
1. Introduction

Many  today’s  computing  and  data  intensive
applications, such as computer games, database
and  Web  searching,  financial  and  economic
forecasting,  climate  modelling,  environment
monitoring,  and  bioinformatics,  demand
acceleration  and  significant  performance
improvements  [1].  There  are  several
approaches  that  can  be  employed  to  improve
the  performance  of  advanced  computing  and
data  intensive  applications.  All  of  them  are
based  on  parallel  computing  paradigm  on
single  multi/many  core  computer  systems,  or
over  distributed  computing  infrastructure
within  a  cluster  or  cloud  architecture.  Such
solutions  employ  parallel  and  distributed
programming  models,  frameworks  and
interfaces such as: multi-core CPU, many-core
graphics  processing  unit  (GPU),
network/cluster  of  workstations  and  PaaS  in
computer clouds [2]. 

Advances  in  remote  sensing  technologies,
sensor networks and the proliferation of mobile
devices  in  everyday  use  have  resulted  in  an
acquisition  of  massive  amounts  of  geospatial
data  and  moving  object  trajectories.  Also,
large-scale  geo-scientific  modelling  and
simulations,  as  well  as  geo-social  network
activities  (e.g.  Twitter  and  Facebook)  are
generating  petabytes  of  spatio-temporal  data
per  day.  These  ever-increasing  volumes  of
spatio-temporal  data  call  for  new models  and
computationally effective algorithms in order to
efficiently store, process, analyze and visualize
such  a  big  data  in  advanced  data-intensive
systems  and  applications.  Recently,  high-

performance computing (HPC) is promoted to
meet the requirements of advanced Geographic
Information Systems (GIS) applications [3].

The  recent  proliferation  of  distributed  and
cloud computing infrastructures and platforms,
both  public  clouds  (e.g.,  Amazon  EC2)  and
private computer clouds and computer clusters,
has  given  a  further  rise  for  processing  and
analysis  of  complex  Big  data.  Especially,  the
implementation  that  can  work  on  clusters  of
multicore  shared-memory  computers  (nodes),
have set this paradigm as an emerging research
and  development  topic.  In  this  paper,  we
employ  MPI  (Message  Passing  Interface),  a
message  passing  parallel  programming  over
cluster  of  computers/nodes,  and  OpenMP for
shared memory parallel programming within a
node,  to  implement  an  application  for  large
scale trajectory data processing and analysis.

The  Message  Passing  Interface  (MPI)  has
become  the  major  model  for  programming
distributed-memory  applications.  Message
passing works by creating processes which are
distributed  among  the  group  of  computing
nodes. When a MPI program runs, all processes
execute the same code. 

OpenMP notation can be added to a sequential
program to define how the work can be shared
among  the  threads  that  execute  on  different
processor’s cores and to order access to shared
data as needed. OpenMP supports the so-called
fork-join  and  shared  memory  programming
model. 

Hybrid  MPI+OpenMP  approach  integrates
different  levels  of  parallelism.  This  approach
employs features of a distributed memory using
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message-passing  and  a  shared-memory  using
multithreading.  MPI  is  used  for  process
communication  between  multicore  nodes  and
OpenMP  is  used  for  thread  communication
within a multicore node.

The main contributions of the paper are:

- We  propose  the  use  of  a  hybrid
programming model and develop a hybrid
MPI+OpenMP  application  that  performs
spatial join between trajectory data set and
spatial  regions  around  points/places  of
interest  (POI),  and  further  aggregation  of
join results, to detect the most popular POIs
in the city (Popular Places algorithm).

- We perform the  experimental  evaluation
that  indicates  the  improvements  in
performance  with  respect  to  pure  MPI-
based  and  sequential  (single  node)
solutions  and  show  feasibility  of  using
hybrid  programming  model  for  data-
intensive GIS computing.

- We  analyze  and  examine  the  effects  of
hybrid  MPI/OpenMP  implementation  and
propose hints for large scale spatio-temporal
data processing in other GIS domains. 

The rest of the paper is structured as follows.
Section II presents the research work related to
high-performance  processing  and  analysis  of
large-scale  spatial  and  spatio-temporal  data
using  existing  HPC paradigms.  In  section  III
we  describe  the  pure  MPI  and  the  hybrid
MPI+OpenMP  implementation  for  processing
of big trajectory data set over set of places of
interest (POI). Section IV gives the results and
presents  the  evaluation  of  hybrid
MPI+OpenMP,  pure  MPI  and  sequential
implementation  of  Popular  Places  algorithm.
Section  V  concludes  the  paper  and  gives
directions for future research.

