
1. Introduction

Progress  in  type  inference  algorithms  [4]  has

led to statically typed languages that are easier

to  use  and  more  appealing  to  programmers.

Thanks  to  their  performance  compared  to

dynamic  languages,  programming  languages

such  as  Scala,  Go  and  Hack  (Facebook’s

version of typed PHP) are increasingly gaining

popularity. Besides the mentioned ease of use

and good performance, all these languages also

come with great tooling.

While  not  specifically  part  of  the  language,

accompanying  tools  are  critical  to  a

programming  language’s  success.  They

represent  the  ways  in  which  a  programmer

interacts  with  the  code.  For  example,  any

language  should  have  (or  support)  a  good

debugger to make finding bugs easier. Also, it

should  have  an  easy  to  use  package

management  and  build  system.  Many

programmers find the XML configuration files

of  Java  package  systems  cumbersome.  To

overcome  this,  Scala  brings  a  simpler  format

for specifying dependencies.

Another  important  tool  is  the  documentation

generator.  Good  languages  are  used  in  large

projects,  and  large  projects  need  great

documentation.  Having  a  standard  way  of

generating documentation pages is key to effortless

knowledge sharing. Java has  Javadoc, Scala has

Scaladoc and Go has Godoc. They all do a good

job  of  generating  formatted,  Web-accessible

documentation from source code. However, they

share  a  key  shortcoming  -  they  only  support

searching  symbols  by  name.  Search  by  name

covers one aspect of programming - the situation

where the programmer encounters a function and

wants to know what it does. But there is also the

case when the programmer needs to find a function

that  does a particular  operation,  and because of

various  reasons  (new  language,  new  naming

standards,  new codebase etc.)  the name  of  that

function is unknown. In this situation, the ability to

search  by type  would be perfect.  An important

benefit  of  static  typing,  besides  allowing  for

compile-time  checking,  is  that  the  types  act  as

documentation.  So  why  shouldn’t  the

documentation generators use this information?

Our project aims to add this exact functionality

to Rustdoc - the documentation generator of the

up-and-coming  (currently in  alpha)  Rust  [14]

programming  language.  Rust  has  a  rich  type

system,  similar  to  that  of  Haskell  and  ML,

which allows representing complex information

through the type annotations. Because of this,

we  consider  it  a  great  target  language  for

searching documentation by types.

The rest of this article is structured as follows:

first,  we will  introduce Rust,  its  features  and

look at an existing implementation of searching

documentation by type  for Haskell.  Then,  we

will  discuss  our  implementation  for  Rustdoc.

Following this,  we will  examine the usage as

well  as  the  performance  of  our  solution.

Finally, we will present our conclusions as well

as possible future work for the project.
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2. Background and Related Work

2.1 Rust and its type system

Rust is a systems programming language, like

C and  C++. While low level languages often

have simple  type  systems  that  generally  only

describe how much space values need in order

to  perform  memory  allocation,  Rust’s  type

system supports features such as algebraic data

types and traits, capabilities that we are used to

see  in  higher  level  programming  languages,

such as ML and Scala.

First  of  all,  the  type  system provides  all  the

basic  features  that  one  might  expect  from

languages such as C and C++ - primitive types,

enums, structs,  methods etc.  While Rust does

not have support for inheritance (like in Object

Oriented Programming), it makes up for it with

a similarly powerful construct: traits.

Traits [11] are a set of methods that one uses to

add functionality to a struct (Rust does not have

classes  -  structs  are  used  instead).  They  can

either provide only method prototypes, or full

methods with default implementations. In terms

of  Object  Oriented  Programming,  a  trait  is

similar  to an interface. Making a reference to

the  Haskell  ecosystem,  a  trait  is  like  a  type

class. Using traits, the programmer can extend

their  own  structs  with  new  functionality,  as

well as enhance the built-in types, if needed.

Another  important  feature  of  the  Rust  type

system  is  having  algebraic  data  types  [5]

(ADT). ADTs are compound data types, useful

for  representing  abstract  concepts  without

reasoning about the implementation details.  A

common  example  is  representing  the  natural

numbers using ADTs:

type nat :=

| Zero : nat
| Succ : nat -> nat

Thus, 0 would be Zero, 1 would be Succ(Zero),

2 would be Succ(Succ(Zero)) and so on.

