
1. Introduction

Agent-Based Models (ABMs) (among other
tools) are particularly well-suited to studying
Complex Adaptive Systems (CAS) [1], cf. [2].
Generally speaking, a CAS is one where
numerous elements, parts, or agents
(homogeneous or not) interact non-linearly
with each other and with their environment
such as that their properties may be modified as
a result of those interactions [3]. Traditional
approaches to studying CAS [4] often limit our
ability to understand the full complexity of
these systems, in part because the
characteristics of CAS (e.g., path dependent
dynamics) violate many of the statistical
assumptions necessary to use those approaches
(i.e., survey research, controlled experiments,
game theory) [1].

The distinguishing feature of ABMs is that they
are constructed in a "bottom-up" manner, by
defining the model in terms of entities and
dynamics at a micro-level, i.e., at the level of
individual actors and their interactions with
each other and with the environment [5], [6],
[7]. An ABM consists of one or more types of
agents, and possibly a non-agent environment
(e.g. in a prey-predator ABM, the environment

could be the prey’s food; e.g.: if the prey are
sheep and predators are wolves, the
environment could be the grass.). Agent
definitions include specification of their
capabilities to determine particular behaviours,
as well as decision-making rules and other
mechanisms that agents use to choose their own
behaviours. Agents may also have adaptive
mechanisms that allow them to change based
on their experience (e.g., changing the state of
agents’ memory to reflect prior interactions).
While an ABM is running, agent behaviour is
generated as agents choose which other agents
to interact with and what to do in a given
interaction. Thus, ABMs embody complex
interlaced feedback relationships, leading to the
non-linear, path-dependent dynamics often
observed in CAS.

While ABMs and all formal models increase
our knowledge about the behavior of any
system consisting of similar processes, the use
of such models to make inferences about
particular real-world systems requires model
validation (i.e., showing that model behavior or
parameters are comparable to those of a real
system). However, model validation is not
trivial [8], [9], [10]. For exploratory CAS
models, one approach to validation is to focus

Studies in Informatics and Control, Vol. 24, No. 1, March 2015 http://www.sic.ici.ro 79

Calibrating Agent-Based Models
Using a Genetic Algorithm

Enrique CANESSA1, Sergio CHAIGNEAU2

1 Facultad Ingeniería y Ciencias, CINCO, Universidad Adolfo Ibáñez,
Avda. Padre Hurtado 750, Viña del Mar, Chile
ecanessa@uai.cl

2 Centro de Investigación de la Cognición, Facultad de Psicología,
Universidad Adolfo Ibáñez,
Diagonal las Torres 2640, Santiago, Chile
sergio.chaigneau@uai.cl

Abstract: We present a Genetic Algorithm (GA)-based tool that calibrates Agent-based Models (ABMs). The GA
searches through a user-defined set of input parameters of an ABM, delivering values for those parameters so that the
output time series of an ABM may match the real system’s time series to certain precision. Once that set of possible
values has been available, then a domain expert can select among them, the ones that better make sense from a
practical point of view and match the explanation of the phenomenon under study. In developing the GA, we have had
three main goals in mind. First, the GA should be easily used by non-expert computer users and allow the seamless
integration of the GA with different ABMs. Secondly, the GA should achieve a relatively short convergence time, so
that it may be practical to apply it to many situations, even if the corresponding ABMs exhibit complex dynamics.
Thirdly, the GA should use a few data points of the real system’s time series and even so, achieve a sufficiently good
match with the ABM’s time series to attaining relational equivalence between the real system under study and the
ABM that models it. That feature is important since social science longitudinal studies commonly use few data points.
The results show that all of those goals have been accomplished.
Keywords: Agent-based modelling, genetic algorithms, calibration, validation, relational equivalence, complex
adaptive systems.

on relational equivalence [11]. In general it is
impossible to expect matching the detailed
behavior of a CAS model to the real system [4],
[8]. Thus, validation can be done by matching
patterns and relationships between the model
and the system being modeled, rather than
matching details [11], [9].

Bearing in mind the above mentioned
characteristics of the validation of ABMs that
model CAS, we present a tool based on
Genetic Algorithms (GA) that allows to find
the combination of values for input variables
to the ABM that establishes relational
equivalence between the ABM and the real
system it represents. The general idea is to
have a GA that will deliver combinations of
input parameters to a certain ABM, which will
produce outputs of the ABM that match as
close as possible the corresponding time series
of data gathered from the real system. Because
values delivered by the GA must then be
judged by a domain expert to finally see
whether they are reasonable and select the
ones that better make sense from a substantive
point of view, we prefer to refer to the GA-
based tool as a calibration method, instead of a
validation one.

In the next sections we discuss the limitations
of current GA-based calibration methods and
present a new tool that tries to lessen those
drawbacks. Then, we apply the new tool to
calibrate three increasingly complex ABMs and
conclude that the tool works as expected, but
that new improvements may be desirable.

2. State of the Art

The idea of using a GA to calibrate an ABM is
not new. However, most of previous efforts
have focused on applying GAs to specific
models and a more comprehensive tool is still
needed. For example, [12] present a GA that
calibrates an ABM of oil retail markets. In [13]
similar techniques are used to calibrate an
ABM of financial markets. The same is done in
[14] to calibrate an ABM that models financial
trading in markets. In [15], an ABM of terrorist
and security scenarios is explored through the
use of a GA. Finally, [16] use a GA to analyze
an ABM of emergency response planning.
Although all those studies have their own
merit, they lack the development of a general
GA-based tool to calibrate different ABMs.
More importantly, those proposals exhibit

problems, some of which we try to lessen in the
present work.

