
1. Introduction

Agent-Based  Models  (ABMs)  (among  other
tools)  are  particularly  well-suited  to  studying
Complex Adaptive Systems (CAS) [1], cf. [2].
Generally  speaking,  a  CAS  is  one  where
numerous  elements,  parts,  or  agents
(homogeneous  or  not)  interact  non-linearly
with  each  other  and  with  their  environment
such as that their properties may be modified as
a  result  of  those  interactions  [3].  Traditional
approaches to studying CAS [4] often limit our
ability  to  understand  the  full  complexity  of
these  systems,  in  part  because  the
characteristics  of  CAS  (e.g.,  path  dependent
dynamics)  violate  many  of  the  statistical
assumptions necessary to use those approaches
(i.e.,  survey research,  controlled  experiments,
game theory) [1].

The distinguishing feature of ABMs is that they
are  constructed  in  a  "bottom-up"  manner,  by
defining  the  model  in  terms  of  entities  and
dynamics at a micro-level, i.e., at the level of
individual  actors  and  their  interactions  with
each other and with the environment [5],  [6],
[7]. An ABM consists of one or more types of
agents,  and possibly a non-agent environment
(e.g. in a prey-predator ABM, the environment

could be the prey’s food; e.g.:  if the prey are
sheep  and  predators  are  wolves,  the
environment  could  be  the  grass.).  Agent
definitions  include  specification  of  their
capabilities to determine particular behaviours,
as  well  as  decision-making  rules  and  other
mechanisms that agents use to choose their own
behaviours.  Agents  may  also  have  adaptive
mechanisms  that  allow them to change based
on their experience (e.g., changing the state of
agents’ memory  to  reflect  prior  interactions).
While an ABM is running, agent behaviour is
generated as agents choose which other agents
to  interact  with  and  what  to  do  in  a  given
interaction.  Thus,  ABMs  embody  complex
interlaced feedback relationships, leading to the
non-linear,  path-dependent  dynamics  often
observed in CAS.

While  ABMs and all  formal  models  increase
our  knowledge  about  the  behavior  of  any
system consisting of similar processes, the use
of  such  models  to  make  inferences  about
particular  real-world  systems  requires  model
validation (i.e., showing that model behavior or
parameters  are  comparable  to  those of  a  real
system).  However,  model  validation  is  not
trivial  [8],  [9],  [10].  For  exploratory  CAS
models, one approach to validation is to focus
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on relational equivalence [11]. In general it is
impossible  to  expect  matching  the  detailed
behavior of a CAS model to the real system [4],
[8]. Thus, validation can be done by matching
patterns  and relationships  between the  model
and  the  system  being  modeled,  rather  than
matching details [11], [9].

Bearing  in  mind  the  above  mentioned
characteristics of the validation of ABMs that
model  CAS,  we  present  a  tool  based  on
Genetic  Algorithms (GA) that  allows to find
the combination of values for input variables
to  the  ABM  that  establishes  relational
equivalence  between  the  ABM  and  the  real
system  it  represents.  The  general  idea  is  to
have a  GA that  will  deliver  combinations  of
input parameters to a certain ABM, which will
produce  outputs  of  the  ABM  that  match  as
close as possible the corresponding time series
of data gathered from the real system. Because
values  delivered  by  the  GA  must  then  be
judged  by  a  domain  expert  to  finally  see
whether  they  are  reasonable  and  select  the
ones that better make sense from a substantive
point  of  view, we prefer to refer  to the GA-
based tool as a calibration method, instead of a
validation one.

In the next sections we discuss the limitations
of  current  GA-based  calibration  methods  and
present  a  new  tool  that  tries  to  lessen  those
drawbacks.  Then,  we  apply  the  new  tool  to
calibrate three increasingly complex ABMs and
conclude that the tool works as expected, but
that new improvements may be desirable.

2. State of the Art

The idea of using a GA to calibrate an ABM is
not  new.  However,  most  of  previous  efforts
have  focused  on  applying  GAs  to  specific
models and a more comprehensive tool is still
needed.  For  example,  [12]  present  a  GA that
calibrates an ABM of oil retail markets. In [13]
similar  techniques  are  used  to  calibrate  an
ABM of financial markets. The same is done in
[14] to calibrate an ABM that models financial
trading in markets. In [15], an ABM of terrorist
and security scenarios is explored through the
use of a GA. Finally, [16] use a GA to analyze
an  ABM  of  emergency  response  planning.
Although  all  those  studies  have  their  own
merit,  they lack the development of a general
GA-based  tool  to  calibrate  different  ABMs.
More  importantly,  those  proposals  exhibit

problems, some of which we try to lessen in the
present work.

A common problem recognized by all previous
studies on the automatic calibration of ABMs is
the long computational time of such tools [17].
Since  generally  ABMs’  outputs  are  non-
deterministic  time  series  [1],  the  fitness
function generally uses the expected value (E)
E[yt

m – yt
r] and E[syt

m – syt
r] as indicators of the

match  between  the  output  time  series  of  the
ABM  (yt

m)  and  the  real  system  (yt
r).  These

expressions involve that the fitness function of
the GA must calculate the expected value of the
difference  in  mean  and  standard  deviation
between points of the time series generated by
the  ABM  and  the  corresponding  ones  of  the
real  system.  To have  a  reliable  value  for  the
expectations,  previous  studies  suggest
evaluating each point of the time series around
100 times [14], [17] , which entails running 100
times  the  ABM  for  the  entire  time  span
considered.  Since  ABMs  normally  use  many
computational  tasks  for  representing  the
behavior  of  many  agents  to  run  every
simulation  step,  that  process  is  very  time
consuming.  Thus, a first  goal of the proposed
GA calibration tool is to shorten such time, but
achieving  a  decent  relational  equivalence
between  the  ABM  and  the  system  being
modeled. A second and related objective is to
give  the  researcher  a  means  of  meeting  the
necessary  trade-off  between  reaching  a  very
close  relational  equivalence  and  the
computational  time  it  will  take  the  GA  to
deliver the corresponding solution. Hence, the
GA-based  tool  should  have  some  mechanism
that could allow the experimenter to reach that
required balance.