2. HPC for Big Geospatial Data

Big  data  is  emerging  paradigm  and  research
topic  related  to  collection,  processing  and
analysis  of  huge  amounts  of  structured  and
unstructured  data  and  its  applications  in
enterprises,  scientific  and  government
organisations  [4].  Recently,  there  is  also  a
growing  research  interest  in  management,
processing analysis and mining of massive geo-
spatial data in various GIS domains using high
performance parallel and distributed computing
methodologies,  techniques  and  platforms  [5].
Advanced GIS applications,  such as real-time

disaster  management,  high-fidelity  terrain
visualization,  global  climate  change  analysis,
traffic  monitoring,  etc.,  impose  strengthen
performance  and  response  time  constraints
which  cannot  be  met  by  contemporary  GISs
and spatial databases. Thus, high-performance
computing  is  promoted  to  meet  the
requirements of these applications [3]. Various
researchers propose methods and techniques for
achieving  high  performance  through
parallelization in the processing and analysis of
big geospatial data based on cluster and cloud
computing  [6],  as  well  as  on  personal
computers equipped with multiprocessor CPUs
and massively parallel GPUs [7].

Akhter et al. [8] develop a methodology and
propose GRASS GIS module extension with
parallel and distributed computing for remote
sensing  image  processing.  Different
implementations  for  distributed  GRASS
modules  are  examined  on  three  different
programming  platforms  (MPI,  Ninf-G  and
OpenMP)  and  their  performance  are
presented.  Zhang  in  [7]  proposes  a
framework  for  high-performance  processing
of  geospatial  data  in  a  personal  computing
environment.  His  approach  is  based  on
personal computers equipped with multi-core
CPU  and  many-core  GPU  that  provide
excellent  support  for  spatial  data  processing
comparing with cluster and cloud computing
approaches,  such  as  MPI  and  MapReduce.
Shi  in  [9]  discusses  fundamental  research
challenges  that  need  to  be  solved  to
effectively  apply  HPC  techniques  in  a
service-oriented  GIS.  Wang  et  al.  in  [10]
propose  a  framework  for  efficient  retrieval,
indexing and management  of  spatial  data  in
the  cloud  environment.  They  develop  a
spatial object model,  spatial index structures
and  algorithms  for  the  cloud  computing
environment, and implement them on Google
App Engine cloud environment. 

One of the first HPC approach related to spatio-
temporal  data  and  massive  trajectory
management is presented in [11]. The authors
present  a  framework  for  spatial  query
processing  over  trajectory  data  based  on
MapReduce  in  a  computer  cluster.  The
experiments performed show the scalability of
proposed  framework  in  terms  of  the  size  of
trajectory  data  set  [12].  SpatialHadoop  is
developed  as  the  MapReduce  extension  with
support  for  spatial  data  types  and  operations
implemented  within  Hadoop  software
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framework [13].  SpatialHadoop  employs  a
spatial high level language, a two-level spatial
index  structure,  and  three  basic  spatial
operations:  range  queries,  k-NN  queries,  and
spatial  join.  SpatialHadoop demonstration has
been done on an Amazon EC2 cluster against
two real spatial data sets.

Kunaseth  et  al.  in  [14]  propose  analysed
algorithms  for  hybrid  MPI/OpenMP
parallelization  of  molecular-dynamics
simulation,  which  are  scalable  on  large
multicore  clusters.  Proposed  hybrid
MPI+OpenMP  implementation  achieves  2.58
and  2.16  speedups  with  respect  to  pure-MPI
implementation  for  0.84  and  1.68  million
particle  simulations,  respectively.  In  [15]  a
hybrid MPI+OpenMP approach is proposed for
pseudo-spectral  computations  of  fluid
turbulence. The implementation scales well up
to  20,000  computing  cores  with  a  maximum
parallel  efficiency  of  89%.  They  propose  a
method to reduce the number of MPI tasks, and
increase  network  bandwidth,  resulting  in  the
implementation competitive with the pure MPI-
based method.

