
1. Introduction

Many today’s computing and data intensive
applications, such as computer games, database
and Web searching, financial and economic
forecasting, climate modelling, environment
monitoring, and bioinformatics, demand
acceleration and significant performance
improvements [1]. There are several
approaches that can be employed to improve
the performance of advanced computing and
data intensive applications. All of them are
based on parallel computing paradigm on
single multi/many core computer systems, or
over distributed computing infrastructure
within a cluster or cloud architecture. Such
solutions employ parallel and distributed
programming models, frameworks and
interfaces such as: multi-core CPU, many-core
graphics processing unit (GPU),
network/cluster of workstations and PaaS in
computer clouds [2].

Advances in remote sensing technologies,
sensor networks and the proliferation of mobile
devices in everyday use have resulted in an
acquisition of massive amounts of geospatial
data and moving object trajectories. Also,
large-scale geo-scientific modelling and
simulations, as well as geo-social network
activities (e.g. Twitter and Facebook) are
generating petabytes of spatio-temporal data
per day. These ever-increasing volumes of
spatio-temporal data call for new models and
computationally effective algorithms in order to
efficiently store, process, analyze and visualize
such a big data in advanced data-intensive
systems and applications. Recently, high-

performance computing (HPC) is promoted to
meet the requirements of advanced Geographic
Information Systems (GIS) applications [3].

The recent proliferation of distributed and
cloud computing infrastructures and platforms,
both public clouds (e.g., Amazon EC2) and
private computer clouds and computer clusters,
has given a further rise for processing and
analysis of complex Big data. Especially, the
implementation that can work on clusters of
multicore shared-memory computers (nodes),
have set this paradigm as an emerging research
and development topic. In this paper, we
employ MPI (Message Passing Interface), a
message passing parallel programming over
cluster of computers/nodes, and OpenMP for
shared memory parallel programming within a
node, to implement an application for large
scale trajectory data processing and analysis.

The Message Passing Interface (MPI) has
become the major model for programming
distributed-memory applications. Message
passing works by creating processes which are
distributed among the group of computing
nodes. When a MPI program runs, all processes
execute the same code.

OpenMP notation can be added to a sequential
program to define how the work can be shared
among the threads that execute on different
processor’s cores and to order access to shared
data as needed. OpenMP supports the so-called
fork-join and shared memory programming
model.

Hybrid MPI+OpenMP approach integrates
different levels of parallelism. This approach
employs features of a distributed memory using

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 229

A Hybrid MPI+OpenMP Application for Processing

Big Trajectory Data

Natalija STOJANOVIC, Dragan STOJANOVIC

University of Nis, Faculty of Electronic Engineering,
14, A. Medvedeva, 18000 Nis, Serbia
natalija.stojanovic@elfak.ni.ac.rs; dragan.stojanovic@elfak.ni.ac.rs

Abstract: In this paper, we present the use of parallel/distributed programming frameworks, MPI and OpenMP, in
processing and analysis of big trajectory data. We developed a distributed application that initially performs a spatial join
between big trajectory data and regions of interest, and further aggregates join results to provide analysis of movement.
The solution was implemented using hybrid distributed/parallel programming model, based on MPI and OpenMP
programming interfaces. The experimental evaluation in detecting the most popular places in the city, based on large-scale
trajectory dataset, demonstrates the performance gains and feasibility of our approach.

Keywords: High performance computing, Big data processing, Geospatial analysis, MPI, OpenMP.

message-passing and a shared-memory using
multithreading. MPI is used for process
communication between multicore nodes and
OpenMP is used for thread communication
within a multicore node.

The main contributions of the paper are:

- We propose the use of a hybrid
programming model and develop a hybrid
MPI+OpenMP application that performs
spatial join between trajectory data set and
spatial regions around points/places of
interest (POI), and further aggregation of
join results, to detect the most popular POIs
in the city (Popular Places algorithm).

- We perform the experimental evaluation
that indicates the improvements in
performance with respect to pure MPI-
based and sequential (single node)
solutions and show feasibility of using
hybrid programming model for data-
intensive GIS computing.