A common problem recognized by all previous
studies on the automatic calibration of ABMs is
the long computational time of such tools [17].
Since generally ABMs’ outputs are non-
deterministic time series [1], the fitness
function generally uses the expected value (E)
E[yt

m – yt
r] and E[syt

m – syt
r] as indicators of the

match between the output time series of the
ABM (yt

m) and the real system (yt
r). These

expressions involve that the fitness function of
the GA must calculate the expected value of the
difference in mean and standard deviation
between points of the time series generated by
the ABM and the corresponding ones of the
real system. To have a reliable value for the
expectations, previous studies suggest
evaluating each point of the time series around
100 times [14], [17] , which entails running 100
times the ABM for the entire time span
considered. Since ABMs normally use many
computational tasks for representing the
behavior of many agents to run every
simulation step, that process is very time
consuming. Thus, a first goal of the proposed
GA calibration tool is to shorten such time, but
achieving a decent relational equivalence
between the ABM and the system being
modeled. A second and related objective is to
give the researcher a means of meeting the
necessary trade-off between reaching a very
close relational equivalence and the
computational time it will take the GA to
deliver the corresponding solution. Hence, the
GA-based tool should have some mechanism
that could allow the experimenter to reach that
required balance.

A third goal of the GA-based tool is to be easily
applicable to many ABM models. All of the
previous studies code the GA as part of the
ABM computer program, thus increasing the
coupling between the GA’s and ABM´s
computer code [12, 13, 14, 15, 16]. This makes
it difficult to apply the GA’s code to new
models. Thus, the GA should be coded so that it
is fully parameterized and can be used with a
wide range of ABM simulation platforms.

Finally, with regard to ABMs used in the social
sciences, a fourth objective is to achieve a good
relational equivalence using only a few data
points of the real system. This goal is
important, given that in social sciences,
longitudinal studies are difficult to perform and

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 1, March 201580

generally two points in time are used [18]. Here
again, previous studies indicate that GA-based
tools are generally developed assuming that
many data points of the real system will be
available [12, 13, 14, 15, 16].

3. Using a GA to Calibrate an ABM

As already explained, a common problem in the
approach followed by previous ABM calibration
GA-based tools is the computational cost of that
tool. Thus, in the present work, instead of using
the expected value of outputs of the time series
of an ABM to compute a fitness value, we
propose to use a fitness function based on the
simple aggregation of the difference │yt

m – yt
r │

for a set of data points selected by the
experimenter. Additionally, in order to deal with
the possible differences in scale of the time
series and thus develop a tool applicable to any
output of an ABM, we use the absolute value of
the percentage difference, as follows:

fitness=
1

1+∑
n=0

k

∑
t=0

tn

| ynt
m−y nt

r

yrt
r | (1)

Expression (1) implies that the user will define a
set of k output variables of the ABM and real
system, which will be evaluated at tn points in
time. Then the absolute value of the percentage
difference for each point will be calculated and
aggregated by simply summing them up. For the
fitness to be normalized to the [0, 1] interval, the
GA adds one to the double summation and takes
the reciprocal of that value. In that form, the GA
must maximize the fitness.

The fitness in (1) allows performing fewer
evaluations of the ABM’s time series. The more
points are considered for evaluation, the better
the match between the ABM’s and real
system’s time series might be, but the slower
the GA will iterate. However, an intelligent
selection of the evaluation points, will allow
the experimenter to balance the speed of the
GA and the required precision of the match. As
already discussed, because in ABM one
normally intends to reach relational
equivalence, a few points may achieve a
sufficiently good fit, as we will show in the
results. Thus, the present GA allows balancing
a relatively low computational cost with an
appropriate calibration of an ABM.

Another goal of this work is to build a GA-based
calibration tool that should be simple to use with

many types of ABMs. For that reason, we fully
parameterized the code of the GA and developed
it as a library that can be easily linked to any
ABM written in the Netlogo [19] or any Java-
based ABM platform. We used Netlogo, since it
is a very good and user-friendly ABM platform,
with nice Graphical User Interfaces (GUIs) and
thorough user documentation, and that runs on
many computers, such that it is used by many
researchers, especially in the social sciences
[20], cf. [2].

Table 1 shows the pseudo code of the initial
GA (GA1).

Table 1. Genetic Algorithm 1 Pseudo Code
ABM Calibration Genetic Algorithm version 1 (GA1)

a. Set up:
k = nr. of time series of ABM and real system, k = 1 to 10
t at which series will be evaluated = t0, t1, … , tn

yt
r = time series of the real system

pop-size = population size in the interval [5,200]
pc = cross-over probability in the interval [0,1]
pm = mutation probability in the interval [0,0.3]
max-iter = maximum nr. of iterations of the GA [1,500]
stop-fitness = fitness that when reached will stop

iteration of the GA in the interval [0,1]
Lp = lower limits for the p adjustable parameters of
the ABM
Up = upper limits for the p adjustable parameters of the ABM

b. Generate initial population of pop-size chromosomes each
with p genes. Sample value of each gene i from U(Li ,Ui) (i
= 1,…,p)

c. do while (number of iterations ≤ max-iter and max (j = 1,
…, pop-size) fitnessj ≤ stop-fitness)

d. Calculate fitness for the pop-size chromosomes:

a. Evaluate k outputs of ABM at time t

b. Compute fitness for each chromosome according to
expression (1)

e. for j = 1 to cross-over-count = (pop-size * pc)/2 do

f. Execute tournament selection of size 3 among population,
selecting two parents

g. Execute one-point crossover for selected parents, using a
randomly-chosen cross-over point

h. end for

i. for j = 1 to (pop-size - cross-over-count * 2) do

j. Execute tournament selection of size 3 among population,
selecting one chromosome

k. Clone selected chromosome
l. end for

m. for all population of chromosomes do

n. for each gene i of chromosome do

a. if u ~ U(0,1) ≤ pm then replace gene i with value ~
U(Li ,Ui)

o. end for
p. end for
q. end while

We can see that GA1 is a continuous GA (i.e.
GA in which each gene has a value in R) that
uses tournament selection, with a tournament
size of 3, one-point crossover, and a mutation
operator that acts on randomly-selected genes
of chromosomes. The stopping condition is

Studies in Informatics and Control, Vol. 24, No. 1, March 2015 http://www.sic.ici.ro 81

reaching either a maximum number of
iterations or a user-defined value for the
fitness function.