A third goal of the GA-based tool is to be easily
applicable  to  many  ABM models.  All  of  the
previous  studies  code  the  GA as  part  of  the
ABM  computer  program,  thus  increasing  the
coupling  between  the  GA’s  and  ABM´s
computer code [12, 13, 14, 15, 16]. This makes
it  difficult  to  apply  the  GA’s  code  to  new
models. Thus, the GA should be coded so that it
is fully parameterized and can be used with a
wide range of ABM simulation platforms.

Finally, with regard to ABMs used in the social
sciences, a fourth objective is to achieve a good
relational  equivalence  using  only  a  few  data
points  of  the  real  system.  This  goal  is
important,  given  that  in  social  sciences,
longitudinal studies are difficult to perform and
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generally two points in time are used [18]. Here
again, previous studies indicate that GA-based
tools  are  generally  developed  assuming  that
many  data  points  of  the  real  system  will  be
available [12, 13, 14, 15, 16].

3. Using a GA to Calibrate an ABM

As already explained, a common problem in the
approach followed by previous ABM calibration
GA-based tools is the computational cost of that
tool. Thus, in the present work, instead of using
the expected value of outputs of the time series
of  an  ABM  to  compute  a  fitness  value,  we
propose to use a fitness function based on the
simple aggregation of the difference  │yt

m –  yt
r │

for  a  set  of  data  points  selected  by  the
experimenter. Additionally, in order to deal with
the  possible  differences  in  scale  of  the  time
series and thus develop a tool applicable to any
output of an ABM, we use the absolute value of
the percentage difference, as follows:

fitness=
1

1+∑
n=0

k

∑
t=0

tn

| ynt
m−y nt

r

yrt
r | (1)

Expression (1) implies that the user will define a
set of  k output variables of the ABM and real
system, which will be evaluated at  tn points in
time. Then the absolute value of the percentage
difference for each point will be calculated and
aggregated by simply summing them up. For the
fitness to be normalized to the [0, 1] interval, the
GA adds one to the double summation and takes
the reciprocal of that value. In that form, the GA
must maximize the fitness.

The  fitness  in  (1)  allows  performing  fewer
evaluations of the ABM’s time series. The more
points are considered for evaluation, the better
the  match  between  the  ABM’s  and  real
system’s time series might be, but the slower
the  GA  will  iterate.  However,  an  intelligent
selection  of  the  evaluation  points,  will  allow
the  experimenter  to  balance  the  speed of  the
GA and the required precision of the match. As
already  discussed,  because  in  ABM  one
normally  intends  to  reach  relational
equivalence,  a  few  points  may  achieve  a
sufficiently  good  fit,  as  we  will  show in  the
results. Thus, the present GA allows balancing
a  relatively  low  computational  cost  with  an
appropriate calibration of an ABM.

Another goal of this work is to build a GA-based
calibration tool that should be simple to use with

many types of ABMs. For that reason, we fully
parameterized the code of the GA and developed
it as a library that can be easily linked to any
ABM written in the Netlogo [19] or any Java-
based ABM platform. We used Netlogo, since it
is a very good and user-friendly ABM platform,
with nice Graphical User Interfaces (GUIs) and
thorough user documentation, and that runs on
many computers, such that it is used by many
researchers,  especially  in  the  social  sciences
[20], cf. [2].

Table  1 shows the pseudo code of  the initial
GA (GA1). 

Table 1. Genetic Algorithm 1 Pseudo Code
ABM Calibration Genetic Algorithm version 1 (GA1)

a. Set up:
k = nr. of time series of ABM and real system, k = 1 to 10
t at which series will be evaluated = t0, t1, … , tn

yt
r = time series of the real system

pop-size = population size in the interval [5,200]
pc = cross-over probability in the interval [0,1]
pm = mutation probability in the interval [0,0.3]
max-iter = maximum nr. of iterations of the GA [1,500]
stop-fitness = fitness that when reached will stop 

iteration of the GA in the interval [0,1]
Lp = lower limits for the p adjustable parameters of 
the ABM
Up = upper limits for the p adjustable parameters of the ABM

b. Generate initial population of pop-size chromosomes each 
with p genes. Sample value of each gene i from U(Li ,Ui) (i
= 1,…,p)

c. do while (number of iterations ≤ max-iter and max (j = 1,
…, pop-size) fitnessj ≤ stop-fitness)

d. Calculate fitness for the pop-size chromosomes:

a. Evaluate k outputs of ABM at time t

b. Compute fitness for each chromosome according to 
expression (1)

e. for j = 1 to cross-over-count = (pop-size * pc)/2 do

f. Execute tournament selection of size 3 among population, 
selecting two parents

g. Execute one-point crossover for selected parents, using a 
randomly-chosen cross-over point

h. end for  

i. for j = 1 to (pop-size - cross-over-count * 2) do

j. Execute tournament selection of size 3 among population, 
selecting one chromosome

k. Clone selected chromosome
l. end for  

m. for all population of chromosomes do

n. for each gene i of chromosome do

a. if u ~ U(0,1) ≤ pm then replace gene i with value ~ 
U(Li ,Ui)

o. end for 
p. end for 
q. end while 

We can see that GA1 is a continuous GA (i.e.
GA in which each gene has a value in R) that
uses tournament selection, with a tournament
size of 3, one-point crossover, and a mutation
operator that acts on randomly-selected genes
of  chromosomes.  The  stopping  condition  is
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reaching  either  a  maximum  number  of
iterations  or  a  user-defined  value  for  the
fitness function.

