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1. Introduction 

This paper deals with the train scheduling 

networks problems. It consists in finding the 

arrival and the departure times of the lines at 

certain stages of the network. Depending on 

required objectives, these stages can be referred 

to public station and/or switches. 

Since 1871s, and more precisely since the first 

train schedule conference in Germany, train 

scheduling problems have been widely studied 

[1] and several mathematical models have been 

proposed ([2]-[3]-[4]-[5]-[6]-[7]). 

This category of scheduling problems can be 

shared into two classes: 

1st Class: Static or Predictive problem 

It consists firstly on allocating resources (i.e. 

tracks and stations) to all trains in all routes. 

Then, the train sequencing entrains the pre-

specification of the arrival and departure order 

of trains at stations. Finally, a time-table is then 

resulted. This class aims on the minimization of 

the makespan or the cycle time or on the 

maximization of the traffic frequency [8]-[9]-

[10]. In [9], Harrod propose a directed 

hypergraph formulation for a rail network, in 

the aim to schedule train paths when the 

railway network is busy. 

Harrod model is used to solve the problem of 

train sequencing constraints. Moreover, a 

heuristic approach is then derived for the same 

problem [9].  

Besides, a heuristic approach is proposed by 

Kraay and Harker to find line dispatching (i.e. 

arrival and departure times for each train) and 

to define a monthly strategic schedule [10]. 

Nevertheless, these approaches are not able     

to solve the problem when an expected      

event happens. 

2nd Class: Dynamic or Reactive problem 

It involves when the train planned schedule 

cannot be respected due to a disturbance 

handling activity. In this case, a new timetable 

should be found while all the problem 

constraints are respected. Generally, the 

objective function consists on the minimization 

of train delays [11]-[12]-[13]. 

Dorfman and Medanic propose a discrete event 

model to solve their strategy (called feedback-

based travel advance strategy). Moreover, they 

suggest some extensions of their strategy for 

more complex configurations (e.g. double-track 

sections, trains with variable characteristics and 

priorities) [11]. Narayanaswami and Rangaraj 

develop a mixed integer linear programming 

model to find a solution based on their strategy 

of controlling disjunctive constraints (of tracks 

allocation) [12]. Whereas, Budai et al. [13] use 

a timetable planning schedule as an input and 

apply a control strategy to minimize the delay. 

In this control strategy, trains movement 

sequence order is not challenged.  

The focus of our paper is to present a new model 

which can be useful for the two problem classes 

Optimization of a Train Traffic Management Problem 

under Uncertainties and Disruptions 

Adnen EL AMRAOUI1, Khaled MESGHOUNI2 
1  Université d’Orléans, Laboratoire PRISME, 

63 Avenue de Lattre de Tassigny, 18020 Bourges, France, 

adnen.el-amraoui@univ-orleans.fr 

2  Ecole Centrale de Lille (EC-Lille), Cité Scientifique - CS 20048, 

59651 Villeneuve d'Ascq Cedex, France, 

khaled.mesghouni@ec-lille.fr 

Abstract: In this paper, we consider a train traffic management problem. Our aim is to find an optimal schedule for a train 

traffic network where time duration uncertainties are considered. This problem was intensively studied with mixed integer 

linear models where trains moving duration are deterministic. In this paper, a new formulation of the problem as a 

classical one with scenario-based stochastic programming taking expected values as objective functions is presented. 

Then, new criterion is proposed to quantify scheduling robustness in the face of uncertainty. Besides, a novel control 

policy is elaborated to find quickly, a feasible train schedule when disruption or unexpected event occurs during 

scheduling execution. 

Keywords: Train Traffic Management, Scheduling, Control Strategy, Uncertainties, Disruptions. 



 

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 4, December 2014 314 

simultaneously. Furthermore, the originality’s of 

our approach consist on the following: 

- Due to train travelling duration’s 

uncertainties, a handling scenarios 

approach is presented. Moreover, 

additional criterion is considered to find the 

most robust schedule. 

- In order to remove a disruption, if any, a 

new control policy is proposed. This policy 

aims to control train speed and train 

waiting time on stations. 