Some preliminary tests of GA1 showed that we
could further improve it to speed up its
convergence. The following changes allowed a
faster convergence, as we will demonstrate in
the results section. The first change focused on
reducing the number of solutions
(chromosomes) that must be evaluated.
Remember that the most expensive
computational part of the GA is the evaluation
of the ABM’s time series. Thus, if many similar
solutions exist in the population (in terms of
genes and fitness), it would be a waste of time
to evaluate each of them. Hence, before
evaluating each solution, the GA eliminates
those that are similar to a certain degree (β),
which can be set by the experimenter. This is
simply accomplished by the code on lines 4 a.
and 4 b. of the pseudo code listing of GA2
presented in Table 2.

Table 2. Generic Algorithm 2 Pseudo Code
ABM Calibration Genetic Algorithm version 2 (GA2)

1: Set up:
k = nr. of time series of ABM and real system
t at which series will be evaluated = t0, t1, … , tn

yt
r = time series of the real system

pop-size = population size
pc = cross-over probability
pm = mutation probability
max-iter = maximum nr. of iterations of the GA
stop-fitness = fitness that when reached will stop

iteration of the GA
Lp = lower limits for the p adjustable parameters of
the ABM
Up = upper limits for the p adjustable parameters of
the ABM
β = number of significant digits of values of genes and
fitness in the interval [2,10]
γL = lower limit of maximum allowable percentage
difference between ABM and real system time series
γU = upper limit of maximum allowable percentage
difference between ABM and real system time series
α = discount factor to calculate γt in the interval [0,1]

2: Same as in GA1 and set γt =γU

3: do while (number of iterations ≤ max-iter and max (j = 1,
…, pop-size) fitnessj ≤ stop-fitness)

4: Calculate fitness for the pop-size chromosomes:
a. Round to β significant digits values of genes and

fitness of each chromosome
b. Eliminate chromosomes that have an equal value for

their genes and fitness
c. Evaluate k outputs of ABM at time t

i. if for any time series j at time t : │(yjt
m – yjt

r)/
yjt

r │≥ γt then immediately terminate evaluation
of time series j and assign fitness = 10-4 to
corresponding chromosome

d. Compute fitness according to expression (1) for all
chromosomes that have not being assigned fitness =
10-4

5 to 16: Same as in GA1
17: Update γt =γL + (γU -γL)/ (1 + number of iterations * α)
18: end while

Another improvement implemented in GA2
was to immediately discard “bad” solutions
during the calculation of the fitness of the
chromosomes. The code corresponding to that
refinement can be seen on lines 4 c. i., 4 d. and
17 of Table 2. The improvement consists in
calculating the absolute value of the percentage
difference between the simulated and real data
point at each specified time t (see the
expression of the inner summation in (1)) and
comparing it with a threshold γt. If the
percentage difference exceeds that threshold,
the ABM’s current output time series is already
a bad approximation to the real time series and
thus, it is futile to continue evaluating the rest
of the next data points. Since it would be
expected that the first iterations of the GA2
would contain worse solutions than later
iterations (i.e. as the GA iterates and converges,
the solutions should become better), the
threshold γt is narrowed as the GA2 iterates.
The pseudo code on line 17 in Table 2 shows
that γt is decreased by simply calculating γt as a
function of an user-defined upper (γU) and
lower limit (γL), a discounting factor α and the
number of iterations performed by the GA2.

We acknowledge that discarding very similar
and “bad” solutions might hinder the
exploration capabilities of GA2 and overly
induce exploitation. That might cause a
premature convergence of GA2 and thus avoid
GA2 from finding better solutions. However,
remember that one of the main objectives of the
designed GA is to shorten computational time
at the expense of delivering solutions that
achieve a very close match between the ABM’s
and real system’s time series.

4. Results of the Calibration of
Two ABMs

To show the use of GA1 and GA2 and also
verify whether GA2 converges faster to a good
solution than GA1, we used two ABMs. The
first one corresponds to an ABM that calculates
the probability of true (p(a1)) and illusory
agreement (p(a2)) between two agents,
according to the Concept Agreement Theory
(CAT, [21]). CAT is a theory about the
conditions under which individuals infer that
they share their conceptualization about
something (e.g., whether a certain political
figure is an authoritarian or a leader). It
assumes that a conceptualization C can be

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 1, March 201582

described by a probability distribution of k1

properties (i.e., things that are viewed as
consistent with that conceptualization). It also
assumes that people who share a
conceptualization do not share exactly the same
conceptual content (i.e., people accept only s1

properties as true of C, where s1 ≤ k1) and that
alternative Cn conceptualizations (with their
own k2 and s2 parameters) will share some of
their coherent properties with the focal C
conceptualization (e.g., that determination may
be a property of an authoritarian figure and
also of a leader). The number of these shared
properties is the u parameter. To infer
agreement (or lack of), an individual with C in
mind verifies if some other individual provides
evidence of sharing part of her conceptual
content (i.e., says or does something which she
views as acceptable content for C). True
agreement (event a1) occurs when that other
individual produces a property coherent with C
and she in fact is thinking that C in her mind.
Illusory agreement (event a2) occurs when that
other individual instantiates a coherent property
but really holds Cn in her mind. The probability
distributions of the properties of C and Cn
(which can include u common elements), can
be empirically estimated by collecting
conceptual properties from a sample of
individuals. This allows the estimation of k1, k2,
s1, s2 and u, thus allowing the probabilities of
each agreement type (i.e., p(a1) and p(a2)) to
be computed.

The ABM that computes these probabilities
works as follows. An observer agent O looks
for agreement. To compute p(a1), O chooses a
sample of size s1 from a population C of k1

properties (with a given distribution).
Concurrently, another actor agent A chooses a
sample of size s1 from the same C population,
and both agents check if there is a shared
property in their samples. If it is so, this
increases an a1 coincidence counter by one.
Computing p(a1) on the long run, simply
amounts to getting the proportion between this
counter and the total number of simulation
steps. To compute p(a2), the same process
occurs, but A chooses a sample of size s2 from a
Cn population of k2 properties (with a given
distribution). Now, if there is a coincidence,
this increases an a2 coincidence counter by
one. Computing p(a2) on the long run, simply
amounts to getting the proportion between this
counter and the total number of simulation
steps. Given values for all the parameters, a

group of simulated agents will converge to the
agreement probabilities implied by those
values, which will be computed using a moving
average of the time series of p(a1) and p(a2).
Note that this ABM may be used to compute
p(a1) and p(a2) from empirically obtained
distributions of conceptual properties.