Some preliminary tests of GA1 showed that we
could  further  improve  it  to  speed  up  its
convergence. The following changes allowed a
faster convergence, as we will demonstrate in
the results section. The first change focused on
reducing  the  number  of  solutions
(chromosomes)  that  must  be  evaluated.
Remember  that  the  most  expensive
computational part of the GA is the evaluation
of the ABM’s time series. Thus, if many similar
solutions  exist  in  the  population (in  terms  of
genes and fitness), it would be a waste of time
to  evaluate  each  of  them.  Hence,  before
evaluating  each  solution,  the  GA  eliminates
those that  are  similar  to a certain degree (β),
which can be set by the experimenter. This is
simply accomplished by the code on lines 4 a.
and  4  b.  of  the  pseudo  code  listing  of  GA2
presented in Table 2.

Table 2. Generic Algorithm 2 Pseudo Code
ABM Calibration Genetic Algorithm version 2 (GA2)

1: Set up:
k = nr. of time series of ABM and real system
t at which series will be evaluated = t0, t1, … , tn

yt
r = time series of the real system

pop-size = population size
pc = cross-over probability
pm = mutation probability
max-iter = maximum nr. of iterations of the GA
stop-fitness = fitness that when reached will stop 

iteration of the GA
Lp = lower limits for the p adjustable parameters of 
the ABM
Up = upper limits for the p adjustable parameters of 
the ABM
β = number of significant digits of values of genes and 
fitness in the interval [2,10]
γL = lower limit of maximum allowable percentage 
difference between ABM and real system time series
γU = upper limit of maximum allowable percentage 
difference between ABM and real system time series
α = discount factor to calculate γt  in the interval [0,1] 

2: Same as in GA1 and set γt =γU

3: do while (number of iterations ≤ max-iter and max (j = 1,
…, pop-size) fitnessj ≤ stop-fitness)

4: Calculate fitness for the pop-size chromosomes:
a. Round to β significant digits values of genes and 

fitness of each chromosome
b. Eliminate chromosomes that have an equal value for

their genes and fitness
c. Evaluate k outputs of ABM at time t

i. if for any time series j at time t : │(yjt
m – yjt

r )/ 
yjt

r │≥ γt then immediately terminate evaluation 
of time series j and assign fitness = 10-4 to 
corresponding chromosome

d. Compute fitness according to expression (1) for all 
chromosomes that have not  being assigned fitness =
10-4 

5 to 16: Same as in GA1
17: Update γt =γL + (γU  -γL)/ (1 + number of iterations * α)
18: end while

Another  improvement  implemented  in  GA2
was  to  immediately  discard  “bad”  solutions
during  the  calculation  of  the  fitness  of  the
chromosomes. The code corresponding to that
refinement can be seen on lines 4 c. i., 4 d. and
17  of  Table  2.  The  improvement  consists  in
calculating the absolute value of the percentage
difference between the simulated and real data
point  at  each  specified  time  t (see  the
expression of the inner summation in (1)) and
comparing  it  with  a  threshold  γt.  If  the
percentage  difference  exceeds  that  threshold,
the ABM’s current output time series is already
a bad approximation to the real time series and
thus, it is futile to continue evaluating the rest
of  the  next  data  points.  Since  it  would  be
expected  that  the  first  iterations  of  the  GA2
would  contain  worse  solutions  than  later
iterations (i.e. as the GA iterates and converges,
the  solutions  should  become  better),  the
threshold  γt is  narrowed as  the  GA2 iterates.
The pseudo code on line 17 in Table 2 shows
that γt is decreased by simply calculating γt as a
function  of  an  user-defined  upper  (γU)  and
lower limit (γL), a discounting factor α and the
number of iterations performed by the GA2.

We acknowledge  that  discarding  very similar
and  “bad”  solutions  might  hinder  the
exploration  capabilities  of  GA2  and  overly
induce  exploitation.  That  might  cause  a
premature convergence of GA2 and thus avoid
GA2 from finding  better  solutions.  However,
remember that one of the main objectives of the
designed GA is to shorten computational time
at  the  expense  of  delivering  solutions  that
achieve a very close match between the ABM’s
and real system’s time series.

4.  Results  of  the  Calibration  of
Two ABMs

To show the  use  of  GA1 and GA2 and also
verify whether GA2 converges faster to a good
solution than GA1,  we used two ABMs.  The
first one corresponds to an ABM that calculates
the  probability  of  true  (p(a1))  and  illusory
agreement  (p(a2))  between  two  agents,
according  to  the  Concept  Agreement  Theory
(CAT,  [21]).  CAT  is  a  theory  about  the
conditions  under  which  individuals  infer  that
they  share  their  conceptualization  about
something  (e.g.,  whether  a  certain  political
figure  is  an  authoritarian or  a  leader).   It
assumes  that  a  conceptualization  C can  be
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described  by  a  probability  distribution  of  k1

properties  (i.e.,  things  that  are  viewed  as
consistent with that conceptualization). It also
assumes  that  people  who  share  a
conceptualization do not share exactly the same
conceptual content (i.e., people accept only  s1

properties as true of C, where s1 ≤ k1) and that
alternative  Cn conceptualizations  (with  their
own  k2 and  s2 parameters) will share some of
their  coherent  properties  with  the  focal  C
conceptualization (e.g., that determination may
be  a  property  of  an  authoritarian figure  and
also of a  leader). The number of these shared
properties  is  the  u parameter.  To  infer
agreement (or lack of), an individual with C in
mind verifies if some other individual provides
evidence  of  sharing  part  of  her  conceptual
content (i.e., says or does something which she
views  as  acceptable  content  for  C).  True
agreement  (event  a1)  occurs  when  that  other
individual produces a property coherent with C
and she in fact is thinking that  C in her mind.
Illusory agreement (event a2) occurs when that
other individual instantiates a coherent property
but really holds Cn in her mind. The probability
distributions  of  the  properties  of  C and  Cn
(which can include  u common elements),  can
be  empirically  estimated  by  collecting
conceptual  properties  from  a  sample  of
individuals. This allows the estimation of k1, k2,
s1,  s2  and u,  thus allowing the probabilities of
each agreement type (i.e.,  p(a1) and  p(a2)) to
be computed.

