It

has relationship to CPU usage of simulator that

is  also  less  than  current  model.  Further,  the

memory allocation for simulator and model of

1P1O are also less than the current model. With

these results,  they show that the 1P1O model

has better performance than current model.

5. Conclusion

We have  proposed  a  new  DVE  architecture,

called  1P1O,  which  is  able  to  scale  the

distributed  virtual  environment.  Treating  an

object  as  a  process  and  this  process  can  be

distributed over the network. This architecture

may allow additional hardware in the network. 

The mathematical model of 1P1O has also been

provided to ease determining the complexity of

model. We have demonstrated that 1P1O model

has  frame  rate  improvement  compared  with

current DVE model. The results also show that

our model performs better than existing models

for  both  CPU  usage  and  memory  allocation.

The  results  comply  with  the  mathematical

model. 

Finally, we can conclude that the 1P1O model

is more scalable with better performance than

the current DVE architecture. The 1P1O model

can be used by researchers and developers to

accommodate  many objects and users in their

DVE  without  degrade  the  DVE  performance

and  user  experiences.  Our  future  work  is  to

implement  the  1P1O  model  in  client-server

network  and  compare  the  results  with  P2P

implementation.
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