The second ABM models the strength
(salience) of concepts in agents’ minds by using
the p(a1) and p(a2) probabilities. Here we
briefly describe that ABM, giving just enough
details of it to allow the reader to understand
the context in which GA1 and GA2 will be
tested. More details of the ABM may be found
in [22]. In this second ABM, agents perform
the same type of process described before,
searching for confirming evidence for their
conceptual content, but instead of using this to
compute p(a1) and p(a2), each time they find
agreement of any type they increase their C
concept’s strength, which is represented by a c
coefficient. Conceptual strength directly
influences the probability that agents will act
according to C when it comes their turn to be
actors (A), and therefore increases the
probability that they will offer confirming
evidence to other agents in the simulation (i.e.,
the more their concept C demonstrates being
useful to understand other agents, the more
they use C to guide their own actions). Thus,
given some input values of p(a1) and p(a2),
this ABM tracks the dynamical changes in the
strength of concept C in a group of agent’s
minds. Since in a social group there may be
more than one version of a concept C, the ABM
allows setting the number of different versions
of the concept that will be present in the group.
Note that we currently don’t have empirical
measurements to calibrate this ABM, so here
we will use it in calibrating synthetic data.

4.1 Calibration of a simple dynamics ABM

This experiment uses the ABM that calculates
p(a1) and p(a2). Because in this case we have
empirical estimates for p(a1) and p(a2), the
GAs must find parameters that will replicate
those values, and which should be close to
empirically measured ones.

The ABM’s two output time series converge
quite rapidly to a steady-state equilibrium
value, with a very short transient period.
Furthermore, given that the calculations of
p(a1) and p(a2) are based on a moving average,
their values are very constant. Thus, the ABM’s

Studies in Informatics and Control, Vol. 24, No. 1, March 2015 http://www.sic.ici.ro 83

dynamics are simple. We selected this situation,
because we wanted to first assess the
performance of the GAs under a simple
scenario, so that we could easily verify their
correct functioning. Additionally, we expected
that the improvements of GA2 over GA1 for
speeding up the convergence not be too
significant, since the dynamics is simple. To
obtain the values of the real system for p(a1)
and p(a2), we collected data from a sample of
individuals, as discussed above (see Table 3).
Regarding the parameters presented in Table 3,
note that to reduce the amount of information
we needed to handle, we calculated a stepwise
probability distribution for the C and Cn
elements. In our study, C was “male oriented
professions” (a set of professions which our
sample thought that they would be
predominantly preferred by males, such as
mechanical and civil engineering), and Cn was
“female oriented professions” (a set of
professions which our sample believed would
be mostly preferred by females, such as nursing
and elementary school teacher).

Table 3. Variables measured to calculate p(a1) and p(a2)
for a real situation

Parameter Description Value

k1 nr. elements in set C 61

s1 size of sample drawn from C 47

k2 nr. elements in set Cn 61

s2 size of sample drawn from Cn 44

u nr. of common elements shared by C and
Cn 61

np1
nr. of elements of C that have p1

probability of being sampled 14

p1 sampling probability of the np1 elements 0.034

np2
nr. of elements of C that have p2

probability of being sampled 16

p2 sampling probability of the np2 elements 0.015

nq1
nr. of elements of Cn that have q1

probability of being sampled 10

q1 sampling probability of the nq1 elements 0.005

nq2
nr. of elements of C that have q2

probability of being sampled 19

q2 sampling probability of the nq2 elements 0.008

Values of p(a1) and p(a2)

p(a1)
p(a2) true and illusory agreement probabilities 0.7987

0.7207

Table 4 shows the settings of GA1 and GA2 for
calibrating the ABM, i.e. finding values for
some of the parameters of the ABM that will
produce a p(a1) and p(a2) similar to the ones
already calculated using the real data shown in
Table 3. The settings for those parameters were
established by a trial and error process and by
knowing the approximate dynamics of the
output time series. From that table we can see
that the GAs must find the value of several

parameters, using a single value for two
variables of the real system, i.e. p(a1) and
p(a2). Since the ABM produces a time series of
those probabilities, one needs to set the time at
which the real probabilities will be compared
with the ABM-generated ones. In this case, the
ABM dynamics shows that at 510 simulation
steps, the ABM converges to a stable value for
p(a1) and p(a2). Table 5 presents the match
between the real values of p(a1) and p(a2) and
the ones calculated by the calibrated ABM
using GA1 and GA2, both of which were run
10 times.

Table 4. Settings of GA1 and GA2 for calibrating
the simple dynamics ABM

Settings of the GA1

Parameter Description Value

k nr. of time series of ABM and real
system 2

yt
r

time series of the real system
p(a1) y1: (510, 0.7987)
p(a2) y2: (510, 0.7207)

pop-size population size 30

pc cross-over probability 0.7

pm mutation probability 0.1

max-iter maximum nr. of iterations of the
GA 50

stop-fitness fitness that when reached will stop
iteration of the GA 0.95

Lp , Up

(the limits for the
input parameters
that the GA must
adjust)

lower and upper limits for the 10
adjustable parameters of the ABM:
s1 : [30, 50] s2 : [30, 50]
np1 : [5,20] p1 : [0.01,0.1]
np2 : [5,20] p2 : [0.01,0.1]
nq1 : [1,15] q1 : [0,0.01]
nq2 : [5,20] q2 : [0,0.01]

Settings of the GA2: the same as those for GA1 and also:

β number of significant digits of
values of genes and fitness 3

γL, γU

lower/upper limit of maximum
allowable percentage difference
between ABM and real system
time series

10, 30

α discount factor to calculate γt 0.2

From the results of Table 5, we can see that the
match reached by the parameter values found by
both GAs is very good, with a small error in
p(a1) and p(a2). It must be noted that GA1 and
GA2 found the same best solution with a fitness
of 0.96. Other solutions are not presented,
although the GAs deliver the ten best solutions,
so that the domain expert may choose the most
appropriate one from a substantive point of
view. Thus, we can see that both GAs achieve a
similar calibration of the ABM.