Although  there  is  a  considerable  recent
research interest  related to spatial  and spatio-
temporal  data  management  on  parallel  and
distributed  computing  infrastructures,  there  is
limited  research  work  dedicated  to  trajectory
(mobility)  data  processing  and analysis  using
MPI  and  OpenMP  parallel  programming
frameworks. Our work aims to provide efficient
solution  based  on  MPI  and  OpenMP  for
fundamental  mobility  data  processing  task
related to Big trajectory data sets..

3.  MPI  and  OpenMP  in  Big

Trajectory Data Processing

The research  presented  in  this  paper  aims  to
provide  high-performance  solution  for  a  Big
data processing and analysis task related to the
trajectory  data  set  representing  movement  of
mobile  users  and the points/places  of  interest
(POI) they visit.

The  problem  we  investigate  in  this  work
represents the spatial join between a big set of
spatio-temporal,  trajectory  (mobility)  data  T
and a (potentially large) set of spatial regions
R. The trajectory data represent the movement
of a large collection of moving objects/mobile
users  (MO) tracked for  a  certain time  period
with  the  specified  frequency  of  location

updates. Each trajectory is seen as a collection
of points <oid, xi, yi, ti>, where xi, yi represent
the  location  in  a  geographic/geometric
reference  system  and  ti  is  the  corresponding
time stamp at which the moving object (oid) is
detected at  the specified location.  Trajectories
of a large number of moving objects collected
for  a  long  time  period  are  characterized  by
large  volumes,  considered  as  Big  data  and
therefore  their  processing  and  analysis  is  a
challenging issue. 

Each spatial region R represents an area around
a point/place of interest (POI) visited by mobile
users that stay there for certain time periods. A
mobile user visits particular POI if its recording
location  at  a  corresponding  time  stamp  is
within  the  spatial  region  R  around  POI;
otherwise a mobile user is considered to be on a
trip  between two  POIs.  The  objective  of  our
implementation is  to  provide detection of  the
most  popular  places  regarding the number  of
users that  visited them.  For such analysis  we
develop efficient application over the trajectory
and  region  data  sets.  We  consider  strategy
where spatial relation between objects from the
first dataset (trajectory dataset containing time
stamped  locations  of  moving  objects)  and
objects  from  the  second  dataset,  places  of
interest  (POI),  is  analyzed.  To  improve  the
performance  of  spatial  join  we  implement
simple, in-memory grid index structure for POI
data set. Thus, the area of interest is divided by
a  grid  consisting  of  rectangular  regions  of
specific  dimensions  along x  and y  axes.  The
grid can be regular, or irregular (quad tree) to
efficiently cope with POI data skewness. In this
strategy,  the  POI  data  set  (work)  is  evenly
divided among  processes  and each process  is
assigned  with  POI  data  located  in  particular
geographical region. 

In  the pure MPI implementation,  we perform
uniform splitting of the first dataset (trajectory
dataset,  MO  dataset)  where  distribution
depends on the size of dataset. The first dataset
is  evenly  distributed  among  processes.  Each
process  is  responsible  for  as  possible  equal
chunk of data. Within each process, the spatial
join  between moving objects  location data  in
the trajectory dataset and the objects from the
POI  dataset  that  are  within  particular
geographical  region,  is  performed.  In  this
manner, each moving object location data from
the  trajectory  dataset  is  joined,  according
spatial proximity, with POIs that are within the
corresponding grid cell  in which both objects
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reside.  Pseudocode  and  schematic  workflow
that describes computation steps performed by
MPI processes are shown in Figure 1 and 2.

Parallel execution of MPI processes

- MPI initialization and process identification

- Generating POI index structure 

- Generating  boundaries  for  chunk  of  MO  data

assigned to a particular process

- Performing  spatial  join  between  MO  dataset

(inside assigned boundaries) and a particular POI

dataset (using obtained quad tree index structure)

- Summarizing  results  from  different  processes  in

order to generate final result using MPI reduction

Figure 1. Pseudocode of pure MPI computation

M P I  I n i t i a l i z a t i o n  a n d  p r o c e s s   i d e n t i f i c a t i o n

    M P I   p r o c e s s       M P I   p r o c e s s   

M P I  I n i t i a l i z a t i o n  a n d  p r o c e s s   i d e n t i f i c a t i o n

I n d e x  s t r u c t u r e  a n d  b o u n d a r i e s  g e n e r a t i o n I n d e x  s t r u c t u r e  a n d  b o u n d a r i e s  g e n e r a t i o n

 M O  d a t a s e t   a n d  p a r t i c u l a r  P O I  d a t a s e t   s p a t i a l  j o i n  M O  d a t a s e t   a n d  p a r t i c u l a r  P O I  d a t a s e t   s p a t i a l  j o i n

M P I  R e d u c t i o n

. . .