- We analyze and examine the effects of
hybrid MPI/OpenMP implementation and
propose hints for large scale spatio-temporal
data processing in other GIS domains.

The rest of the paper is structured as follows.
Section II presents the research work related to
high-performance processing and analysis of
large-scale spatial and spatio-temporal data
using existing HPC paradigms. In section III
we describe the pure MPI and the hybrid
MPI+OpenMP implementation for processing
of big trajectory data set over set of places of
interest (POI). Section IV gives the results and
presents the evaluation of hybrid
MPI+OpenMP, pure MPI and sequential
implementation of Popular Places algorithm.
Section V concludes the paper and gives
directions for future research.

2. HPC for Big Geospatial Data

Big data is emerging paradigm and research
topic related to collection, processing and
analysis of huge amounts of structured and
unstructured data and its applications in
enterprises, scientific and government
organisations [4]. Recently, there is also a
growing research interest in management,
processing analysis and mining of massive geo-
spatial data in various GIS domains using high
performance parallel and distributed computing
methodologies, techniques and platforms [5].
Advanced GIS applications, such as real-time

disaster management, high-fidelity terrain
visualization, global climate change analysis,
traffic monitoring, etc., impose strengthen
performance and response time constraints
which cannot be met by contemporary GISs
and spatial databases. Thus, high-performance
computing is promoted to meet the
requirements of these applications [3]. Various
researchers propose methods and techniques for
achieving high performance through
parallelization in the processing and analysis of
big geospatial data based on cluster and cloud
computing [6], as well as on personal
computers equipped with multiprocessor CPUs
and massively parallel GPUs [7].

Akhter et al. [8] develop a methodology and
propose GRASS GIS module extension with
parallel and distributed computing for remote
sensing image processing. Different
implementations for distributed GRASS
modules are examined on three different
programming platforms (MPI, Ninf-G and
OpenMP) and their performance are
presented. Zhang in [7] proposes a
framework for high-performance processing
of geospatial data in a personal computing
environment. His approach is based on
personal computers equipped with multi-core
CPU and many-core GPU that provide
excellent support for spatial data processing
comparing with cluster and cloud computing
approaches, such as MPI and MapReduce.
Shi in [9] discusses fundamental research
challenges that need to be solved to
effectively apply HPC techniques in a
service-oriented GIS. Wang et al. in [10]
propose a framework for efficient retrieval,
indexing and management of spatial data in
the cloud environment. They develop a
spatial object model, spatial index structures
and algorithms for the cloud computing
environment, and implement them on Google
App Engine cloud environment.

One of the first HPC approach related to spatio-
temporal data and massive trajectory
management is presented in [11]. The authors
present a framework for spatial query
processing over trajectory data based on
MapReduce in a computer cluster. The
experiments performed show the scalability of
proposed framework in terms of the size of
trajectory data set [12]. SpatialHadoop is
developed as the MapReduce extension with
support for spatial data types and operations
implemented within Hadoop software

http://www.sic.ici.roStudies in Informatics and Control, Vol. 24, No. 2, June 2015230

framework [13]. SpatialHadoop employs a
spatial high level language, a two-level spatial
index structure, and three basic spatial
operations: range queries, k-NN queries, and
spatial join. SpatialHadoop demonstration has
been done on an Amazon EC2 cluster against
two real spatial data sets.

Kunaseth et al. in [14] propose analysed
algorithms for hybrid MPI/OpenMP
parallelization of molecular-dynamics
simulation, which are scalable on large
multicore clusters. Proposed hybrid
MPI+OpenMP implementation achieves 2.58
and 2.16 speedups with respect to pure-MPI
implementation for 0.84 and 1.68 million
particle simulations, respectively. In [15] a
hybrid MPI+OpenMP approach is proposed for
pseudo-spectral computations of fluid
turbulence. The implementation scales well up
to 20,000 computing cores with a maximum
parallel efficiency of 89%. They propose a
method to reduce the number of MPI tasks, and
increase network bandwidth, resulting in the
implementation competitive with the pure MPI-
based method.

