
1. Introduction

Progress in type inference algorithms [4] has

led to statically typed languages that are easier

to use and more appealing to programmers.

Thanks to their performance compared to

dynamic languages, programming languages

such as Scala, Go and Hack (Facebook’s

version of typed PHP) are increasingly gaining

popularity. Besides the mentioned ease of use

and good performance, all these languages also

come with great tooling.

While not specifically part of the language,

accompanying tools are critical to a

programming language’s success. They

represent the ways in which a programmer

interacts with the code. For example, any

language should have (or support) a good

debugger to make finding bugs easier. Also, it

should have an easy to use package

management and build system. Many

programmers find the XML configuration files

of Java package systems cumbersome. To

overcome this, Scala brings a simpler format

for specifying dependencies.

Another important tool is the documentation

generator. Good languages are used in large

projects, and large projects need great

documentation. Having a standard way of

generating documentation pages is key to effortless

knowledge sharing. Java has Javadoc, Scala has

Scaladoc and Go has Godoc. They all do a good

job of generating formatted, Web-accessible

documentation from source code. However, they

share a key shortcoming - they only support

searching symbols by name. Search by name

covers one aspect of programming - the situation

where the programmer encounters a function and

wants to know what it does. But there is also the

case when the programmer needs to find a function

that does a particular operation, and because of

various reasons (new language, new naming

standards, new codebase etc.) the name of that

function is unknown. In this situation, the ability to

search by type would be perfect. An important

benefit of static typing, besides allowing for

compile-time checking, is that the types act as

documentation. So why shouldn’t the

documentation generators use this information?

Our project aims to add this exact functionality

to Rustdoc - the documentation generator of the

up-and-coming (currently in alpha) Rust [14]

programming language. Rust has a rich type

system, similar to that of Haskell and ML,

which allows representing complex information

through the type annotations. Because of this,

we consider it a great target language for

searching documentation by types.

The rest of this article is structured as follows:

first, we will introduce Rust, its features and

look at an existing implementation of searching

documentation by type for Haskell. Then, we

will discuss our implementation for Rustdoc.

Following this, we will examine the usage as

well as the performance of our solution.

Finally, we will present our conclusions as well

as possible future work for the project.

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 221

Enhancing RUSTDOC to Allow Search by Types

Mihnea DOBRESCU-BALAUR, Lorina NEGREANU

University POLITEHNICA of Bucharest,

313, Splaiul Independentei, Bucharest, 060042, Romania

mihnea@linux.com; lorina.negreanu@cs.pub.ro

Abstract: Programming languages have benefited from increased attention lately. With corporations like Google,

Facebook and Mozilla investing in language design, there is a lot of activity in the mainstream languages domain. State of

the art features like advanced type systems that were only available to more research-centered languages such as Haskell,

are now making their way into the mainstream through languages like Rust. Rust is an up-and-coming system

programming language that aims to fill the same role as C and C++, but in a much safer way. To achieve this, it brings a

rich type system, alongside a pragmatic implementation of region based memory management, a feature that allows safe

memory handling without the need of a garbage collector. Aiming for the mainstream, Rust comes with tooling to aid

developers in their work. One such tool is Rustdoc, a program that automatically generates documentation based on type

information and programmer comments. We aim to enhance Rustdoc to provide more advanced search support through

features that are impossible to implement for dynamic languages, and even static languages with less advanced type

systems, like C and Go.

2. Background and Related Work

2.1 Rust and its type system

Rust is a systems programming language, like

C and C++. While low level languages often

have simple type systems that generally only

describe how much space values need in order

to perform memory allocation, Rust’s type

system supports features such as algebraic data

types and traits, capabilities that we are used to

see in higher level programming languages,

such as ML and Scala.

First of all, the type system provides all the

basic features that one might expect from

languages such as C and C++ - primitive types,

enums, structs, methods etc. While Rust does

not have support for inheritance (like in Object

Oriented Programming), it makes up for it with

a similarly powerful construct: traits.

Traits [11] are a set of methods that one uses to

add functionality to a struct (Rust does not have

classes - structs are used instead). They can

either provide only method prototypes, or full

methods with default implementations. In terms

of Object Oriented Programming, a trait is

similar to an interface. Making a reference to

the Haskell ecosystem, a trait is like a type

class. Using traits, the programmer can extend

their own structs with new functionality, as

well as enhance the built-in types, if needed.

Another important feature of the Rust type

system is having algebraic data types [5]

(ADT). ADTs are compound data types, useful

for representing abstract concepts without

reasoning about the implementation details. A

common example is representing the natural

numbers using ADTs:

type nat :=

| Zero : nat
| Succ : nat -> nat

Thus, 0 would be Zero, 1 would be Succ(Zero),

2 would be Succ(Succ(Zero)) and so on.