Having these abstract representations, one can

describe  properties  and  transformations  by

focusing on the actual algorithm, rather than on

the representation of data.  A function defined

on Nat  will  perform the  same  transformation

regardless  of  the representation we choose to

use  for  natural  numbers,  and  this  is  very

powerful,  because  ADTs  are  a  better  fit  in

formal  proofs  [8].  Thanks  to  the  support  for

ADTs,  the  programmer  is  allowed  to  code

implementations  that  are  close  to  the

corresponding formal specification.

To easily work with abstract  data types,  Rust

provides  pattern  matching  through  the  match

expression.  This  construct  enables  more

expressive  control  flow,  in  ways  that  the

regular if and switch statements cannot achieve.

In its simplest form, the syntax looks as shown

in Listing 1.

let x = 5;
match x {

   1 => println!(”one”),
   2 => println!(”two”),

   3 => println!(”three”),
   _ => println!(”something 

                  else”),
}

Listing 1. Match syntax in Rust

However,  one  can  use  pattern  matching  to

interpret  (destructure)  abstract  data  types.  In

Listing  2,  we  declare  the  described  type  Nat

and show how we can use pattern matching to

interpret it as a regular, integer (32 bits) value.

Note that because Nat as Succ(Nat) would lead

to an infinite recursive expansion, we wrap the

Nat within Succ inside a box (Rust’s version of

a smart pointer [2]).

enum Nat {
  Zero,

  Succ (Box<Nat>)
}

fn interpret_nat (n: Nat) -> u32

{
  match n {

     Nat::Zero => 0,
     Nat::Succ(box x) => {

            1 + interpret_nat(x)
     }

  } 
}

Listing 2. Working with Nat in Rust

Having mentioned pointers, Rust’s approach to

memory management is novel as well. Being a

systems  language,  it  does  not  afford  the

comfort of garbage collection that other, higher

level  languages  (such  as  Haskell  and  Scala)

have.  However, staying  true to its  safety first

philosophy, the C approach of manual memory

management via  malloc and  free would not

be  acceptable  either,  since  it  would  be  the

developer’s responsibility to not forget to call

free, and to not call it more than once on the

same  pointer.  To  get  around  this,  Rust
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implements a variant of Region Based Memory

Management  [3].  This  is  similar  to  what

happens to variables on the stack - when they

are  declared,  memory  is  reserved  for  them;

when the function ends (they go out of scope),

memory is  freed.  Rust  takes  this  simple  idea

and extends it to heap allocated objects. This is

in no way a trivial task, because, to be useful,

heap-allocated objects are often returned from

functions and used in other lexical scopes than

the one they were created in.

To keep track of dynamic memory, Rust has a

complex  ownership  and  lifetime  system  that

determines who owns every variable (i.e. who

would be responsible for calling free), as well

as how long is a variable supposed to live (i.e.

when should free be called). This information

is inferred by the compiler automatically, so the

programmer  does  not  have  to  do  any  extra

work. However, if she tries to take ownership

over  an  already  owned  value,  the  compiler’s

borrow checker will statically detect this error

and report it.  This prevents an entire class of

bugs from showing up at runtime [1] [12].

By using Region Based Memory Management,

Rust  allows developers  to  write  code as  they

would in a garbage collected language, without

worrying  about  explicit  memory  allocation,

while ensuring that there are no leaks and that

the  memory  is  deterministically  cleared,  with

no  global  pauses  (as  is  the  case  when  using

garbage collectors).

Besides  keeping  track  of  ownership

information, the Rust compiler is also aware of

the mutability status of all values. By default,

everything  is  immutable  (e.g.  let x = 5;).

However, sharing a pragmatic perspective, Rust

allows mutable values (let mut x = 5;). Having

this  information  encoded  in  the  type  of  a

binding, the borrow checker can perform even

more  advanced checks.  For  example,  a  value

can be borrowed any number of times through

an  immutable  reference  (i.e.  no  mutation  is

performed).  Meanwhile,  once  a  value  is

borrowed  through  a  mutable  reference  (i.e.

mutations can be performed), it can no longer

be borrowed until  the first  borrow ends.  This

static check prevents potential  data  races that

would otherwise be difficult to debug.

2.2 Documentation generators

1)  Haddock  and  Hoogle:  Haskell  [13]  is  a

programming language that is very popular in

the  research  community.  It  is  very  advanced

and actively developed as the state of the art in

programming  language  design  progresses.  Its

type system is even more complex than that of

Rust. However, Haskell uses garbage collection

and has no borrow checker.