Although there is a considerable recent
research interest related to spatial and spatio-
temporal data management on parallel and
distributed computing infrastructures, there is
limited research work dedicated to trajectory
(mobility) data processing and analysis using
MPI and OpenMP parallel programming
frameworks. Our work aims to provide efficient
solution based on MPI and OpenMP for
fundamental mobility data processing task
related to Big trajectory data sets..

3. MPI and OpenMP in Big

Trajectory Data Processing

The research presented in this paper aims to
provide high-performance solution for a Big
data processing and analysis task related to the
trajectory data set representing movement of
mobile users and the points/places of interest
(POI) they visit.

The problem we investigate in this work
represents the spatial join between a big set of
spatio-temporal, trajectory (mobility) data T
and a (potentially large) set of spatial regions
R. The trajectory data represent the movement
of a large collection of moving objects/mobile
users (MO) tracked for a certain time period
with the specified frequency of location

updates. Each trajectory is seen as a collection
of points <oid, xi, yi, ti>, where xi, yi represent
the location in a geographic/geometric
reference system and ti is the corresponding
time stamp at which the moving object (oid) is
detected at the specified location. Trajectories
of a large number of moving objects collected
for a long time period are characterized by
large volumes, considered as Big data and
therefore their processing and analysis is a
challenging issue.

Each spatial region R represents an area around
a point/place of interest (POI) visited by mobile
users that stay there for certain time periods. A
mobile user visits particular POI if its recording
location at a corresponding time stamp is
within the spatial region R around POI;
otherwise a mobile user is considered to be on a
trip between two POIs. The objective of our
implementation is to provide detection of the
most popular places regarding the number of
users that visited them. For such analysis we
develop efficient application over the trajectory
and region data sets. We consider strategy
where spatial relation between objects from the
first dataset (trajectory dataset containing time
stamped locations of moving objects) and
objects from the second dataset, places of
interest (POI), is analyzed. To improve the
performance of spatial join we implement
simple, in-memory grid index structure for POI
data set. Thus, the area of interest is divided by
a grid consisting of rectangular regions of
specific dimensions along x and y axes. The
grid can be regular, or irregular (quad tree) to
efficiently cope with POI data skewness. In this
strategy, the POI data set (work) is evenly
divided among processes and each process is
assigned with POI data located in particular
geographical region.

In the pure MPI implementation, we perform
uniform splitting of the first dataset (trajectory
dataset, MO dataset) where distribution
depends on the size of dataset. The first dataset
is evenly distributed among processes. Each
process is responsible for as possible equal
chunk of data. Within each process, the spatial
join between moving objects location data in
the trajectory dataset and the objects from the
POI dataset that are within particular
geographical region, is performed. In this
manner, each moving object location data from
the trajectory dataset is joined, according
spatial proximity, with POIs that are within the
corresponding grid cell in which both objects

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 231

reside. Pseudocode and schematic workflow
that describes computation steps performed by
MPI processes are shown in Figure 1 and 2.

Parallel execution of MPI processes

- MPI initialization and process identification

- Generating POI index structure

- Generating boundaries for chunk of MO data

assigned to a particular process

- Performing spatial join between MO dataset

(inside assigned boundaries) and a particular POI

dataset (using obtained quad tree index structure)

- Summarizing results from different processes in

order to generate final result using MPI reduction

Figure 1. Pseudocode of pure MPI computation

M P I I n i t i a l i z a t i o n a n d p r o c e s s i d e n t i f i c a t i o n

 M P I p r o c e s s M P I p r o c e s s

M P I I n i t i a l i z a t i o n a n d p r o c e s s i d e n t i f i c a t i o n

I n d e x s t r u c t u r e a n d b o u n d a r i e s g e n e r a t i o n I n d e x s t r u c t u r e a n d b o u n d a r i e s g e n e r a t i o n

 M O d a t a s e t a n d p a r t i c u l a r P O I d a t a s e t s p a t i a l j o i n M O d a t a s e t a n d p a r t i c u l a r P O I d a t a s e t s p a t i a l j o i n

M P I R e d u c t i o n

. . .