The  ABM  that  computes  these  probabilities
works as follows.  An observer agent  O looks
for agreement. To compute p(a1), O chooses a
sample  of  size  s1  from a  population  C of  k1

properties  (with  a  given  distribution).
Concurrently, another actor agent A chooses a
sample of size  s1 from the same  C population,
and  both  agents  check  if  there  is  a  shared
property  in  their  samples.   If  it  is  so,  this
increases  an  a1 coincidence  counter  by  one.
Computing  p(a1) on  the  long  run,  simply
amounts to getting the proportion between this
counter  and  the  total  number  of  simulation
steps.  To  compute  p(a2),  the  same  process
occurs, but A chooses a sample of size s2 from a
Cn population  of  k2  properties  (with  a  given
distribution).   Now, if  there is  a  coincidence,
this  increases  an  a2 coincidence  counter  by
one. Computing  p(a2) on the long run, simply
amounts to getting the proportion between this
counter  and  the  total  number  of  simulation
steps.  Given  values  for  all  the  parameters,  a

group of simulated agents will converge to the
agreement  probabilities  implied  by  those
values, which will be computed using a moving
average of the time series of  p(a1)  and  p(a2).
Note that this ABM may be used to compute
p(a1) and  p(a2) from  empirically  obtained
distributions of conceptual properties.

The  second  ABM  models  the  strength
(salience) of concepts in agents’ minds by using
the  p(a1) and  p(a2) probabilities.  Here  we
briefly describe that ABM, giving just enough
details of it  to allow the reader to understand
the  context  in  which  GA1  and  GA2  will  be
tested. More details of the ABM may be found
in [22].  In  this  second ABM, agents  perform
the  same  type  of  process  described  before,
searching  for  confirming  evidence  for  their
conceptual content, but instead of using this to
compute  p(a1) and  p(a2),  each time they find
agreement  of  any  type  they  increase  their  C
concept’s strength, which is represented by a c
coefficient.   Conceptual  strength  directly
influences  the probability that  agents  will  act
according to  C when it comes their turn to be
actors  (A),  and  therefore  increases  the
probability  that  they  will  offer  confirming
evidence to other agents in the simulation (i.e.,
the  more  their  concept  C demonstrates  being
useful  to  understand  other  agents,  the  more
they use  C to guide their own actions). Thus,
given  some  input  values  of  p(a1) and  p(a2),
this ABM tracks the dynamical changes in the
strength  of  concept  C in  a  group  of  agent’s
minds.  Since in  a  social  group there  may be
more than one version of a concept C, the ABM
allows setting the number of different versions
of the concept that will be present in the group.
Note  that  we  currently  don’t  have  empirical
measurements  to  calibrate  this  ABM, so here
we will use it in calibrating synthetic data.

4.1 Calibration of a simple dynamics ABM

This experiment uses the ABM that calculates
p(a1) and  p(a2). Because in this case we have
empirical  estimates  for  p(a1) and  p(a2),  the
GAs  must  find  parameters  that  will  replicate
those  values,  and  which  should  be  close  to
empirically measured ones.

The  ABM’s two  output  time  series  converge
quite  rapidly  to  a  steady-state  equilibrium
value,  with  a  very  short  transient  period.
Furthermore,  given  that  the  calculations  of
p(a1) and p(a2) are based on a moving average,
their values are very constant. Thus, the ABM’s
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dynamics are simple. We selected this situation,
because  we  wanted  to  first  assess  the
performance  of  the  GAs  under  a  simple
scenario,  so  that  we  could  easily  verify their
correct functioning. Additionally, we expected
that  the improvements  of GA2 over  GA1 for
speeding  up  the  convergence  not  be  too
significant,  since  the  dynamics  is  simple.  To
obtain the values of the real system for  p(a1)
and p(a2), we collected data from a sample of
individuals,  as discussed above (see Table 3).
Regarding the parameters presented in Table 3,
note that to reduce the amount of information
we needed to handle, we calculated a stepwise
probability  distribution  for  the  C and  Cn
elements.  In our study,  C was “male oriented
professions”  (a  set  of  professions  which  our
sample  thought  that  they  would  be
predominantly  preferred  by  males,  such  as
mechanical and civil engineering), and Cn was
“female  oriented  professions”  (a  set  of
professions which our sample believed would
be mostly preferred by females, such as nursing
and elementary school teacher).