Haddock  is  the  standard  documentation

generator  for  Haskell.  As  all  documentation

generators,  it  crawls  the  source  code  of  a

project  and creates  a formatted representation

of the documentation annotations. Haddock is

aware of the type system annotations as well,

and  it  uses  them  to  build  a  database  of  the

found symbols and their types.

Hoogle [9] (taking its name from Haskell and

Google)  is  a  search  engine  that  uses  the

Haddock-generated database. Using Hoogle, a

user  can search for  (a -> b) -> [a] ->

[b] and find the documentation of map. This is

the  missing  piece  that  mainstream  languages

like Scala and Go lack, as we have described in

the Section 1.

Hoogle  is  a  popular  tool  in  the  Haskell

community,  constantly  helping  programmers

find functions that do what they need. This saves

the time of reimplementing existing functions.

2)  Rustdoc:  Rustdoc  is  Rust’s documentation

generator. As its host language, it is in the early

stages of development (Rust is currently at its

second alpha version),  but it  already supports

the  same  set  of  features  as  other  established

generators, such as godoc.

Rustdoc generates  HTML  files,  making  the

documentation easy to browse. It also supports

searching symbols by name, as we will describe

in  the  following  section.  Thanks  to  the

expressivity of the Rust type system, we feel that

adding by type search support to  Rustdoc will

yield great added value to the Rust community.

Table 1 shows the search capabilities of the two

documentation generators, along with the more

popular Javadoc.

Table 1. Search capabilities of

documentation generators

By name By type

Javadoc X

Rustdoc X

Haddock/Hoogle X X
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3.  Building  a  Searchable  Index

Based on Rust Types

The  intention  of  our  project  is  to  enhance

Rustdoc’s existing search functionality in order

to  allow  more  complex  queries  dealing  with

types. This need comes from a set of situations

that  all  programmers  face,  especially  when

working  in  a  new language  or  when  using  a

new library. To give a few examples:

− Finding a helper function that checks if a

character is alphanumeric.

− Finding a method that gives the length or

size of a vector.

− Finding a method that returns a substring of

a string.

Usually,  these  problems  would  be  solved  by

manual,  exhaustive  searches  in  the

documentation.  However,  in  statically  typed

programming languages, there is a better way.

Consider  that  the  programmer  knows  what

types  she  is  working  with  -  in  the  above

examples: char, bool, Vec, usize (unsigned int),

str.  Having this  knowledge  and  a  type-aware

documentation  generator,  the  programmer

could simply search for:

char -> bool

Vec -> usize

str, usize, usize -> str

This  is  exactly  what  our  project  sets  out  to

achieve.  However,  because  of  the  way  that

Rustdoc generates the documentation, this is not a

trivial task. We will describe the challenges that

we have faced in the next section.

3.1 Challenges

In order to make it  easy for anybody to self-

host  documentation  for  their  Rust  library  or

project,  Rustdoc generates static, HTML files.

This  means  that  in  order  to  publicly  offer

documentation  for  a  project,  the  author  only

needs to serve the HTML from a web server.

There is  no  need for  a  custom framework,  a

database  server  or  executing  PHP  or  other

similar  server-side  dynamic  language.  In

addition the documentation can be easily made

available offline: one can simply download the

files  locally  and  then  one  can  browse  the

documentation  even  without  an  Internet

connection.

Deploying new changes to the public is easy as

well.  After  modifications  are  made  in  the

project code, one can execute  Rustdoc and the

new HTML files will be generated. From here,

publishing the updated version is only a matter

of copying the files to the remote server hosting

the documentation. 

While having the advantages described above,

the  static  nature  of  Rustdoc has  its

shortcomings as well, and they mainly show up

when looking at the search problem. 

Generally, the search flow obeys the following

structure:  there  is  a  front-end,  where  a  user

enters a search query. The front-end sends the

query  to  the  search  back-end.  The  back-end

parses the query and matches it against a data

store  (generally,  a  database)  using  the  data

store’s query language (e.g. SQL for relational

databases).  Then,  the  back-end  assembles  a

response, which it sends to the front-end. The

front-end formats the results contained by the

response and the user finds the information she

searched for.