Figure 2. Schematic workflow of pure MPI
computation

By dividing  the  spatial  area of  interest  using
quad tree index structure, the number of POIs
in  each  spatial  rectangular  region  is  at  most
possible  similar  but  not  absolutely  equal
(Figure 3). Thus, the time spent for performing
spatial join operation assigned to each process
is slightly different. Therefore, we perform the
second  level  of  parallelism,  i.e.  fine-grained
parallelism using threads within the single node
and  shared  memory.  To  better  distribute  the
iterations  assigned  to  each  process,  each
process  spawns  multiple  threads  that  are
dynamically  balanced.  Pseudocode  and
schematic  workflow  that  describes  hybrid
MPI/OpenMP computation are shown in Figure
4 and 5.

Figure 3. The area of interest (city of Milan) a)
regular grid, b) quad tree index structure

Parallel execution of MPI processes

- MPI initialization and process identification

- Generating POI index structure 

- Generating  boundaries  for  chunk  of  MO  data

assigned to particular process

- Performing  spatial  join  between  process  MO

dataset  and  particular  POI  dataset  by  multiple

OpenMP threads 

- Summarizing results from different processes in

order to generate final result using MPI reduction

Figure 4. Pseudocode of hybrid
MPI+OpenMP computation

In  the  case  of  proposed  MPI+OpenMP
implementation,  the  number  of  users  that
visited  a  particular  POI,  which  determines
popularity  of  a  place,  is  stored  in  a  shared
memory array on each multicore  node.  Since
there is possibility that multiple threads try to
modify the same element of the shared array,
the  synchronization  is  necessary.  The  atomic
directive  is  used  for  that  purpose.  Also,  the
access  pattern  is  defined  in  the  form  that
multiple  threads  modify  the same  cache line.
This  fact  can  have  significant  influence  on
performance degradation.

M P I  I n i t i a l i z a t i o n  a n d  p r o c e s s   i d e n t i f i c a t i o n

f o r k  O p e n M P  t h r e a d s f o r k  O p e n M P  t h r e a d s

j o i n  O p e n M P  t h r e a d s j o i n  O p e n M P  t h r e a d s

    M P I   p r o c e s s       M P I   p r o c e s s   

M P I  I n i t i a l i z a t i o n  a n d  p r o c e s s   i d e n t i f i c a t i o n

I n d e x  s t r u c t u r e  a n d  b o u n d a r i e s  g e n e r a t i o n I n d e x  s t r u c t u r e  a n d  b o u n d a r i e s  g e n e r a t i o n

 M O  d a t a s e t   a n d  P O I  
d a t a s e t   s p a t i a l  j o i n

 M O  d a t a s e t   a n d  P O I  
d a t a s e t   s p a t i a l  j o i n

M P I  R e d u c t i o n

. . .

. . . . . .

Figure 5. Schematic workflow of hybrid
MPI+OpenMP computation

Therefore,  an  array extending,  or  padding,  is
introduced.  It  is  achieved  by  dimensioning
array  d[n] as  d[n][x] where
x=cache_line_size/size_of_int,  in  our  case
x=16, and by changing the indexing from d[i] to
d[i][0] which eliminates false sharing. When all
processes finish their computation, summation
of all the results assigned for a particular place,
is  performed.  Since  the  results  that  must  be
summarized  are  placed  in  columns  of  the
matrix D, respectively, in order to apply MPI
reduction,  the  user  defined  function  for
summation is created.
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4. Experimental Evaluation

In  this  section,  we  present  the  experimental
evaluation of the implemented algorithm.  The
parallel  application has  been developed using
C++ programming  language  in  Visual  Studio
2010 extended with  MPICH2 implementation
of  MPI  and  with  support  for  OpenMP.  We
implement and compare two implementations:
the  pure  MPI  and  the  proposed  hybrid
MPI+OpenMP implementation.

For  estimating  performances  of  the  proposed
solutions  we  used  two  system  architectures.
The first architecture represents a cluster of 16
commodity  computers  equipped  with  Intel
Pentium  G2030  (dual  core)  3GHz  CPU  and
8GB RAM. The second architecture is a private
IaaS  cloud  containing  16  virtual  machines
equipped with  Intel  Xeon E5430 (quad core)
2.6GHz CPU and 2GB RAM.