Having these abstract representations, one can

describe properties and transformations by

focusing on the actual algorithm, rather than on

the representation of data. A function defined

on Nat will perform the same transformation

regardless of the representation we choose to

use for natural numbers, and this is very

powerful, because ADTs are a better fit in

formal proofs [8]. Thanks to the support for

ADTs, the programmer is allowed to code

implementations that are close to the

corresponding formal specification.

To easily work with abstract data types, Rust

provides pattern matching through the match

expression. This construct enables more

expressive control flow, in ways that the

regular if and switch statements cannot achieve.

In its simplest form, the syntax looks as shown

in Listing 1.

let x = 5;
match x {

 1 => println!(”one”),
 2 => println!(”two”),

 3 => println!(”three”),
 _ => println!(”something

 else”),
}

Listing 1. Match syntax in Rust

However, one can use pattern matching to

interpret (destructure) abstract data types. In

Listing 2, we declare the described type Nat

and show how we can use pattern matching to

interpret it as a regular, integer (32 bits) value.

Note that because Nat as Succ(Nat) would lead

to an infinite recursive expansion, we wrap the

Nat within Succ inside a box (Rust’s version of

a smart pointer [2]).

enum Nat {
 Zero,

 Succ (Box<Nat>)
}

fn interpret_nat (n: Nat) -> u32

{
 match n {

 Nat::Zero => 0,
 Nat::Succ(box x) => {

 1 + interpret_nat(x)
 }

 }
}

Listing 2. Working with Nat in Rust

Having mentioned pointers, Rust’s approach to

memory management is novel as well. Being a

systems language, it does not afford the

comfort of garbage collection that other, higher

level languages (such as Haskell and Scala)

have. However, staying true to its safety first

philosophy, the C approach of manual memory

management via malloc and free would not

be acceptable either, since it would be the

developer’s responsibility to not forget to call

free, and to not call it more than once on the

same pointer. To get around this, Rust

http://www.sic.ici.roStudies in Informatics and Control, Vol. 24, No. 2, June 2015222

implements a variant of Region Based Memory

Management [3]. This is similar to what

happens to variables on the stack - when they

are declared, memory is reserved for them;

when the function ends (they go out of scope),

memory is freed. Rust takes this simple idea

and extends it to heap allocated objects. This is

in no way a trivial task, because, to be useful,

heap-allocated objects are often returned from

functions and used in other lexical scopes than

the one they were created in.

To keep track of dynamic memory, Rust has a

complex ownership and lifetime system that

determines who owns every variable (i.e. who

would be responsible for calling free), as well

as how long is a variable supposed to live (i.e.

when should free be called). This information

is inferred by the compiler automatically, so the

programmer does not have to do any extra

work. However, if she tries to take ownership

over an already owned value, the compiler’s

borrow checker will statically detect this error

and report it. This prevents an entire class of

bugs from showing up at runtime [1] [12].

By using Region Based Memory Management,

Rust allows developers to write code as they

would in a garbage collected language, without

worrying about explicit memory allocation,

while ensuring that there are no leaks and that

the memory is deterministically cleared, with

no global pauses (as is the case when using

garbage collectors).

Besides keeping track of ownership

information, the Rust compiler is also aware of

the mutability status of all values. By default,

everything is immutable (e.g. let x = 5;).

However, sharing a pragmatic perspective, Rust

allows mutable values (let mut x = 5;). Having

this information encoded in the type of a

binding, the borrow checker can perform even

more advanced checks. For example, a value

can be borrowed any number of times through

an immutable reference (i.e. no mutation is

performed). Meanwhile, once a value is

borrowed through a mutable reference (i.e.

mutations can be performed), it can no longer

be borrowed until the first borrow ends. This

static check prevents potential data races that

would otherwise be difficult to debug.

2.2 Documentation generators

1) Haddock and Hoogle: Haskell [13] is a

programming language that is very popular in

the research community. It is very advanced

and actively developed as the state of the art in

programming language design progresses. Its

type system is even more complex than that of

Rust. However, Haskell uses garbage collection

and has no borrow checker.

Haddock is the standard documentation

generator for Haskell. As all documentation

generators, it crawls the source code of a

project and creates a formatted representation

of the documentation annotations. Haddock is

aware of the type system annotations as well,

and it uses them to build a database of the

found symbols and their types.

Hoogle [9] (taking its name from Haskell and

Google) is a search engine that uses the

Haddock-generated database. Using Hoogle, a

user can search for (a -> b) -> [a] ->

[b] and find the documentation of map. This is

the missing piece that mainstream languages

like Scala and Go lack, as we have described in

the Section 1.