To evaluate the relative performance of GA1 to
GA2, the number of iterations and time to reach
the stopping condition was recorded. The GAs
were implemented in Netlogo v. 4.0.4 [19] and

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 1, March 201584

run on a HP PC with Intel Core i5-2500S CPU @
2.70GHz, 3.2 GB RAM, running under OS MS
Windows 7 Enterprise, v.6.1.7601, SP 1. Table 6
presents the average and standard deviation of
those figures. To fully analyze the benefits of the
refinements made to GA1, we used 4
experimental treatments: GA1 (original GA),
GA2-1 (GA1 with the elimination of the very
similar solutions), GA2-2 (GA1 stopping the
calculation of fitness for the “bad” solutions),
GA2-3 (GA1 with both improvements).

Table 5. Results of the calibration of the simple
dynamics ABM

Parameter Calibrated value Real value

s1 47 47

s2 44 44

np1 12 14

p1 0.022 0.034

np2 12 16

p2 0.029 0.015

nq1 12 10

q1 0.007 0.005

nq2 18 19

q2 0.007 0.008

Values for p(a1) and p(a2) (percentage error)

Best solution´s fitness: 0.96

p(a1) 0.7925 (error = -0.8 %) 0.7987

p(a2) 0.7485 (error = 3.9 %) 0.7207

Table 6. Number of iterations and time to reach
stopping condition of GA1 and GA2 for the simple

dynamics ABM

Avg. time to reach
stopping condition [s]

Avg. nr. of
iterations

Avg. time per
iteration [s]

GA1 246.1 (36.7) 7.3 (0.95) 34.4 (7.6)

GA2-1 264.1 (37.0) 8.4 (2.41) 34.1 (12.0)

GA2-2 221.6 (28.7) 7.6 (1.71) 31.0 (9.8)

GA2-3 182.4 (13.3) 6.6 (0.84) 28.2 (5.4)

Note: Standard deviation in parentheses, N = 10

It can be seen that stopping the calculation of
the fitness for “bad” solutions (GA2-2)
shortens the average time to reach the stopping
condition and that the shortest time corresponds
to experimental treatment GA2-3. The results
of a one-way ANOVA with GA-version as its
single factor, corroborates that stopping the
calculation of fitness for “bad” solutions
achieves a statistically significant reduction in
that time (p-value = 0.000). However, the
elimination of very similar solutions (GA2-1)
does not significantly shorten the time (p-value
= 0.29). The same happens with the average
time per iteration (corresponding p-values =
0.049 and 0.942 respectively). Regarding the
average number of iterations performed by the

GAs, the ANOVA shows that there are no
statistically significant differences among
treatments (all p-values above 0.10). Since
GA2-2 and GA2-3 immediately abort the
calculation of fitness of very “bad” solutions,
that decreases the time of each iteration, even if
those two versions of the GAs give similar
number of iterations. On the other hand, the
elimination of similar solutions does not
shorten the processing time of the GAs, since
the calculation of fitness for each chromosome
takes a relatively short time, given the simple
dynamics of the ABM.

4.2 Calibration of a complex dynamics ABM1

This experiment uses the ABM that traces the
time series of the strength of different versions
of a concept. Note that there are no empirical
data available to calibrate this ABM, so we
calibrated synthetic data (from here on we will
refer to this series as “real synthetic”). To use a
more complex dynamics time series than
before, we set up the ABM1 according to the
values of the parameters shown in Table 7.

Table 7. Settings and outputs of the complex
dynamics ABM1

Parameter Description Value

nr_ver_concepts nr. of different versions of a concept 2

nr_agents nr. of agents that compose the group 30

c0 initial strength of the concepts 0.5

p(a1) probability of true agreement among
agents 0.3

p(a2) probability of illusory agreement
among agents 0.5

Outputs of the ABM1

c1
50

c1
300

strength of version 1 of the concept at
t = 50 and 300

0.4387
0.0173

c2
50

c2
300

strength of version 2 of the concept at
t = 50 and 300

0.3880
0.0280

Under these settings, the two versions of the
concept decrease their strength (c1 and c2),
reaching a relatively small and stable value in the
long run. However, the dynamics that c1 and c2

follow is more variable than that which was
described in subsection 4.1 (for a detailed
discussion of the dynamics see [22] and [23]).
Thus, we would expect that under this situation,
GA2 would perform significantly better than GA1.

Table 8 shows the settings of GA1 and GA2 for
calibrating the ABM1, which indicates that
there are two input parameters to the ABM1
that the GA must adjust, namely p(a1) and
p(a2), to obtain the match of two output time
series (c1 and c2). As before, the settings of the
parameters of the GAs were established by trial

Studies in Informatics and Control, Vol. 24, No. 1, March 2015 http://www.sic.ici.ro 85

and error, based on the knowledge of the type
of dynamics that the output time series exhibit.