Most previous models are handling either 

predictive train scheduling problem ([6]-[7]-

[8]-[9]-[10]) or reactive one ([11]-[12]-[13]).  

If unexpected event happens, a first schedule 

solution can be determined using the first problem 

class models. This can be reached by instantiating 

known decision variables. Nevertheless, this 

solution is very simple and cannot, at any way, 

guarantee the solution performance.  

Besides, weather conditions can require on 

trains to reduce their speeds on some tracks. In 

fact, a wheels sliding or a wheels skating can 

happen due to the snow or to the tree leaves on 

the rail in autumn generally. So, this could lead 

to several perturbations in arrival and departure 

times of the timetabling passenger trains. This 

problem has become recurrent in Europe at the 

approach of winter holidays and Christmas 

while a large number of people take the train to 

travel; which make rail transport less 

competitive compared to other means of travel 

(air and ground transportation). 

Following to these introductory remarks, 

Section 2 is devoted to the problem statement. 

Section 3 discusses the mathematical problem 

modelling. The problem resolving methodology 

and the new control policy are presented in 

Section 4 and 5, respectively. 

2. Problem Description 

In this study, we consider the single track, bi-

directional railway traffic. Trains have to travel 

in two directions: from right to left (RtoL) and 

from left to right (LtoR) (called also nominal 

direction [9]). Each left to right direction train is 

travelling, as soon as possible from the starting 

station (station 1), then it is visiting successively 

m-1 stations, numbered from 1 to m-1, before 

arriving to the end station (station m). While 

each right to left direction train has to start by 

the end station, and then it is visiting the 

stations: m-1, m-2… and 2 successively, before 

reaching the starting station. We call single track 

(or segment) the slice of the line confined 

between any two stations. In general, on each 

train station several tracks (called block) are 

available to allow overtakes and crossings. 

One of the main specificities of such system is 

that the average train travelling durations 

values are known and any delay can make a 

network disruption. Moreover, tracks are the 

most critical resource of such lines. Besides, 

there are no multiple-tracks between stations 

and each station can receive more than one 

train at the same time. 

Figure 1 shows an example of a line layout with 

single track and bi-directional train movements. 

 

Figure 1. Example of a single track, 

bidirectional railway. 

This problem can be considered as a job-shop 

scheduling problem with very specific 

constraints, where each segment is considered 

as a machine and each train as a job. 

The constraints we consider here are the 

following ones: 

- (C1) Each track can receive simultaneously 

either RtoL trains or LtoR trains. 

- (C2) In each station, trains must remain at 

least a lower duration and at most an upper 

duration. These durations can vary from 

one station to another due to station 

passengers’ frequency. 

- (C3) Between two successive trains 

moving on the same direction, a minimum 

safety time duration is required. 

- (C4) In each meeting station, minimum 

meeting time duration has to be ensured 

between the arrival and the departure of 

trains moving in different direction. 

Definitely, passages have to be allowed to 

change from one train to another. 

The studied problem requires two distinct but 

dependent decisions to be made: (1) scheduling 

decision-sequence, in which trains have to 

move (priority to move), and (2) station waiting 

decision (real waiting time on stations). The 

strong dependence between these two decisions 
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makes the problem very hard to model and then 

to solve. Yet, getting motivated by previous 

researches using mixed integer linear 

programming methods, we elaborate a new 

model; which can solve this train scheduling 

problem to optimality. In this programming 

model, we are looking for optimizing the 

simultaneous travelling durations of several 

trains moving in different directions through a 

single line. Besides, it can be also useful to find 

a solution quickly, when a disturbance occurs. 

In general, the problem solution is presented 

using graphic timetable as shown in Figure 2. 

 

Figure 2. Graphic timetable. 

This figure illustrates an example of a single 

track line layout with three stations and three 

trains (two moving from left to right: Train 1 

and Train 2; and one from right to left: Train 

3). Slash lines represent the train moves, while 

horizontal lines show the waiting times on 

stations. In this example, only one train 

meeting is carried out on station 2 between 

train 3 and train 2. After the passage of the train 

1, train 3 reaches station 2, wait there until the 

track 1 becomes available and the minimum 

meeting time takes in. Then, it leaves station 2 

to station 1. While train 2 spends the lower 

bound of its required waiting time on station 2 

and go to station 3. 