Hoogle is a popular tool in the Haskell

community, constantly helping programmers

find functions that do what they need. This saves

the time of reimplementing existing functions.

2) Rustdoc: Rustdoc is Rust’s documentation

generator. As its host language, it is in the early

stages of development (Rust is currently at its

second alpha version), but it already supports

the same set of features as other established

generators, such as godoc.

Rustdoc generates HTML files, making the

documentation easy to browse. It also supports

searching symbols by name, as we will describe

in the following section. Thanks to the

expressivity of the Rust type system, we feel that

adding by type search support to Rustdoc will

yield great added value to the Rust community.

Table 1 shows the search capabilities of the two

documentation generators, along with the more

popular Javadoc.

Table 1. Search capabilities of

documentation generators

By name By type

Javadoc X

Rustdoc X

Haddock/Hoogle X X

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 223

3. Building a Searchable Index

Based on Rust Types

The intention of our project is to enhance

Rustdoc’s existing search functionality in order

to allow more complex queries dealing with

types. This need comes from a set of situations

that all programmers face, especially when

working in a new language or when using a

new library. To give a few examples:

− Finding a helper function that checks if a

character is alphanumeric.

− Finding a method that gives the length or

size of a vector.

− Finding a method that returns a substring of

a string.

Usually, these problems would be solved by

manual, exhaustive searches in the

documentation. However, in statically typed

programming languages, there is a better way.

Consider that the programmer knows what

types she is working with - in the above

examples: char, bool, Vec, usize (unsigned int),

str. Having this knowledge and a type-aware

documentation generator, the programmer

could simply search for:

char -> bool

Vec -> usize

str, usize, usize -> str

This is exactly what our project sets out to

achieve. However, because of the way that

Rustdoc generates the documentation, this is not a

trivial task. We will describe the challenges that

we have faced in the next section.

3.1 Challenges

In order to make it easy for anybody to self-

host documentation for their Rust library or

project, Rustdoc generates static, HTML files.

This means that in order to publicly offer

documentation for a project, the author only

needs to serve the HTML from a web server.

There is no need for a custom framework, a

database server or executing PHP or other

similar server-side dynamic language. In

addition the documentation can be easily made

available offline: one can simply download the

files locally and then one can browse the

documentation even without an Internet

connection.

Deploying new changes to the public is easy as

well. After modifications are made in the

project code, one can execute Rustdoc and the

new HTML files will be generated. From here,

publishing the updated version is only a matter

of copying the files to the remote server hosting

the documentation.

While having the advantages described above,

the static nature of Rustdoc has its

shortcomings as well, and they mainly show up

when looking at the search problem.

Generally, the search flow obeys the following

structure: there is a front-end, where a user

enters a search query. The front-end sends the

query to the search back-end. The back-end

parses the query and matches it against a data

store (generally, a database) using the data

store’s query language (e.g. SQL for relational

databases). Then, the back-end assembles a

response, which it sends to the front-end. The

front-end formats the results contained by the

response and the user finds the information she

searched for.

Because Rustdoc deals with static files, there

can’t be a separate back-end with its own data

store. Thus, we have to rely on the dynamic

facilities that browsers provide in order to

implement our search functionality. This means

that the search engine actually has to be

JavaScript code, running client-side in the

user’s browser. Having no database server, the

data store also needs to be loaded client-side,

making it available for the JavaScript code to

query. The constraints described above impose

the following architecture for supporting

search. Generating the static files (as shown in

Figure 1):

Figure 1. Generating the static files

− Walk the source code of the project.

− Generate the formatted documentation.

http://www.sic.ici.roStudies in Informatics and Control, Vol. 24, No. 2, June 2015224

− For every symbol, add it to the search

index.

− Write the search index to a separate file.

− Provide the JavaScript file that loads the

index and processes queries

Client-side handling of the query in JavaScript

(as shown in Figure 2):

− Parse the query

− Filter the symbols matching the given

query

− Display the results

Figure2. Responding to a query

3.2 Making use of the compiler data

Rustdoc already supports searching by name

and it achieves this by implementing the

previously described architecture. To support

searching by type, we needed to make two

main additions:

1. Enrich the search index with type data.

2. Enhance the JavaScript query handler to

filter by type.

This subsection describes the first part, while the

following subsection will describe the second.