Table 8. Settings of GA1 and GA2 for calibrating
the complex dynamics ABM1

Settings of the GA1

Parameter Description Value

k nr. of time series of ABM and real
system 2

yt
r

time series of the real system
c1 = y1: (50, 0.4387), (300, 0.0173)
c2 = y2: (50, 0.388), (300, 0.028)

pop-size population size 100

pc cross-over probability 0.7

pm mutation probability 0.1

max-iter maximum nr. of iterations of the GA 50

stop-fitness fitness that when reached will stop
iteration of the GA 0.75

Lp , Up

(the limits for the
input parameters
that the GA must
adjust)

lower and upper limits for the 2 adjustable
parameters of the ABM:
p(a1) : [0, 1] p(a2) : [0, 1]

Settings of the GA2: the same as those for GA1 and also:

β number of significant digits of
values of genes and fitness 3

γL, γU

lower/upper limit of maximum
allowable percentage difference
between ABM and real system time
series

60, 30

α discount factor to calculate γt 0.05

Table 9 presents the match between the real
synthetic values of p(a1) and p(a2) and the
ones calculated by the calibrated ABM1 using
GA1 and GA2, both of which were run 10
times. The corresponding RMSE show that the
match between the real synthetic and calibrated
time series is good. Note that even slight
differences in p(a1) and p(a2) produce different
ABM outputs. That is one of the problems
when modeling CAS: they exhibit non-
deterministic outputs that are very sensitive to
initial conditions, as already explained in the
introduction. Because the dynamics of this
ABM1 is more complex than the previous one,
Figure 1 presents the graphs of the time series,
so that one can visually assess the fit.

The graphs on Figure 1 confirm that the match
of c2 is better than that of c1, as the
corresponding RMSE already suggested, and
that both time series achieve relational
equivalence. As done before, Table 10 shows
the average and standard deviation of the
number of iterations and time to reach the
stopping condition. Those figures were
calculated for the same treatments and using
the same hardware and software specifications
as in the previous experiments.

Table 9. Results of the calibration of the complex
dynamics ABM1

Parameter Calibrated value Real Synthetic value

p(a1) 0.298 0.3
p(a2) 0.484 0.5

RMSE of c1 and c2

Best solution´s fitness: 0.77
RMSE c1 300 data points 0.0645
 RMSE c2 300 data points 0.0243

Table 10. Number of iterations and time to reach
stopping condition of GA1 and GA2 for the

complex dynamics ABM1

Avg. time to reach
stopping condition [s]

Avg. nr. of
iterations

Avg. time per
iteration [s]

GA1 711.8 (489.7) 26.5 (19.0) 27.7 (1.5)

GA2-1 287.1 (141.4) 12.8 (7.4) 23.5 (2.5)

GA2-2 360.7 (159.3) 16.3 (6.8) 21.7 (1.7)

GA2-3 69.9 (38.2) 4.3 (3.0) 18.7 (5.9)

Note: Standard deviation in parentheses, N = 10

(a)

(b)

Figure 1. Real and calibrated time series of complex
ABM1: (a) c1 series (b) c2 series

It can be seen that stopping the calculation of
the fitness for “bad” solutions and eliminating
the similar solutions shorten the average time to
reach the stopping condition and decreases the
average number of iterations and average time
to execute iterations. The best (smallest) of
those figures correspond to experimental

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 1, March 201586

treatment GA2-3, which combines the two
improvements. The results of the ANOVA show
that those differences are statistically
significant at least at the 0.01 level. Since this
ABM1 exhibits a rather complex dynamics, the
GA may find more “bad” solutions than in a
simple dynamics ABM, and thus the immediate
stopping of the calculation of fitness for them is
helpful. Also, in this ABM1, the calculation of
the ABM1’s outputs is more time-consuming,
and thus the stopping mechanism saves more
time. The same can be said regarding the
elimination of similar solutions. Each similar
solution that is eliminated saves significant
computational time and also allows GA2-1,
GA2-2 and GA2-3 to speed up convergence by
reducing the population size.

4.3 Calibration of a complex dynamics ABM2

For this experiment we used the same ABM1,
but changed some settings as shown in Table
11, and labeled it ABM2. The most important
change corresponds to the new values of p(a1)
and p(a2). As discussed in [22] and [23], those
new values produce a complex dynamics in the
outputs of the ABM2, which is characterized by
the strengthening of the concepts’ coefficients.

Table 11. Settings and outputs of the complex
dynamics ABM2

Parameter Description Value

nr_ver_concepts nr. of different versions of a concept 5

nr_agents nr. of agents that compose the group 30

c0 initial strength of the concepts 0.5

p(a1) probability of true agreement among
agents 0.8

p(a2) probability of illusory agreement
among agents 0.3

Outputs of the ABM2

c1
50

c1
300

strength of version 1 of the concept
at t = 50 and 300

0.8133
0.9933

c2
50

c2
300

strength of version 2 of the concept
at t = 50 and 300

0.7700
1.0000

c3
50

c3
300

strength of version 3 of the concept
at t = 50 and 300

0.6867
0.9967

c4
50

c4
300

strength of version 4 of the concept
at t = 50 and 300

0.7733
1.0000

c5
50

c5
300

strength of version 5 of the concept
at t = 50 and 300

0.8133
0.9967

Table 12 shows the settings of GA1 and GA2
for calibrating this ABM2, which indicates that
there are two input parameters to the ABM2
that the GA must adjust p(a1) and p(a2), to
obtain the match of five output time series (c1

to c5).

We must note that in Table 12, the parameters
γL, γU and α were not set. That means that the
stopping mechanism for the calculation of

fitness of “bad” solutions was disabled. We did
so given that in the process of determining the
settings for the parameters, we found that GA2
performance was very sensitive to the values of
γL and γU. A value of γL and γU around 100 and
120, allowed a good performance of GA2, but
slightly lower values, yielded a fitness for all
the solutions equal to 10-4, i.e. the mechanism
aborted the calculation of fitness for all the
solutions. Because of that, GA2 was not able to
converge. On the other hand, and as expected,
higher values for γL and γU did not reduce the
time to reach convergence. Given that situation,
we preferred to disable the mechanism, so that
convergence was assured. We will further
discuss this issue in the conclusions.