In the following section, we propose to 

describe the problem and formulate it as a 

mixed integer linear programming model. 

3. Problem Modelling 

A definition of notations used in this paper is 

necessary in order to describe the elaborated 

model. So, let’s define the following 

parameters and variables: 

3.1 Parameters 

1. n - Total number of trains. 

2. n1 - Trains that move in the LtoR direction. 

3. n2 - Trains that move in the RtoL direction. 

4. m - Total number of stations. 

NOTE 1: 

-  Stations are indexed from 1 to m. 

-  To simplify the following notation, we 

denote by i  a train moving in LtoR direction 

and by i a train moving in RtoL direction. 

5. k

i

k

i

Uptd

Lwtd
 

The upper and lower bounds 

travelling time of a LtoR train 

i to run through the track 

between the stations k and 

k+1.  

6. k

i

k

i

Uptd

Lwtd
 

The upper and lower bounds 

travelling time of a RtoL train 

i to run through the track 

between the stations k and k-

1.  

7. k

i

k

i

Upwt

Lwwt
 

The upper and lower bounds 

waiting time of LtoR train i 

on station k. 

8. k

i

k

i

Upwt

Lwwt
 

The upper and lower bounds 

waiting duration of RtoL train 

i on station k. 

9. 
,

,

k

i j

k

i j

Sfte

Sfte
 

The safety time durations 

between the arrival of two 

trains (i and j) of the same 

direction to station k: 

,

k k k

i j i j
Sfte e e  ; 

,

k k k

i j i j
Sfte e e   

10. 
,

,

k

i j

k

i j

Sfts

Sfts
 

The safety time durations 

between the departure of two 

trains (i and j) of the same 

direction from station k: 

,

k k k

i j i j
Sfts s s  ; 

,

k k k

i j i j
Sfts s s   

11. 
,

,

k

i j

k

i j

Mmt

Mmt
 

The minimum durations for 

the meeting of two trains (i 

and j), moving on the same 

direction, on station k. 

12. 
,

,

k

i j

k

i j

Mmt

Mmt
 

The minimum durations for 

the meeting of two trains (i 

and j), moving on different 

directions, on station k. 

13. M  Very big number (+∞). 

14. k

i

k

i

Dd

Dd
 

Date when a disturbance 

occurs in the network for train i 

on or after visiting station k-1. 

15. ,k k

i i
   Disturbance duration.  
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3.2 Decision variables 

16. k

i
Rtd

k

i
Rtd  

Real travelling time of a LtoR 

and a RtoL train i from station k 

to the following one.  

17. k

i
Rwt

k

i
Rwt  

Real waiting time of a LtoR and 

a RtoL train i on station k. 

18. k

i
s  Start moving time of a train i 

from station k to station k+1. 

19. k

i
s  Start moving time of a train i 

from station k to station k-1. 

20. k

i
e  End moving time of a train i 

from station k to station k+1. 

21. k

i
e  End moving time of a train i 

from station k to station k-1. 

22. k

i
Tgs  

k

i
Tgs  

Term gain speed from station k-

1. 

23. k

i
Tgw  

k

i
Tgw  

Term gain waiting on station k. 

24. 
,

k

i j
S  1    if (  < ) 

0   otherwise

k k

i j
s s

 


 

25. 
,

k

i j
E  1    if (  < ) 

0   otherwise

k k

i j
e e

 


 

26. 
,

k

i j
S  1    if (  < ) 

0   otherwise

k k

i j
s s

 


 

27. 
,

k

i j
E  1    if (  < ) 

0   otherwise

k k

i j
e e

 


 

28. 
,

k

i j
S  1    if (  < ) 

0   otherwise

k k

i j
s s

 


 

29. 
,

k

i j
E  1    if (  < ) 

0   otherwise

k k

i j
e e

 


 

NOTE 2:  

- We assume that trains travel on a single track 

line layout in bi-directional movements. In 

addition, all trains have to pass through all 

stations. Moreover, re-routing is not allowed 

and safeties as well as lower time durations 

have to be respected. 