In our study, we use MilanoByNight simulated
datasets  that  have  been  provided  by  the
EveryWare Lab, University of Milano [16] for
the  implementation  and  evaluation  of  large-
scale trajectory data processing algorithms. The
data  correspond  to  a  typical  city  mobility
scenario  where a  large  number  of  people  are
tracked during the evening in a city of Milan
looking for friends and places for amusement.
The simulation includes a total of 30,000 home
buildings,  10,000  office  buildings  and  1,000
entertainment  places  which  represent  a  POI
dataset.  The  trajectory  data  set  contains  18
million  of  records  for  100,000  mobile  users
moving over the city of Milan while location
updates  are  made  at  every  2  minutes.  The
movement has been recorded over 6 hours long
time period, from 7 pm - 1 am, which amounts
for about 1.3 GB in total. 

We have  developed  two  parallel  applications
that  implement  Popular  Places  algorithm and
performed  experiments  for  two
implementations  using  pure  MPI  and  hybrid
MPI+OpenMP approach. The algorithm firstly
processes  spatial  join  between trajectory data
set and spatial regions around points/places of
interest (POI), and then perform aggregation of
spatial join results. By counting unique moving
objects that visited specific POIs the algorithm
provides detection of the most popular POIs in
the  city  during  the  evening.  To  provide  the
most  possible uniform splitting of  the second
(POI)  data  set,  we  divide  the  data  space  of
interest  into  a  quad  tree  which  contains  16
disjoint  rectangular  regions  with  similar
numbers  of  POIs  within  each  region  (Figure
3b).  We  compare  performances  of  both
applications running on 2, 4, 8 and 16 nodes. 

To  examine  scalability  issues,  we  have
performed  our  experiments  for  two  different
sizes  of  the  trajectory  data  set:  1.8  and  18
million  moving  objects.  The  number  of
processes  running  on processor  cores  at  each
node depends on the number of nodes specified
in  the  experiment.  For  MPI+OpenMP
implementation  each  process  spawns
corresponding  number  of  worker  threads,
which  depends  on  the  processor  architecture.
Thus,  for  the  cluster  computing  architecture
which  has  dual  core  processors,  each  MPI
process forks two OpenMP threads,  while for
the cloud architecture nodes, having quad core
processors,  each  MPI  process  forks  four
OpenMP threads. The resulting execution times
obtained for the cluster architecture of physical
machines  are  shown  in  Tables  1  and  2
expressed  in  seconds.  The  value  of  S1
represents  a  speedup  of  MPI+OpenMP
implementation, i.e.  TSEQ/TMPI+OMP,  while S2 is
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Table 1. PopularPlaces application run on the cluster for 1.8 millions moving objects 

1.8 millions of moving objects

p 2 4 8 16

TSEQ 40.610 40.610 40.610 40.610

TMPI+OMP 11.570 5.789 2.909 1.762

TMPI 18.384 7.942 2.707 2.460

TMPI/TMPI+OpenMP 1.588 1.371 0.930 1.395

S1 3.509 7.014 13.957 16.508

S2 2.208 5.113 14.997 14.199



an  appropriate  speedup  of  pure  MPI
implementation, i.e. TSEQ/TMPI.

The speedup of the pure MPI and the hybrid
MPI+OpenMP  implementation  related  to
sequential  PopularPlaces application  for  18
millions of moving objects is shown in Figure
6. The execution time comparison between the
MPI and the MPI+OpenMP implementation for
18  millions  of  moving  objects  is  shown  in
Figure 7.

Figure 6. The speedup of the pure MPI and the
hybrid MPI+OpenMP implementation related to

sequential PopularPlaces application

Figure 7. The execution time comparison between
the MPI and the MPI+OpenMP implementation 

Hybrid  MPI+OpenMP  implementation  gives
better results than pure MPI implementation for
both  data  sets:  maximum  1.6  for  1.8  million
moving  objects  and  maximum  1.8  for  18

millions  moving  objects.  In  the  case  of  pure
MPI  implementation,  the  communication
overhead  outweighs  the  computation
advantage, when number of processors is 16.

The  application  running  over  the  cloud
architecture  shows  the  same  tendency  as  the
cluster architecture (Table 3). The obtained values
of execution times are higher than the appropriate
values  for  a  cluster  of  physical  machines,  as
expected.  MPI+OpenMP  implementation  gives
better results than pure MPI implementation on
the cloud for both data sets: maximum 1.9 for 18
millions of moving objects.