Figure 2. Schematic workflow of pure MPI
computation

By dividing the spatial area of interest using
quad tree index structure, the number of POIs
in each spatial rectangular region is at most
possible similar but not absolutely equal
(Figure 3). Thus, the time spent for performing
spatial join operation assigned to each process
is slightly different. Therefore, we perform the
second level of parallelism, i.e. fine-grained
parallelism using threads within the single node
and shared memory. To better distribute the
iterations assigned to each process, each
process spawns multiple threads that are
dynamically balanced. Pseudocode and
schematic workflow that describes hybrid
MPI/OpenMP computation are shown in Figure
4 and 5.

Figure 3. The area of interest (city of Milan) a)
regular grid, b) quad tree index structure

Parallel execution of MPI processes

- MPI initialization and process identification

- Generating POI index structure

- Generating boundaries for chunk of MO data

assigned to particular process

- Performing spatial join between process MO

dataset and particular POI dataset by multiple

OpenMP threads

- Summarizing results from different processes in

order to generate final result using MPI reduction

Figure 4. Pseudocode of hybrid
MPI+OpenMP computation

In the case of proposed MPI+OpenMP
implementation, the number of users that
visited a particular POI, which determines
popularity of a place, is stored in a shared
memory array on each multicore node. Since
there is possibility that multiple threads try to
modify the same element of the shared array,
the synchronization is necessary. The atomic
directive is used for that purpose. Also, the
access pattern is defined in the form that
multiple threads modify the same cache line.
This fact can have significant influence on
performance degradation.

M P I I n i t i a l i z a t i o n a n d p r o c e s s i d e n t i f i c a t i o n

f o r k O p e n M P t h r e a d s f o r k O p e n M P t h r e a d s

j o i n O p e n M P t h r e a d s j o i n O p e n M P t h r e a d s

 M P I p r o c e s s M P I p r o c e s s

M P I I n i t i a l i z a t i o n a n d p r o c e s s i d e n t i f i c a t i o n

I n d e x s t r u c t u r e a n d b o u n d a r i e s g e n e r a t i o n I n d e x s t r u c t u r e a n d b o u n d a r i e s g e n e r a t i o n

 M O d a t a s e t a n d P O I
d a t a s e t s p a t i a l j o i n

 M O d a t a s e t a n d P O I
d a t a s e t s p a t i a l j o i n

M P I R e d u c t i o n

. . .

.

Figure 5. Schematic workflow of hybrid
MPI+OpenMP computation

Therefore, an array extending, or padding, is
introduced. It is achieved by dimensioning
array d[n] as d[n][x] where
x=cache_line_size/size_of_int, in our case
x=16, and by changing the indexing from d[i] to
d[i][0] which eliminates false sharing. When all
processes finish their computation, summation
of all the results assigned for a particular place,
is performed. Since the results that must be
summarized are placed in columns of the
matrix D, respectively, in order to apply MPI
reduction, the user defined function for
summation is created.

http://www.sic.ici.roStudies in Informatics and Control, Vol. 24, No. 2, June 2015232

4. Experimental Evaluation

In this section, we present the experimental
evaluation of the implemented algorithm. The
parallel application has been developed using
C++ programming language in Visual Studio
2010 extended with MPICH2 implementation
of MPI and with support for OpenMP. We
implement and compare two implementations:
the pure MPI and the proposed hybrid
MPI+OpenMP implementation.

For estimating performances of the proposed
solutions we used two system architectures.
The first architecture represents a cluster of 16
commodity computers equipped with Intel
Pentium G2030 (dual core) 3GHz CPU and
8GB RAM. The second architecture is a private
IaaS cloud containing 16 virtual machines
equipped with Intel Xeon E5430 (quad core)
2.6GHz CPU and 2GB RAM.