Table 3. Variables measured to calculate p(a1) and p(a2)
for a real situation

Parameter Description Value

k1 nr. elements in set C 61

s1 size of sample drawn from C 47

k2 nr. elements in set Cn 61

s2 size of sample drawn from Cn 44

u nr. of common elements shared by C and
Cn 61

np1
nr.  of  elements  of  C that  have  p1

probability of being sampled 14

p1 sampling probability of the np1 elements 0.034

np2
nr.  of  elements  of  C that  have  p2

probability of being sampled 16

p2 sampling probability of the np2 elements 0.015

nq1
nr.  of  elements  of  Cn that  have  q1

probability of being sampled 10

q1 sampling probability of the nq1 elements 0.005

nq2
nr.  of  elements  of  C that  have  q2

probability of being sampled 19

q2 sampling probability of the nq2 elements 0.008

Values of p(a1) and p(a2)

p(a1)
p(a2) true and illusory agreement probabilities 0.7987

0.7207

Table 4 shows the settings of GA1 and GA2 for
calibrating  the  ABM,  i.e.  finding  values  for
some of the parameters of the ABM that will
produce a  p(a1) and  p(a2) similar to the ones
already calculated using the real data shown in
Table 3. The settings for those parameters were
established by a trial and error process and by
knowing  the  approximate  dynamics  of  the
output time series. From that table we can see
that  the  GAs  must  find  the  value  of  several

parameters,  using  a  single  value  for  two
variables  of  the  real  system,  i.e.  p(a1) and
p(a2). Since the ABM produces a time series of
those probabilities, one needs to set the time at
which the real  probabilities will  be compared
with the ABM-generated ones. In this case, the
ABM dynamics  shows that  at  510 simulation
steps, the ABM converges to a stable value for
p(a1) and  p(a2).  Table  5  presents  the  match
between the real values of p(a1) and p(a2) and
the  ones  calculated  by  the  calibrated  ABM
using GA1 and GA2, both of which were run
10 times.

Table 4. Settings of GA1 and  GA2 for calibrating
the simple dynamics ABM

Settings of the GA1

Parameter Description Value

k nr. of time series of ABM and real
system 2

yt
r

time series of the real system
p(a1) y1: (510, 0.7987)
p(a2) y2: (510, 0.7207)

pop-size population size 30

pc cross-over probability 0.7

pm mutation probability 0.1

max-iter maximum nr.  of  iterations  of  the
GA 50

stop-fitness fitness that when reached will stop
iteration of the GA 0.95

Lp , Up

(the  limits  for  the
input  parameters
that  the  GA  must
adjust)

lower  and  upper   limits  for  the  10
adjustable parameters of  the ABM:
s1 : [30, 50] s2 : [30, 50]
np1 : [5,20]    p1 : [0.01,0.1]
np2 : [5,20]  p2 : [0.01,0.1]
nq1 : [1,15]    q1 : [0,0.01]
nq2 : [5,20]  q2 : [0,0.01]

Settings of the GA2: the same as those for GA1 and also:

β number  of  significant  digits  of
values of genes and fitness 3

γL, γU

lower/upper  limit  of  maximum
allowable  percentage  difference
between  ABM  and  real  system
time series

10, 30

α discount factor to calculate γt  0.2

From the results of Table 5, we can see that the
match reached by the parameter values found by
both GAs is  very good,  with a  small  error  in
p(a1) and p(a2). It must be noted that GA1 and
GA2 found the same best solution with a fitness
of  0.96.  Other  solutions  are  not  presented,
although the GAs deliver the ten best solutions,
so that the domain expert may choose the most
appropriate  one  from  a  substantive  point  of
view. Thus, we can see that both GAs achieve a
similar calibration of the ABM.

To evaluate the relative performance of GA1 to
GA2, the number of iterations and time to reach
the stopping condition was recorded.  The GAs
were implemented in Netlogo v. 4.0.4 [19] and
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run on a HP PC with Intel Core i5-2500S CPU @
2.70GHz, 3.2 GB RAM, running under OS MS
Windows 7 Enterprise, v.6.1.7601, SP 1. Table 6
presents  the average and standard  deviation of
those figures. To fully analyze the benefits of the
refinements  made  to  GA1,  we  used  4
experimental  treatments:  GA1  (original  GA),
GA2-1 (GA1 with  the elimination  of  the  very
similar  solutions),  GA2-2  (GA1  stopping  the
calculation  of  fitness  for  the  “bad”  solutions),
GA2-3 (GA1 with both improvements).

Table 5. Results of the calibration of the simple
dynamics ABM

Parameter Calibrated value Real value

s1 47 47

s2 44 44

np1 12 14

p1 0.022 0.034

np2 12 16

p2 0.029 0.015

nq1 12 10

q1 0.007 0.005

nq2 18 19

q2 0.007 0.008

Values for p(a1) and p(a2) (percentage error)

Best solution´s fitness: 0.96

p(a1) 0.7925 (error = -0.8 %) 0.7987

p(a2) 0.7485 (error = 3.9 %) 0.7207

Table 6. Number of iterations and time to reach
stopping condition of GA1 and GA2 for the simple

dynamics ABM

Avg.  time  to  reach
stopping condition [s]

Avg.  nr.  of
iterations 

Avg.  time  per
iteration [s]

GA1 246.1 (36.7) 7.3 (0.95) 34.4 (7.6)

GA2-1 264.1 (37.0) 8.4 (2.41) 34.1 (12.0)

GA2-2 221.6 (28.7) 7.6 (1.71) 31.0 (9.8)

GA2-3 182.4 (13.3) 6.6 (0.84) 28.2 (5.4)

Note: Standard deviation in parentheses, N = 10

It can be seen that stopping the calculation of
the  fitness  for  “bad”  solutions  (GA2-2)
shortens the average time to reach the stopping
condition and that the shortest time corresponds
to experimental  treatment  GA2-3.  The results
of a one-way ANOVA with GA-version as its
single  factor,  corroborates  that  stopping  the
calculation  of  fitness  for  “bad”  solutions
achieves a statistically significant reduction in
that  time  (p-value  =  0.000).  However,  the
elimination of very similar  solutions (GA2-1)
does not significantly shorten the time (p-value
= 0.29).  The  same  happens  with  the  average
time  per  iteration  (corresponding  p-values  =
0.049  and  0.942  respectively).  Regarding  the
average number of iterations performed by the

GAs,  the  ANOVA shows  that  there  are  no
statistically  significant  differences  among
treatments  (all  p-values  above  0.10).  Since
GA2-2  and  GA2-3  immediately  abort  the
calculation of fitness of very “bad” solutions,
that decreases the time of each iteration, even if
those  two  versions  of  the  GAs  give  similar
number  of  iterations.  On  the  other  hand,  the
elimination  of  similar  solutions  does  not
shorten the processing time of the GAs, since
the calculation of fitness for each chromosome
takes a relatively short time, given the simple
dynamics of the ABM.