Because  Rustdoc deals  with static  files,  there

can’t be a separate back-end with its own data

store.  Thus,  we  have  to  rely on the  dynamic

facilities  that  browsers  provide  in  order  to

implement our search functionality. This means

that  the  search  engine  actually  has  to  be

JavaScript  code,  running  client-side  in  the

user’s browser. Having no database server, the

data store also needs to be loaded client-side,

making it available for the JavaScript code to

query. The constraints described above impose

the  following  architecture  for  supporting

search. Generating the static files (as shown in

Figure 1):

Figure 1. Generating the static files

− Walk the source code of the project.

− Generate the formatted documentation.

http://www.sic.ici.roStudies in Informatics and Control, Vol. 24, No. 2, June 2015224



− For  every  symbol,  add  it  to  the  search

index.

− Write the search index to a separate file.

− Provide  the  JavaScript  file  that  loads  the

index and processes queries

Client-side handling of the query in JavaScript

(as shown in Figure 2):

− Parse the query

− Filter  the  symbols  matching  the  given

query

− Display the results

Figure2. Responding to a query

3.2 Making use of the compiler data

Rustdoc already  supports  searching  by  name

and  it  achieves  this  by  implementing  the

previously  described  architecture.  To support

searching  by  type,  we  needed  to  make  two

main additions:

1. Enrich the search index with type data.

2. Enhance  the  JavaScript  query  handler  to

filter by type.

This subsection describes the first part, while the

following subsection will describe the second.

The  current,  upstream  implementation  of

Rustdoc generates  data  that  does  not  contain

type information. It uses the compiler to identify

symbols (functions, structures, methods etc.) in

the project, and then it formats the annotations

found  on  the  respective  declarations.  To

facilitate searching, it also builds a search index

alongside the whole process, and then writes it

to  a  separate  file.  The  format  of  the  existing

search index is the following:

[item_type;  name;  path;
description; parent_path]

item_type is  not  the  full  type  system

annotation  of  the  symbol,  but  something

simpler: one of  function,  module,  struct,

enum,  trait,  typedef.  It  helps  narrowing

down result  sets  by their  “general” type.  The

other  important  fields  are  name,  the  actual

name of the symbol and description, a short

explanation of the symbol. The former is used

when searching, while the latter is used when

displaying  results.  The  path and

parent_path fields  are  not  relevant  for

searching by type. They are useful for ranking

results  when  searching  by  name,  because

results  closer  to  the  module  that  the  user  is

exploring should be prioritized.

To implement searching by type, we needed to

add another field to the index item format - the

actual type of the symbol. To give an example,

for the  is_alphanumeric function, the type

is char -> bool.

We decided to use a simple representation that

can later be extended to support more advanced

features  that  we  will  describe  in  Section  5.

Listing  3  provides  an  example  for  the

is_alphanumeric function mentioned above.

{
  ”inputs” : [

      { ”name” : ”char” }
  ] ,

  ”output” : {
     ”name” : ”char” ,

  }
}

Listing 3. Type representation

The choice of JSON [6] as the index format allows

easy interaction with the index from JavaScript.

The  inputs key has a  list value,  allowing for

multiple function arguments. The output key has

an  object  value,  allowing  for  void  functions

(represented as "output": null).

Because  Rustdoc uses  the  Rust  compiler  to

detect symbols in a project, it also has access to

the type  system information.  This  is  how we

extract  the  data  in  order  to  add  the  function

types  to  the  search  index.  The  only  custom

aspect  that  we  had  to  cover  was  finding  the

type of the self argument of methods. This is

non-standard  because  in  Rust,  the  first

argument of a method (self) does not have an

explicit type annotation, since the information

would  be  redundant  -  the  type  is  always  the

structure or trait to which the method belongs.

However,  to  provide  support  for  meaningful

search queries, we had to include this type in

the argument list.

Without the  self type, searching for the  len

method of  a vector would need a “-> usize”
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query.  But  this  is  too  vague,  since  there  are

many functions that return an unsigned integer.

Adding the type of self, one can query against

“Vec-> usize”, leading to a small,  relevant

set of results.

Finding the type of self is not trivial, because

that information is not contained in the method

annotations. When generating data for methods,

our implementation finds the parent symbol of

the method (i.e.  the structure  or  trait  that  the

method  belongs  to)  and  it  uses  that  type.

Because of the language’s syntax, methods can

only be declared within structs or traits, so the

type  of  self can  always  be found this  way.

However,  for  traits  this  means  that  the

searchable  type  will  contain  the  trait’s  name

and not the one of the struct implementing it.

To  give  an  example,  to_lowercase:

CharExt  ->  char is  a  method  that  the

CharExt trait declares and  char implements.