In our study, we use MilanoByNight simulated
datasets that have been provided by the
EveryWare Lab, University of Milano [16] for
the implementation and evaluation of large-
scale trajectory data processing algorithms. The
data correspond to a typical city mobility
scenario where a large number of people are
tracked during the evening in a city of Milan
looking for friends and places for amusement.
The simulation includes a total of 30,000 home
buildings, 10,000 office buildings and 1,000
entertainment places which represent a POI
dataset. The trajectory data set contains 18
million of records for 100,000 mobile users
moving over the city of Milan while location
updates are made at every 2 minutes. The
movement has been recorded over 6 hours long
time period, from 7 pm - 1 am, which amounts
for about 1.3 GB in total.

We have developed two parallel applications
that implement Popular Places algorithm and
performed experiments for two
implementations using pure MPI and hybrid
MPI+OpenMP approach. The algorithm firstly
processes spatial join between trajectory data
set and spatial regions around points/places of
interest (POI), and then perform aggregation of
spatial join results. By counting unique moving
objects that visited specific POIs the algorithm
provides detection of the most popular POIs in
the city during the evening. To provide the
most possible uniform splitting of the second
(POI) data set, we divide the data space of
interest into a quad tree which contains 16
disjoint rectangular regions with similar
numbers of POIs within each region (Figure
3b). We compare performances of both
applications running on 2, 4, 8 and 16 nodes.

To examine scalability issues, we have
performed our experiments for two different
sizes of the trajectory data set: 1.8 and 18
million moving objects. The number of
processes running on processor cores at each
node depends on the number of nodes specified
in the experiment. For MPI+OpenMP
implementation each process spawns
corresponding number of worker threads,
which depends on the processor architecture.
Thus, for the cluster computing architecture
which has dual core processors, each MPI
process forks two OpenMP threads, while for
the cloud architecture nodes, having quad core
processors, each MPI process forks four
OpenMP threads. The resulting execution times
obtained for the cluster architecture of physical
machines are shown in Tables 1 and 2
expressed in seconds. The value of S1
represents a speedup of MPI+OpenMP
implementation, i.e. TSEQ/TMPI+OMP, while S2 is

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 233

Table 1. PopularPlaces application run on the cluster for 1.8 millions moving objects

1.8 millions of moving objects

p 2 4 8 16

TSEQ 40.610 40.610 40.610 40.610

TMPI+OMP 11.570 5.789 2.909 1.762

TMPI 18.384 7.942 2.707 2.460

TMPI/TMPI+OpenMP 1.588 1.371 0.930 1.395

S1 3.509 7.014 13.957 16.508

S2 2.208 5.113 14.997 14.199

an appropriate speedup of pure MPI
implementation, i.e. TSEQ/TMPI.

The speedup of the pure MPI and the hybrid
MPI+OpenMP implementation related to
sequential PopularPlaces application for 18
millions of moving objects is shown in Figure
6. The execution time comparison between the
MPI and the MPI+OpenMP implementation for
18 millions of moving objects is shown in
Figure 7.

Figure 6. The speedup of the pure MPI and the
hybrid MPI+OpenMP implementation related to

sequential PopularPlaces application

Figure 7. The execution time comparison between
the MPI and the MPI+OpenMP implementation

Hybrid MPI+OpenMP implementation gives
better results than pure MPI implementation for
both data sets: maximum 1.6 for 1.8 million
moving objects and maximum 1.8 for 18

millions moving objects. In the case of pure
MPI implementation, the communication
overhead outweighs the computation
advantage, when number of processors is 16.

The application running over the cloud
architecture shows the same tendency as the
cluster architecture (Table 3). The obtained values
of execution times are higher than the appropriate
values for a cluster of physical machines, as
expected. MPI+OpenMP implementation gives
better results than pure MPI implementation on
the cloud for both data sets: maximum 1.9 for 18
millions of moving objects.