4.2 Calibration of a complex dynamics ABM1

This experiment uses the ABM that traces the
time series of the strength of different versions
of a concept. Note that there are no empirical
data  available  to  calibrate  this  ABM,  so  we
calibrated synthetic data (from here on we will
refer to this series as “real synthetic”). To use a
more  complex  dynamics  time  series  than
before, we set up the ABM1 according to the
values of the parameters shown in Table 7.

Table 7. Settings and outputs of the complex
dynamics ABM1

Parameter Description Value

nr_ver_concepts nr. of different versions of a concept 2

nr_agents nr. of agents that compose the group 30

c0 initial strength of the concepts 0.5

p(a1) probability of  true agreement among
agents 0.3

p(a2) probability  of  illusory  agreement
among agents 0.5

Outputs of the ABM1

c1
50

c1
300

strength of version 1 of the concept at
t = 50 and 300

0.4387
0.0173

c2
50

c2
300

strength of version 2 of the concept at
t = 50 and 300

0.3880
0.0280

Under  these  settings,  the  two  versions  of  the
concept  decrease  their  strength  (c1 and  c2),
reaching a relatively small and stable value in the
long run. However, the dynamics that  c1 and  c2

follow  is  more  variable  than  that  which  was
described  in  subsection  4.1  (for  a  detailed
discussion  of  the  dynamics  see  [22]  and [23]).
Thus, we would expect that under this situation,
GA2 would perform significantly better than GA1.

Table 8 shows the settings of GA1 and GA2 for
calibrating  the  ABM1,  which  indicates  that
there  are  two input  parameters  to  the  ABM1
that  the  GA  must  adjust,  namely  p(a1) and
p(a2),  to obtain the match of two output time
series (c1 and c2). As before, the settings of the
parameters of the GAs were established by trial
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and error, based on the knowledge of the type
of dynamics that the output time series exhibit.

Table 8. Settings of GA1 and GA2 for calibrating
the complex dynamics ABM1

Settings of the GA1

Parameter Description Value

k nr. of time series of ABM and real
system 2

yt
r

time series of the real system
c1 = y1: (50, 0.4387), (300, 0.0173)
c2 = y2: (50, 0.388), (300, 0.028)

pop-size population size 100

pc cross-over probability 0.7

pm mutation probability 0.1

max-iter maximum nr. of iterations of the GA 50

stop-fitness fitness  that when reached will  stop
iteration of the GA 0.75

Lp , Up

(the  limits  for  the
input  parameters
that  the  GA  must
adjust)

lower and upper  limits for the 2 adjustable
parameters of  the ABM:
p(a1) : [0, 1] p(a2) : [0, 1]

Settings of the GA2: the same as those for GA1 and also:

β number  of  significant  digits  of
values of genes and fitness 3

γL, γU

lower/upper  limit  of  maximum
allowable  percentage  difference
between ABM and real system time
series

60, 30

α discount factor to calculate γt  0.05

Table  9  presents  the  match  between  the  real
synthetic  values  of  p(a1) and  p(a2) and  the
ones calculated by the calibrated ABM1 using
GA1  and  GA2,  both  of  which  were  run  10
times. The corresponding RMSE show that the
match between the real synthetic and calibrated
time  series  is  good.  Note  that  even  slight
differences in p(a1) and p(a2) produce different
ABM  outputs.  That  is  one  of  the  problems
when  modeling  CAS:  they  exhibit  non-
deterministic outputs that are very sensitive to
initial  conditions,  as  already explained in  the
introduction.  Because  the  dynamics  of  this
ABM1 is more complex than the previous one,
Figure 1 presents the graphs of the time series,
so that one can visually assess the fit.

The graphs on Figure 1 confirm that the match
of  c2  is  better  than  that  of  c1,  as  the
corresponding  RMSE  already  suggested,  and
that  both  time  series  achieve  relational
equivalence.  As done before,  Table 10 shows
the  average  and  standard  deviation  of  the
number  of  iterations  and  time  to  reach  the
stopping  condition.  Those  figures  were
calculated  for  the  same  treatments  and  using
the same hardware and software specifications
as in the previous experiments.

Table 9. Results of the calibration of the complex
dynamics ABM1

Parameter Calibrated value Real Synthetic value

p(a1) 0.298 0.3
p(a2) 0.484 0.5

RMSE of c1 and c2

Best solution´s fitness: 0.77
RMSE c1 300 data points 0.0645
 RMSE c2 300 data points 0.0243

Table 10. Number of iterations and time to reach
stopping condition of GA1 and GA2 for the

complex dynamics ABM1

Avg.  time  to  reach
stopping condition [s]

Avg. nr. of
iterations 

Avg.  time  per
iteration [s]

GA1 711.8 (489.7) 26.5 (19.0) 27.7 (1.5)

GA2-1 287.1 (141.4) 12.8 (7.4) 23.5 (2.5)

GA2-2 360.7 (159.3) 16.3 (6.8) 21.7 (1.7)