Table 3. The experimental results for 18 million of
moving objects on a cloud 

18 million of moving objects on CLOUD

p 4 8 16

TSEQ 1568.706 1568.706 1568.706

TMPI+OMP 394.985 204.064 103.322

TMPI 413.072 216.179 196.573

TMPI/TMPI+OpenMP 1.045 1.059 1.902

S1 3.972 7.687 15.183

S2 3.798 7.256 7.980

As  stated  in  the  related  work  section,  the
superiority of one model, Pure MPI or Hybrid
MPI+OpenMP, depends on the level (overhead
caused by) of inter-process communication and
shared memory parallelization. The problem we
implemented  of  finding the popular  places  in
the city represents  the classical  GIS analytics
problem. The solution consists of two steps; the
first  step  includes  spatial  join  between  two
spatial  or  spatio-temporal  data  sets,  and  the
second  step  performs  appropriate  processing
and aggregation of join results.  Our approach
consists  in assigning to  each MPI process  an
equal set of moving objects data and indexing
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Table 2. PopularPlaces application run on the cluster for 18 millions moving objects 

18 millions of moving objects

p 2 4 8 16

TSEQ 409.396 409.396 409.396 409.396

TMPI+OMP 113.980 57.123 28.388 14.320

TMPI 183.677 78.550 31.098 25.945

TMPI/TMPI+OpenMP 1.611 1.375 1.095 1.811

S1 3.591 7.166 14.421 28.588

S2 2.228 5.211 13.164 15.778



the POI data set using a spatial index structure,
quad tree, to cope with spatial data skewness.
By dividing the datasets for each MPI process
we  avoid  the  inter-process  communication
overhead  and  reduce  the  effect  of  MPI
communication to the parallel implementation.
We  have  used  fine-grain  OpenMP
parallelization  technique,  by  implementing
OpenMP threads forked by each MPI process.
In that way we increase the utilization of cores
with sharing memory resources. 

Our  evaluation  shows  that  the  best  overall
performance is achieved when one MPI process
is  started  on  each  node,  and  all  other  cores
within  the  node  are  filled  with  OpenMP
threads. In the pure MPI implementation, with
the  increasing  number  of  nodes,  the  overall
execution time decreases.  Also,  the execution
time  slightly  decreases,  when  the  number  of
nodes changes from 8 to 16, since there is the
same number of processes per core. The hybrid
implementation  performs  better  then  the pure
MPI, especially when the number of nodes in
the  experiment  changes  from  8  to  16,  since
each OpenMP thread executes at separate core. 

It is expected that other similar GIS algorithms
that include processing of large-scale geospatial
data and spatial join between two large spatial
data  sets  will  demonstrate  the  same
performance  behaviour  for  hybrid
MPI+OpenMP approach.

5. Conclusion

With  advances  in  remote  sensing,  geo-sensor
networks and pervasive positioning, the amount
of  geospatial  data  that  needs to  be processed
and analyzed has exploded in recent years.  It
leads to the rising of interest in processing and
analysis of massive geospatial data, particularly
trajectories  of  moving  objects.  This  paper
shows  that  the  use  of  MPI  and  OpenMP
programming  models  and  framework  can
significantly improve the performance of data
intensive  GIS  algorithms,  such  as  the  spatial
join between large-scale trajectory data set and
spatial  regions  representing  places  of  interest
(POI), as well as aggregation of join results in
order to analyze popularity of POIs in the city.
We  show  that  employing  distributed
architecture consisting of a cluster of multicore
PC  nodes  and  integration  of  appropriate
parallel  programming  techniques  represents  a
promising research and development direction
in  applying  high-performance  computing  in

GIS  applications.  The  hybrid  implementation
using both MPI and OpenMP frameworks, that
employs  parallelism  between  distributed
computing nodes, as well as within multi-core
computer  nodes,  eliminate  communication
overhead of the pure MPI solutions and achieve
better  overall  performance  by  employing
parallelism  at  the  thread  level.  Our
implementation  provides  excellent  scalability
regarding  increasing  trajectory  data  set  and
computing resources. Future work will consider
other  HPC techniques  and platforms,  such as
MapReduce  framework  and  its  Hadoop
implementation, in processing of Big geospatial
and trajectory data.
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