Table 3. The experimental results for 18 million of
moving objects on a cloud

18 million of moving objects on CLOUD

p 4 8 16

TSEQ 1568.706 1568.706 1568.706

TMPI+OMP 394.985 204.064 103.322

TMPI 413.072 216.179 196.573

TMPI/TMPI+OpenMP 1.045 1.059 1.902

S1 3.972 7.687 15.183

S2 3.798 7.256 7.980

As stated in the related work section, the
superiority of one model, Pure MPI or Hybrid
MPI+OpenMP, depends on the level (overhead
caused by) of inter-process communication and
shared memory parallelization. The problem we
implemented of finding the popular places in
the city represents the classical GIS analytics
problem. The solution consists of two steps; the
first step includes spatial join between two
spatial or spatio-temporal data sets, and the
second step performs appropriate processing
and aggregation of join results. Our approach
consists in assigning to each MPI process an
equal set of moving objects data and indexing

http://www.sic.ici.roStudies in Informatics and Control, Vol. 24, No. 2, June 2015234

Table 2. PopularPlaces application run on the cluster for 18 millions moving objects

18 millions of moving objects

p 2 4 8 16

TSEQ 409.396 409.396 409.396 409.396

TMPI+OMP 113.980 57.123 28.388 14.320

TMPI 183.677 78.550 31.098 25.945

TMPI/TMPI+OpenMP 1.611 1.375 1.095 1.811

S1 3.591 7.166 14.421 28.588

S2 2.228 5.211 13.164 15.778

the POI data set using a spatial index structure,
quad tree, to cope with spatial data skewness.
By dividing the datasets for each MPI process
we avoid the inter-process communication
overhead and reduce the effect of MPI
communication to the parallel implementation.
We have used fine-grain OpenMP
parallelization technique, by implementing
OpenMP threads forked by each MPI process.
In that way we increase the utilization of cores
with sharing memory resources.

Our evaluation shows that the best overall
performance is achieved when one MPI process
is started on each node, and all other cores
within the node are filled with OpenMP
threads. In the pure MPI implementation, with
the increasing number of nodes, the overall
execution time decreases. Also, the execution
time slightly decreases, when the number of
nodes changes from 8 to 16, since there is the
same number of processes per core. The hybrid
implementation performs better then the pure
MPI, especially when the number of nodes in
the experiment changes from 8 to 16, since
each OpenMP thread executes at separate core.

It is expected that other similar GIS algorithms
that include processing of large-scale geospatial
data and spatial join between two large spatial
data sets will demonstrate the same
performance behaviour for hybrid
MPI+OpenMP approach.

5. Conclusion

With advances in remote sensing, geo-sensor
networks and pervasive positioning, the amount
of geospatial data that needs to be processed
and analyzed has exploded in recent years. It
leads to the rising of interest in processing and
analysis of massive geospatial data, particularly
trajectories of moving objects. This paper
shows that the use of MPI and OpenMP
programming models and framework can
significantly improve the performance of data
intensive GIS algorithms, such as the spatial
join between large-scale trajectory data set and
spatial regions representing places of interest
(POI), as well as aggregation of join results in
order to analyze popularity of POIs in the city.
We show that employing distributed
architecture consisting of a cluster of multicore
PC nodes and integration of appropriate
parallel programming techniques represents a
promising research and development direction
in applying high-performance computing in

GIS applications. The hybrid implementation
using both MPI and OpenMP frameworks, that
employs parallelism between distributed
computing nodes, as well as within multi-core
computer nodes, eliminate communication
overhead of the pure MPI solutions and achieve
better overall performance by employing
parallelism at the thread level. Our
implementation provides excellent scalability
regarding increasing trajectory data set and
computing resources. Future work will consider
other HPC techniques and platforms, such as
MapReduce framework and its Hadoop
implementation, in processing of Big geospatial
and trajectory data.

REFERENCES

1. PATEL, S., W HWU, WEN-MEI,
Accelerator Architectures, IEEE Micro,
vol. 28, no. 4, 2008, pp. 4-12.

2. PACHECO, P., An Introduction to

Parallel Programming, Morgan
Kaufman, 2011.