GA2-3 69.9 (38.2) 4.3 (3.0) 18.7 (5.9)

Note: Standard deviation in parentheses, N = 10

(a)

(b)

Figure 1. Real and calibrated time series of complex
ABM1: (a) c1 series (b) c2 series

It can be seen that stopping the calculation of
the fitness for “bad” solutions and eliminating
the similar solutions shorten the average time to
reach the stopping condition and decreases the
average number of iterations and average time
to  execute  iterations.  The  best  (smallest)  of
those  figures  correspond  to  experimental
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treatment  GA2-3,  which  combines  the  two
improvements. The results of the ANOVA show
that  those  differences  are  statistically
significant at least at the 0.01 level. Since this
ABM1 exhibits a rather complex dynamics, the
GA may find more  “bad” solutions than in a
simple dynamics ABM, and thus the immediate
stopping of the calculation of fitness for them is
helpful. Also, in this ABM1, the calculation of
the ABM1’s outputs is  more time-consuming,
and thus the stopping mechanism saves  more
time.  The  same  can  be  said  regarding  the
elimination  of  similar  solutions.  Each similar
solution  that  is  eliminated  saves  significant
computational  time  and  also  allows  GA2-1,
GA2-2 and GA2-3 to speed up convergence by
reducing the population size.

4.3 Calibration of a complex dynamics ABM2

For this experiment we used the same ABM1,
but changed some settings as shown in Table
11, and labeled it ABM2. The most important
change corresponds to the new values of p(a1)
and p(a2). As discussed in [22] and [23], those
new values produce a complex dynamics in the
outputs of the ABM2, which is characterized by
the strengthening of the concepts’ coefficients.

Table 11. Settings and outputs of the complex
dynamics ABM2

Parameter Description Value

nr_ver_concepts nr. of different versions of a concept 5

nr_agents nr. of agents that compose the group 30

c0 initial strength of the concepts 0.5

p(a1) probability of true agreement among
agents 0.8

p(a2) probability  of  illusory  agreement
among agents 0.3

Outputs of the ABM2

c1
50

c1
300

strength of version 1 of the concept
at t = 50 and 300

0.8133
0.9933

c2
50

c2
300

strength of version 2 of the concept
at t = 50 and 300

0.7700
1.0000

c3
50

c3
300

strength of version 3 of the concept
at t = 50 and 300

0.6867
0.9967

c4
50

c4
300

strength of version 4 of the concept
at t = 50 and 300

0.7733
1.0000

c5
50

c5
300

strength of version 5 of the concept
at t = 50 and 300

0.8133
0.9967

Table 12 shows the settings of GA1 and GA2
for calibrating this ABM2, which indicates that
there  are  two input  parameters  to  the  ABM2
that  the  GA must  adjust  p(a1) and  p(a2),  to
obtain the match of five output time series (c1

to c5).

We must note that in Table 12, the parameters
γL,  γU and  α were not set. That means that the
stopping  mechanism  for  the  calculation  of

fitness of “bad” solutions was disabled. We did
so given that in the process of determining the
settings for the parameters, we found that GA2
performance was very sensitive to the values of
γL and γU. A value of γL and γU around 100 and
120, allowed a good performance of GA2, but
slightly lower values, yielded a fitness for all
the solutions equal to 10-4, i.e. the mechanism
aborted  the  calculation  of  fitness  for  all  the
solutions. Because of that, GA2 was not able to
converge. On the other hand, and as expected,
higher values for  γL and  γU did not reduce the
time to reach convergence. Given that situation,
we preferred to disable the mechanism, so that
convergence  was  assured.  We  will  further
discuss this issue in the conclusions.

Table 12. Settings of GA1 and GA2 for calibrating
the complex dynamics ABM2

Settings of the GA1

Parameter Description Value

k nr. of time series of ABM and real system 2

yt
r time series of the real system:

see outputs c1 to c5 of ABM2 in Table 11
pop-size population size 100

pc cross-over probability 0.7

pm mutation probability 0.2

max-iter maximum nr. of iterations of the GA 50

stop-fitness fitness  that  when  reached  will  stop
iteration of the GA 0.197

Lp , Up

(the limits for
the  input
parameters
that  the  GA
must adjust)

lower  and  upper   limits  for  the  2  adjustable
parameters of  the ABM:
p(a1) : [0, 1] p(a2) : [0, 1]

Settings of the GA2: the same as those for GA1 and also:

β number of significant digits of values of
genes and fitness 2

γL, γU

lower/upper limit of maximum allowable
percentage difference between ABM and
real system time series

none

α discount factor to calculate γt  none

Table 13 presents the match between the real
synthetic  values  of  p(a1) and  p(a2)  and  the
ones calculated by the calibrated ABM2 using
GA1  and  GA2,  both  of  which  were  run  10
times. The corresponding RMSE show that the
match between the real synthetic and calibrated
time  series  is  good.  Note  that  since  many
random processes occur in the ABM2 and its
dynamics  is  complex,  even  having  an  exact
match  in  p(a1) and  p(a2) produces  different
outputs  of  the  ABM.  That  is  one  of  the
problems  with  the  modeling  of  CAS:  they
exhibit  non-deterministic  outputs,  as  already
explained in the introduction.
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Table 13. Results of the calibration of the complex
dynamics ABM2

Parameter Calibrated value Real  Synthetic value

p(a1) 0.8 0.8

p(a2) 0.3 0.3

RMSE of c1 and c2

Best solution´s fitness: 0.20

RMSE c1 300 data points 0.06869

 RMSE c2 300 data points 0.07288 

RMSE c3 300 data points 0.01231

RMSE c4 300 data points 0.04279

RMSE c5 300 data points 0.07443

Figure 2 shows the corresponding graphs of c1

through  c5,  both  for  the  real  synthetic  and
calibrated  time  series.  Visually  assessing  the
match of the time series and comparing them
with  their  corresponding  RMSE presented  in
Table  13,  we  can  see  that  the  best  match
corresponds to c3, and the fit of c4 is better than
those of  c1,  c2 and  c5. Most notably, all of the
time series achieve relational equivalence.