The current, upstream implementation of

Rustdoc generates data that does not contain

type information. It uses the compiler to identify

symbols (functions, structures, methods etc.) in

the project, and then it formats the annotations

found on the respective declarations. To

facilitate searching, it also builds a search index

alongside the whole process, and then writes it

to a separate file. The format of the existing

search index is the following:

[item_type; name; path;
description; parent_path]

item_type is not the full type system

annotation of the symbol, but something

simpler: one of function, module, struct,

enum, trait, typedef. It helps narrowing

down result sets by their “general” type. The

other important fields are name, the actual

name of the symbol and description, a short

explanation of the symbol. The former is used

when searching, while the latter is used when

displaying results. The path and

parent_path fields are not relevant for

searching by type. They are useful for ranking

results when searching by name, because

results closer to the module that the user is

exploring should be prioritized.

To implement searching by type, we needed to

add another field to the index item format - the

actual type of the symbol. To give an example,

for the is_alphanumeric function, the type

is char -> bool.

We decided to use a simple representation that

can later be extended to support more advanced

features that we will describe in Section 5.

Listing 3 provides an example for the

is_alphanumeric function mentioned above.

{
 ”inputs” : [

 { ”name” : ”char” }
] ,

 ”output” : {
 ”name” : ”char” ,

 }
}

Listing 3. Type representation

The choice of JSON [6] as the index format allows

easy interaction with the index from JavaScript.

The inputs key has a list value, allowing for

multiple function arguments. The output key has

an object value, allowing for void functions

(represented as "output": null).

Because Rustdoc uses the Rust compiler to

detect symbols in a project, it also has access to

the type system information. This is how we

extract the data in order to add the function

types to the search index. The only custom

aspect that we had to cover was finding the

type of the self argument of methods. This is

non-standard because in Rust, the first

argument of a method (self) does not have an

explicit type annotation, since the information

would be redundant - the type is always the

structure or trait to which the method belongs.

However, to provide support for meaningful

search queries, we had to include this type in

the argument list.

Without the self type, searching for the len

method of a vector would need a “-> usize”

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 225

query. But this is too vague, since there are

many functions that return an unsigned integer.

Adding the type of self, one can query against

“Vec-> usize”, leading to a small, relevant

set of results.

Finding the type of self is not trivial, because

that information is not contained in the method

annotations. When generating data for methods,

our implementation finds the parent symbol of

the method (i.e. the structure or trait that the

method belongs to) and it uses that type.

Because of the language’s syntax, methods can

only be declared within structs or traits, so the

type of self can always be found this way.

However, for traits this means that the

searchable type will contain the trait’s name

and not the one of the struct implementing it.

To give an example, to_lowercase:

CharExt -> char is a method that the

CharExt trait declares and char implements.

When searching for to_lowercase, one

would have to query for CharExt -> char.

With the current implementation, char ->

char would not find to_lowercase.

This way, Rustdoc has all the information

needed to build the enhanced search index.

Then, it is up to the JavaScript code to query

that index.

3.3 Searching through types

Rustdoc provides a JavaScript file that executes

search queries against the generated search

index. Although it only supports searching by

name, it is a complex piece of software:

− It allows filtering the results by general

types (functions, structures etc.).

− It allows searching by exact name, in

addition to matching against subsets of

keywords.

− It ranks results based on a complex set of rules:

◦ Levenshtein distance [7]

◦ Module - results in the selected

module are ranked higher.

◦ Description - results with

description are preferred.

◦ General type - functions are

ranked higher than constants.

We wanted to extend the search engine to

support type search while keeping all the

existing functionality. Thus, besides the

existing keyword and exact match modes, our

implementation adds another mode - by type.

Whenever the search query contains the “->”

string, the search engine enters the new mode.

This is safe to do because no valid Rust

identifier can contain “->”, so there is no

interference with the existing by name search

modes. Searching for non-functional types is

still handled by the existing search logic. This

is natural, since the only way to search for a

nonfunctional type (e.g. a struct) is by its name.

Having detected a by type search query, we

parse the input in order to find what type to

match against. There are two main components:

the argument types (the inputs) and the return

type (if any). Using string manipulation

operations, the respective types are identified.

Then, because of the way the search index is

structured, the query types are easily compared

to the search index information.

To make the search more user-friendly, we

ignore the order of the provided input types. To

achieve this, both the provided input types and

the sets of input types from the index are sorted

lexicographically. This way, the user does not

need to worry about the correct order of

function arguments.

4. Evaluation

Having compiled Rustdoc with our changes, we

have regenerated the documentation for the

entire standard library. This is the largest set of

documentation that is currently available for a

Rust project, and we decided to use it to test

our implementation. Measurements show that

our changes do not affect the duration of

generating documentation using Rustdoc.