When  searching  for  to_lowercase,  one

would have to query for  CharExt -> char.

With  the  current  implementation,  char  ->

char would not find to_lowercase.

This  way,  Rustdoc  has  all  the  information

needed  to  build  the  enhanced  search  index.

Then, it is up to the JavaScript code to query

that index.

3.3 Searching through types

Rustdoc provides a JavaScript file that executes

search  queries  against  the  generated  search

index. Although it only supports searching by

name, it is a complex piece of software:

− It  allows  filtering  the  results  by  general

types (functions, structures etc.).

− It  allows  searching  by  exact  name,  in

addition  to  matching  against  subsets  of

keywords.

− It ranks results based on a complex set of rules:

◦ Levenshtein distance [7]

◦ Module  -  results  in  the  selected

module are ranked higher. 

◦ Description  -  results  with

description are preferred.

◦ General  type  -  functions  are

ranked higher than constants.

We  wanted  to  extend  the  search  engine  to

support  type  search  while  keeping  all  the

existing  functionality.  Thus,  besides  the

existing keyword and exact match modes, our

implementation adds another mode - by type.

Whenever  the search query contains  the “->”

string, the search engine enters the new mode.

This  is  safe  to  do  because  no  valid  Rust

identifier  can  contain  “->”,  so  there  is  no

interference with the existing by name search

modes.  Searching  for  non-functional  types  is

still handled by the existing search logic. This

is natural,  since the only way to search for a

nonfunctional type (e.g. a struct) is by its name.

Having  detected  a  by  type  search  query,  we

parse the input  in  order  to  find what  type  to

match against. There are two main components:

the argument types (the inputs) and the return

type  (if  any).  Using  string   manipulation

operations, the respective types  are identified.

Then, because of the way the search index is

structured, the query types are easily compared

to the search index information.

To  make  the  search  more  user-friendly,  we

ignore the order of the provided input types. To

achieve this, both the provided input types and

the sets of input types from the index are sorted

lexicographically. This way, the user does not

need  to  worry  about  the  correct  order  of

function arguments.

4. Evaluation

Having compiled Rustdoc with our changes, we

have  regenerated  the  documentation  for  the

entire standard library. This is the largest set of

documentation that is currently available for a

Rust project,  and we decided to use it  to test

our  implementation.  Measurements  show that

our  changes  do  not  affect  the  duration  of

generating documentation using Rustdoc.

We used the same set of queries from Section 3:

char -> bool

Vec -> usize

str, usize, usize -> str

Besides making sure the results  were correct,

we also inspected the performance of the search

code.We  did  this  using  the  standard

performance API [10], which provides accurate

timestamps down to the millisecond.

The  average  response  time  for  the  queries

above was 10 ms. In comparison, we found the

average response time for by name queries to

be 25 ms. The main reason for the difference is

that  the  by  type  search  has  a  smaller  search

space,  since  it  only  has  to  look  at  functions
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(and  methods,  which  can  also  be  considered

functions for our purpose).

Overall,  adding the new query type  does  not

show  a  performance  cost  from  a  time

perspective.  It  does,  however  add size  to  the

search  index,  because  of  the  new  type

annotations. This means that the browser has to

load more data over the network. We have not

found this to be an issue in our tests. However,

should the need arise, compression can be used

when generating the search index.

Figure 4. Screenshot of a query

5. Conclusion and Future Work

Documentation  generators  for  statically  typed

languages like Rust can be very powerful. Our

implementation shows that it is possible to use

the type annotation that the compiler provides

in order to build a search index for the types in

an entire project. Then, that search index can be

queried  client-side,  from  JavaScript,  without

the need of a database server.

Our  solution  also  shows  that  there  is  no

performance impact for adding by type search

support, other than increasing the actual size of

the index.

While covering the basic needs of type search,

the implementation is definitely not complete.

There are some other features that can be added:

− Support  for  generics  -  char -> char

should match t -> t.

− Support for trait implementors - char ->

char should match CharExt -> char.

− Support  for  paths  -  the  ability  to  either

write char or std::char.

− Ranking - more concrete types should rank

higher than matching generic types.

− Support for references.

− Support for lifetimes.

The design of our implementation allows for all

the above features to be incrementally added.

This  way,  after  the  proposed  changes  get

merged in the upstream Rust repository, other

contributors from the Open Source community

can take on implementing any feature they find

necessary.
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