Table  14  shows  the  average  and  standard
deviation of the number of iterations and time
to reach the stopping condition. Those figures
were calculated only for GA1 and GA2-1 and
using  the  same  hardware  and  software
specifications as in the previous experiments.

Table 14. Number of iterations and time to reach
stopping condition of GA1 and GA2 for the

complex dynamics ABM2

Avg.  time  to  reach
stopping condition [s]

Avg. nr. of
iterations 

Avg.  time  per
iteration [s]

GA1 738.6 (171.0) 27.2 (6.5) 27.3 (0.58)

GA2-1 489.6 (238.9) 21.4 (11.1) 23.2 (1.67)

Note: Standard deviation in parentheses, N = 10

The  figures  in  Table  14  indicate  that  the
elimination  of  similar  solutions  significantly
shortens the average time to reach the stopping
condition (p-value of ANOVA = 0.015). On the
other  hand,  although  the  average  number  of
iterations is smaller for GA2-1 than for GA1,
that difference is not statistically significant (p-
value = 0.173).  However, the shorter  average
time  per  iteration  of  GA2-1  compared  with
GA1 is highly significant (p-value = 0.000). All
of that means that the shorter time of GA2-1 to
reach the stopping condition is mainly due to
the  decrease  in  time  per  iteration.  Since  the
elimination mechanism reduces the number of
solutions whose fitness must  be evaluated per
iteration of GA2-1 that accounts for the highly
significant  decrease  in  the  time  necessary  to
perform iterations.

(a) c1 series

(b) c2 series

(c) c3 series

(d) c4 series

(e) c5 series

Figure 2. Real and calibrated time series of
complex ABM2
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5. Conclusions

The  results  indicate  that  the  proposed  GA
delivers  solutions  that  achieve  a  sufficiently
good  match  between  the  ABMs’ outputs  and
systems’ time series (empirical and synthetic),
reaching  relational  equivalence.  Note  that  by
setting  the  parameters  that  control  the  two
mechanisms  of  GA2  designed  to  shorten
computational time (i.e. β, L, U and α) the
researcher  can  reach  a  balance  between
achieving  an  adequately  short  computational
time  and  good  relational  equivalence.  In
general,  a  low  β,  L,  U  and  high  α  will
accomplish a shorter computational time and a
relatively  worse  relational  equivalence  than
setting a high β, L, U and low α; and vice-
versa.  Furthermore,  the  GA  accomplishes
relational  equivalence  even  for  ABMs  that
exhibit  a relatively complex output dynamics.
Additionally,  the  GA is  able  to  calibrate  the
ABMs  using  a  few  data  points  of  the  input
values,  which  is  important  for  reducing  the
computational  time  of  the  process,  and  also
because in social science research, longitudinal
studies commonly use only two points in time
of the variables of interest. We must point out
that  the  GA  delivers  the  ten  best  fitness
solutions, although one could easily change the
code so that  the GA provides  more  than ten.
This allows the researcher and domain expert to
choose  the  solution  that  achieves  relational
equivalence  and  also  makes  sense  from  a
substantive point of view. Thus, the researcher
might select a solution that does not have the
best fitness, but that better suits the explanation
of the phenomenon under study.

The  results  also  demonstrate  that  the  two
refinements  made  to  the  original  GA help  in
reducing  the  computational  time  for  reaching
convergence of  the GA.  These improvements
are  especially  noticeable  for  ABMs  with  a
complex  dynamics.  However,  care  must  be
taken  when  setting  up  the  values  of  the
parameters that  control  the functioning of the
corresponding  mechanisms,  especially  in  the
case of L, U and α. If one establishes too
small values for L and U or too high a value
for α, that might hinder the GA’s convergence.
In this study, we established the parameters of
the  GAs  by  trial  and  error,  based  on  our
knowledge of  the dynamics  of  the ABMs,  so
that we could avoid that problem, particularly
in  the  more  complex  dynamics  ABMs.
However, ABMs that model CAS may present

too complex dynamics  to be able to correctly
set up those parameters.  Thus, in future work
we  will  refine  the  mechanism  that  stops  the
calculation  of  fitness  for  “bad”  solutions,  so
that t (see line 17 of the pseudo code of GA2
in  Table  2)  is  automatically  adjusted.  That
might be done by monitoring the fitness of all
the solutions and if all them decrease to a very
small value (10-4, see line 4 c.i. of the pseudo
code  presented  in  Table  2),  t  may  be
increased  until  the  fitness  of  solutions
augments and then simply keep that value of t
for the rest of the iterations of the GA2. That
will assure the convergence of GA2.

Another  improvement  to  GA2  may  involve
enhancing its stopping criteria. Presently, GA2
stops  iterating  when  a  maximum  number  of
iterations  is  reached  or  when  an  established
fitness  is  achieved (see  line  3  of  the  pseudo
code  in  Table  2).  However,  during  the
experiments  with  the  GAs  we  noticed  that
sometimes  the  fitness  of  the  best  solutions
remained unchanged during a large number of
iterations,  especially  for  complex  dynamics
ABMs.  Thus,  one  could  add  a  stopping
criterion that computes the difference in fitness
between the current iteration’s solutions and the
ones  of  a  user-specified  previous  iteration
(using a sliding window approach), and if that
difference is too negative or does not exceed a
certain threshold, then the GA2 stops iterating.
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