Table 12. Settings of GA1 and GA2 for calibrating
the complex dynamics ABM2

Settings of the GA1

Parameter Description Value

k nr. of time series of ABM and real system 2

yt
r time series of the real system:

see outputs c1 to c5 of ABM2 in Table 11
pop-size population size 100

pc cross-over probability 0.7

pm mutation probability 0.2

max-iter maximum nr. of iterations of the GA 50

stop-fitness fitness that when reached will stop
iteration of the GA 0.197

Lp , Up

(the limits for
the input
parameters
that the GA
must adjust)

lower and upper limits for the 2 adjustable
parameters of the ABM:
p(a1) : [0, 1] p(a2) : [0, 1]

Settings of the GA2: the same as those for GA1 and also:

β number of significant digits of values of
genes and fitness 2

γL, γU

lower/upper limit of maximum allowable
percentage difference between ABM and
real system time series

none

α discount factor to calculate γt none

Table 13 presents the match between the real
synthetic values of p(a1) and p(a2) and the
ones calculated by the calibrated ABM2 using
GA1 and GA2, both of which were run 10
times. The corresponding RMSE show that the
match between the real synthetic and calibrated
time series is good. Note that since many
random processes occur in the ABM2 and its
dynamics is complex, even having an exact
match in p(a1) and p(a2) produces different
outputs of the ABM. That is one of the
problems with the modeling of CAS: they
exhibit non-deterministic outputs, as already
explained in the introduction.

Studies in Informatics and Control, Vol. 24, No. 1, March 2015 http://www.sic.ici.ro 87

Table 13. Results of the calibration of the complex
dynamics ABM2

Parameter Calibrated value Real Synthetic value

p(a1) 0.8 0.8

p(a2) 0.3 0.3

RMSE of c1 and c2

Best solution´s fitness: 0.20

RMSE c1 300 data points 0.06869

 RMSE c2 300 data points 0.07288

RMSE c3 300 data points 0.01231

RMSE c4 300 data points 0.04279

RMSE c5 300 data points 0.07443

Figure 2 shows the corresponding graphs of c1

through c5, both for the real synthetic and
calibrated time series. Visually assessing the
match of the time series and comparing them
with their corresponding RMSE presented in
Table 13, we can see that the best match
corresponds to c3, and the fit of c4 is better than
those of c1, c2 and c5. Most notably, all of the
time series achieve relational equivalence.

Table 14 shows the average and standard
deviation of the number of iterations and time
to reach the stopping condition. Those figures
were calculated only for GA1 and GA2-1 and
using the same hardware and software
specifications as in the previous experiments.

Table 14. Number of iterations and time to reach
stopping condition of GA1 and GA2 for the

complex dynamics ABM2

Avg. time to reach
stopping condition [s]

Avg. nr. of
iterations

Avg. time per
iteration [s]

GA1 738.6 (171.0) 27.2 (6.5) 27.3 (0.58)

GA2-1 489.6 (238.9) 21.4 (11.1) 23.2 (1.67)

Note: Standard deviation in parentheses, N = 10

The figures in Table 14 indicate that the
elimination of similar solutions significantly
shortens the average time to reach the stopping
condition (p-value of ANOVA = 0.015). On the
other hand, although the average number of
iterations is smaller for GA2-1 than for GA1,
that difference is not statistically significant (p-
value = 0.173). However, the shorter average
time per iteration of GA2-1 compared with
GA1 is highly significant (p-value = 0.000). All
of that means that the shorter time of GA2-1 to
reach the stopping condition is mainly due to
the decrease in time per iteration. Since the
elimination mechanism reduces the number of
solutions whose fitness must be evaluated per
iteration of GA2-1 that accounts for the highly
significant decrease in the time necessary to
perform iterations.

(a) c1 series

(b) c2 series

(c) c3 series

(d) c4 series

(e) c5 series

Figure 2. Real and calibrated time series of
complex ABM2

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 1, March 201588

5. Conclusions

The results indicate that the proposed GA
delivers solutions that achieve a sufficiently
good match between the ABMs’ outputs and
systems’ time series (empirical and synthetic),
reaching relational equivalence. Note that by
setting the parameters that control the two
mechanisms of GA2 designed to shorten
computational time (i.e. β, L, U and α) the
researcher can reach a balance between
achieving an adequately short computational
time and good relational equivalence. In
general, a low β, L, U and high α will
accomplish a shorter computational time and a
relatively worse relational equivalence than
setting a high β, L, U and low α; and vice-
versa. Furthermore, the GA accomplishes
relational equivalence even for ABMs that
exhibit a relatively complex output dynamics.
Additionally, the GA is able to calibrate the
ABMs using a few data points of the input
values, which is important for reducing the
computational time of the process, and also
because in social science research, longitudinal
studies commonly use only two points in time
of the variables of interest. We must point out
that the GA delivers the ten best fitness
solutions, although one could easily change the
code so that the GA provides more than ten.
This allows the researcher and domain expert to
choose the solution that achieves relational
equivalence and also makes sense from a
substantive point of view. Thus, the researcher
might select a solution that does not have the
best fitness, but that better suits the explanation
of the phenomenon under study.

The results also demonstrate that the two
refinements made to the original GA help in
reducing the computational time for reaching
convergence of the GA. These improvements
are especially noticeable for ABMs with a
complex dynamics. However, care must be
taken when setting up the values of the
parameters that control the functioning of the
corresponding mechanisms, especially in the
case of L, U and α. If one establishes too
small values for L and U or too high a value
for α, that might hinder the GA’s convergence.
In this study, we established the parameters of
the GAs by trial and error, based on our
knowledge of the dynamics of the ABMs, so
that we could avoid that problem, particularly
in the more complex dynamics ABMs.
However, ABMs that model CAS may present

too complex dynamics to be able to correctly
set up those parameters. Thus, in future work
we will refine the mechanism that stops the
calculation of fitness for “bad” solutions, so
that t (see line 17 of the pseudo code of GA2
in Table 2) is automatically adjusted. That
might be done by monitoring the fitness of all
the solutions and if all them decrease to a very
small value (10-4, see line 4 c.i. of the pseudo
code presented in Table 2), t may be
increased until the fitness of solutions
augments and then simply keep that value of t
for the rest of the iterations of the GA2. That
will assure the convergence of GA2.