3. SHEKHAR, S., High Performance

Computing with Spatial Datasets, in
Proceedings of the ACM SIGSPATIAL
International Workshop on High
Performance and Distributed Geographic
Information Systems - HPDGIS, 2010,
pp. 1-2.

4. MAYER-SCHÖNBERGER, V., K.
CUKIER, K., Big Data: A Revolution

That Will Transform How We Live,

Work, and Think, Eamon Dolan/
Houghton Mifflin Harcourt, 2013, p. 256.

5. CLEMATIS, A., MINETER, M.,
MARCIANO, R., High performance

computing with geographical data ,
Parallel Computing, vol. 29, no. 10, 2003,
pp. 1275–1279, Oct. 2003.

6. AJI, A., WANG, F., VO, H., LEE, R., LIU,
Q., ZHANG, X., SALTZ, J., Hadoop-GIS:

A High Performance Spatial Data

Warehousing System over MapReduce,
Proceedings VLDB Endowment, vol. 6, no.
11, Aug. 2013.

7. ZHANG, J., Towards Personal High-

Performance Geospatial Computing

(HPC-G), in Proceedings of the ACM
SIGSPATIAL International Workshop on
High Performance and Distributed

Studies in Informatics and Control, Vol. 24, No. 2, June 2015 http://www.sic.ici.ro 235

Geographic Information Systems -
HPDGIS, 2010, pp. 3-10.

8. AKHTER, S., K. AIDA, Y. CHEMIN,
GRASS GIS on High Performance

Computing with MPI, OpenMP and

Ninf-G Programming Framework,
Proceeding of ISPRS, 2010, Japan.

9. SHI, X., High Performance Computing:

Fundamental Research Challenges in

Service Oriented GIS, ACM
SIGSPATIAL- HPDGIS 2010 workshop:
International Workshop on High
Performance and Distributed Geographic
Information Systems, San Jose, California,
2010, pp. 31-34.

10. WANG, Y., S. WANG, D. ZHOU,
Retrieving and Indexing Spatial Data in

the Cloud Computing Environment,
Cloud Computing, First International
Conference-CloudCom Beijing, China,
2009, pp. 322-331.

11. MA, Q., B. YANG, W. QIAN, A. ZHOU,
Query Processing of Massive Trajectory

Data based on MapReduce, in Proceeding
of the First International Workshop on
Cloud Data Management - CloudDB ,
2009, pp. 9-16.

12. YANG, B., Q. MA, W. QIAN, A. ZHOU,
Truster: Trajectory Data Processing on

Clusters, in Proceedings of 14th
International Conference Database Systems
for Advanced Applications DASFAA,
2009, pp. 768-771.

13. ELDAWY, A., M. F. MOKBEL, A
Demonstration of SpatialHadoop: An

Efficient MapReduce Framework for

Spatial Data, Proc. VLDB Endow., vol. 6,
no. 12, 2013, pp. 1230–1233 .

14. KUNASETH, M.,. RICHARDS, D.,
GLOSLI, J., KALIA, R., NAKANO, A.,
VASHISHTA, P., Analysis of scalable

data-privatizati,on threading algorithms

for hybrid MPI/OpenMP parallelization

of molecular dynamics, Journal of
Supercomputing, vol. 66, 2013,
pp. 406-430.

15. MINNINI, P., D. ROSENBERG, R.
REDDY, A. POUQUET, A Hybrid MPI–

OpenMP Scheme for Scalable Parallel

Pseudospectral Computations for Fluid

Turbulence, Parallel Computing, vol. 37,
no. 6, 2011, pp. 316-326.

16. MASCETTI, S., D. FRENI, C., BETTINI,
X. S. WANG, S. JAJODIA, On the Impact

of User Movement Simulations in the

Evaluation of LBS Privacy- Preserving

Techniques, in Proceedings of the 1st
International Workshop on Privacy in
Location-Based Applications, 2008, vol.
397, 2008.

http://www.sic.ici.roStudies in Informatics and Control, Vol. 24, No. 2, June 2015236