We used the same set of queries from Section 3:

char -> bool

Vec -> usize

str, usize, usize -> str

Besides making sure the results were correct,

we also inspected the performance of the search

code.We did this using the standard

performance API [10], which provides accurate

timestamps down to the millisecond.

The average response time for the queries

above was 10 ms. In comparison, we found the

average response time for by name queries to

be 25 ms. The main reason for the difference is

that the by type search has a smaller search

space, since it only has to look at functions

http://www.sic.ici.roStudies in Informatics and Control, Vol. 24, No. 2, June 2015226

(and methods, which can also be considered

functions for our purpose).

Overall, adding the new query type does not

show a performance cost from a time

perspective. It does, however add size to the

search index, because of the new type

annotations. This means that the browser has to

load more data over the network. We have not

found this to be an issue in our tests. However,

should the need arise, compression can be used

when generating the search index.

Figure 4. Screenshot of a query

5. Conclusion and Future Work

Documentation generators for statically typed

languages like Rust can be very powerful. Our

implementation shows that it is possible to use

the type annotation that the compiler provides

in order to build a search index for the types in

an entire project. Then, that search index can be

queried client-side, from JavaScript, without

the need of a database server.

Our solution also shows that there is no

performance impact for adding by type search

support, other than increasing the actual size of

the index.

While covering the basic needs of type search,

the implementation is definitely not complete.

There are some other features that can be added:

− Support for generics - char -> char

should match t -> t.

− Support for trait implementors - char ->

char should match CharExt -> char.

− Support for paths - the ability to either

write char or std::char.

− Ranking - more concrete types should rank

higher than matching generic types.

− Support for references.

− Support for lifetimes.

The design of our implementation allows for all

the above features to be incrementally added.

This way, after the proposed changes get

merged in the upstream Rust repository, other

contributors from the Open Source community

can take on implementing any feature they find

necessary.

REFERENCES

1. BOYAPATI, C., R. LEE, M. RINARD,

Ownership Types for Safe

Programming: Preventing Data Races

and Deadlocks, in Proceedings of the 17th

ACM SIGPLAN Conference on Object-

oriented Programming, Systems,

Languages, and Applications, ser. OOPSLA

’02, (New York, USA, 2002), pp. 211-230.

2. EDELSON, D., I. POHL, Smart Pointers:

They’re Smart, But They’re Not

Pointers, Citeseer, 1992.

3. GROSSMAN, D., D. MORRISET, T. JIM,

M. W. HICKS, Y. WANG and J. CHENEY,

Region-based Memory Management in

Cyclone, in PLDI, J. Knoop and L. J.

Hendren, (ed.) ACM, 2002, pp. 282-293.

4. JONES, S. P., D. VYTINIOTIS, S.

WEIRICH, M. SHIELDS, Practical Type

Inference for Arbitrary-rank Types,

Journal of functional programming, vol. 17,

no. 01, 2007, pp. 1-82.

5. JOUNNAUD, J.-P. and M. OKADA,

Abstract Data Type Systems, Theoretical

Computer Science, vol. 173, no. 2, 1997,

pp. 349-391.

6. Javascript Object Notation,

http://www.json.org (ac. 26th March 2015).

7. LEVENSHTEIN, V. I., Binary Codes

Capable of Correcting Deletions,

Insertions, and Reversals, Soviet physics

doklady, vol. 10, no. 8, 1966, pp. 707-710.

8. LISKOV, B., S. ZILLES, Programming

with Abstract Data Types, in Proceedings

of the ACM SIGPLAN Symposium on

Very High Level Languages, New York,

NY, USA: ACM, 1974, pp. 50-59.

9. MITCHELL, N., Hoogle Overview, The

Monad. Reader, vol. 12, 2008, pp. 27-35

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 227

10. Performance webapi,

https://developer.mozilla.org/en-

US/docs/Web/API/Performance/now

(accessed 26th March 2015).

11. SOZEAU, M. and N. OURY, First-class

Type Classes, in Theorem Proving in

Higher Order Logics, Springer, 2008,

pp. 278-293.

12. STROUSTRUP, B., Exception Safety:

Concepts and Techniques, in A.

Romanovsky, C. Dony, J. Knudsen, and A.

Tripathi, (ed.), Advances in Exception

Handling Techniques, ser. Lecture Notes in

Computer Science, Springer Berlin

Heidelberg, vol. 2022, 2001, pp. 60-76.

13. The Haskell Programming Language,

https://www.haskell.org/ (accessed 26th

March 2015)

14. The Rust Programming Language,

https://www.rust-lang.org/ (accessed 26th

March 2015)

http://www.sic.ici.roStudies in Informatics and Control, Vol. 24, No. 2, June 2015228