Another improvement to GA2 may involve
enhancing its stopping criteria. Presently, GA2
stops iterating when a maximum number of
iterations is reached or when an established
fitness is achieved (see line 3 of the pseudo
code in Table 2). However, during the
experiments with the GAs we noticed that
sometimes the fitness of the best solutions
remained unchanged during a large number of
iterations, especially for complex dynamics
ABMs. Thus, one could add a stopping
criterion that computes the difference in fitness
between the current iteration’s solutions and the
ones of a user-specified previous iteration
(using a sliding window approach), and if that
difference is too negative or does not exceed a
certain threshold, then the GA2 stops iterating.

Acknowledgments

This work was supported by FONDECYT
(Fondo Nacional de Ciencia y Tecnologia of
the Chilean Government) grant Nr. 1150074 to
both authors.

REFERENCES

1. CANESSA, E., R. RIOLO, An Agent-based
Model of the Impact of Computer-
mediated Communication on
Organizational Culture and Performance:
An Example of the Application of
Complex Systems Analysis Tools to the
Study of CIS, Journal of Information
Technology, vol. 21, 2006, pp. 272-283.

2. QUEZADA, A., E. CANESSA, Agent-based
Modeling: A Tool for Complementing the
Analysis of Social Phenomena, Avances en
Psicología Latinoamericana, vol. 28 (2), 2010,
pp. 226-238.

Studies in Informatics and Control, Vol. 24, No. 1, March 2015 http://www.sic.ici.ro 89

3. MILLER, J., PAGE, S., Complex
Adaptive, Systems: An Introduction to
Computational Models of Social Life,
Princeton: Princeton University Press, NJ,
USA, 2007.

4. HOLLAND, J. H., Hidden Order: How
adaptation builds complexity, Addison-
Wesley, Redwood City, 1995.

5. BANKES, S. C., Agent-based modeling:
A revolution? PNAS 99, vol. 3, 2002,
pp. 7199-7200.

6. BONABEAU, E., Agent-based Modeling:
Methods and Techniques for Simulating
Human Systems, PNAS 99, vol. 3, 2002,
pp. 7280-7287.

7. CONTE, R., R. HEGSELMANN, P.
TERNA, Simulating Social Phenomena,
Berlin: Springer-Verlag, 1997.

8. BANKES, S. C., Exploratory Modeling
for Policy Analysis, Operations Research,
vol. 41(3), 1993, pp. 435-449.

9. GRIMM, V., S. F. RAILSBACK,
Individual-based Modeling in Ecology,
Princeton: Princeton Univ. Press, 2005.

10. GRIMM, V., E. REVILLA, U. BERGER, F.
JELTSCH, W. M. MOOIJ, S. F. RAILSBACK,
H.-H. THULKE, J. WEINER, T. WIEGAND,
D. L. DEANGELIS, Pattern-oriented
Modeling of Agent-based Complex
Systems: Lessons from Ecology, Science,
vol. 310 (5750), 2005, pp. 987-991.

11. AXELROD, P., Advancing the Art of
Simulation in the Social Sciences, in: R.
Conte, R. Hegselmann, P. Terna eds.,
Lecture Notes in Economics and
Mathematical Systems: Simulating Social
Phenomena, Berlin: Springer-Verlag, 1997.

12. HEPPENSTALL, A. J., A. J. EVANS, M. H.
BIRKIN, Genetic Algorithm Optimisation
of an Agent-based Model for Simulating
a Retail Market, Environment and
Planning B: Planning and Design, vol. 34,
2007, pp. 1051-1070.

13. CAPORALE, G. M., A. SERGUIEVA, H.
WU, Financial Contagion: Evolutionary
Optimization of a Multinational Agent-
based Model, Intl. J. of Intelligent Systems
in Accounting and Finance Management,
vol. 16(1-2), 2009, pp. 111-125.

14. ROGERS, A., P. VON TESSIN, Multi-
objective Calibration for Agent-based

Models, Proc. of 5th Workshop on Agent-
based Simulation, May 2004, pp. 17-22.

15. SKOLICKI, Z., T. ARCISZEWSKI, M.
HOUCK, K. D. JONG, Co-evolution of
Terrorist and Security Scenarios for
Water Distribution Systems, Advances in
Engineering Software, vol. 39(10), 2008,
pp. 801-811.

16. NARZISI, G., V. MYSORE, R. MISHRA,
Multi-objective Evolutionary Optimization
of Agent-based Models: an Application to
Emergency Response Planning, Proc. the
2nd IASTED International Conference on
Computational Intelligence, 2006.

17. CALVEZ, B., G. HUTZLER, Automatic
Tuning of Agent-Based Models Using
Genetic Algorithms, Proc of 6th Intl.
Workshop on Multi-Agent Based
Simulation (MABS’05), Netherlands, 2005.

18. ZWIJZE-KONING, K. H., M. D. T. DE JONG,
Auditing Information Structures in
Organizations: A Review of Data
Collection Techniques for Network
Analysis, Organizational Research Methods,
vol. 8 (4), 2005, pp. 429-453.

19. WILENSKY, U., NetLogo. Center for
Connected Learning and Computer-Based
Modeling, Northwestern University,
Evanston, IL, 1999.

20. MACAL, C. M., M. J. NORTH, Agent-
based Modeling and Simulation, Proc.
Winter Simulation Conference 2009, M. D.
Rossetti, R. R. Hill, B. Johansson, A.
Dunkin and R. G. Ingalls, eds., Austin, TX,
Dec. 2009, pp. 86-98.

21. CHAIGNEAU, S., E. CANESSA, J.
GAETE, Conceptual Agreement Theory,
New Ideas in Psychology, vol. 30, 2012,
pp. 179-189.

22. CHAIGNEAU, S., E. CANESSA, A.
QUEZADA, The Spreading and Demise
of Concepts in Social Groups, Proc. IEEE
XXIX Intl. Conf. of the Chilean Computer
Science Society (SCCC 2010), IEEE
Computer Society, Mar. 2011, pp. 139-145.

23. CHAIGNEAU, S., E. CANESSA, The
Power of Collective Action: How Agents
Get Rid of Useless Concepts without
Even Noticing Their Futility, Actas XXX
Intl. Conf. of the Chilean Computer
Science Society, Curicó, Chile, 7-11
Noviembre, 2011.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 24, No. 1, March 201590