-  It is important to mention that the 

following mathematical formulation is a 

train movement’s model: where decision 

variables define the starting dates of all the 

train moves from each station k and their 

end dates ( 1, ,k k k

i j i
s s e  and 1k

j
e  ). 

3.3 Formulation 

1

1 1

1 2

:   =  + 

 :1 ,  :1   :1

2n n
m 1

max i j
i j

Minimize C e e

k m i n and j n

 

   

 
 (1) 

1k k k

i i i
s Rtd e    (2) 

1k k k

j j j
s Rtd e    (3) 

k k k

i i i
Lwtd Rtd Uptd   (4) 

k k k

j j j
Lwtd Rtd Uptd   (5) 

k k k

i i i
e Rwt s   (6) 

k k k

i i i
Lwwt Rwt Upwt   (7) 

k k k

j j j
Lwwt Rwt Upwt   (8) 

, ,
.k k k k

j i j i i j
s Sfts s S M    (9) 

, ,
(1 ).k k k k

i i j j i j
s Sfts s S M     (10) 

, ,
.k k k k

j i j i i j
e Sfte e E M    (11) 

, ,
(1 ).k k k k

i i j j i j
e Sfte e E M     (12) 

, ,
.k k k k

j i j i i j
s Sfts s S M    (13) 

, ,
(1 ).k k k k

i i j j i j
s Sfts s S M     (14) 

1

, ,
.k k k k

j i j i i j
e Sfte e E M    (15) 

1

, ,
(1 ).k k k k

i i j j i j
e Sfte e E M     (16) 

, ,
.k k k k

j i j i i j
s Mmt e S M    (17) 

, ,
(1 ).k k k k

i i j j i j
e Mmt s S M     (18) 

, ,
.k k k k

j i j i i j
e Mmt s E M    (19) 

, ,
(1 ).k k k k

i i j j i j
s Mmt e E M     (20) 

, ,

k k

i j i j
S E  (21) 

, ,

k k

i j i j
S E  (22) 

, ,

k k

i j i j
S E  (23) 
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m m

i i
e s  (24) 

1 1

j j
s e  (25) 


, , , , , ,

; ; ; ; ; 0,1k k k k k k

i j i j i j i j i j i j
S E S E S E  (26) 

In this model, the objective function (1) 

consists in minimizing the makespan Cmax. This 

variable, as given here, can be defined as the 

total time needed for all the trains to reach their 

terminals. Constraints (2)-(3) guarantee the fact 

that: before arriving to the destination station 

each train has to spend its required travelling 

time (i.e. the most frequent duration). This 

duration must be confined within lower and 

upper bounds as traduced by constraints (4)-(5). 

Constraint (6) defines the stations waiting dates 

that must be respected. These durations have to 

be bounded, as defined by constraints (7)-(8). 

Before starting to move, each train must be sure 

that the minimum safety time duration between 

him and the previous one on the same track is 

maintained. This statement is translated by 

constraints (9)-(12) for LtoR trains and by 

constraints (13)-(16) for RtoL trains. While 

constraints (17)-(20) are used to ensure the 

minimum required time duration at a station 

between the arrival and the departure of two 

trains moving in different directions. 

Constraints (21)-(23) define the precedence 

rule: if a train i leaves first a station k, it must 

reach first the destination station (i.e. before 

train i+1). Consistency constraints are given by 

(24) and (25), while binary decision variables 

are defined by (26). 

NOTE 3: Unlike all previous mixed integer 

linear programming models dealing with train 

scheduling problem [3]-[5]-[6]-[10]-[11]-[12], 

this optimizing model highlights several 

flexibilities of the considered problem. Eqs. (4), 

(5), (7) and (8) are called Time Windows (TW) 

constraints and traduce these flexibilities. 

3.4 Model resolving 

To solve this Mixed Integer Linear 

Programming (MILP) model, a commercial 

software solver, Cplex of IBM, is used and a 

branch-and-bound procedure, implemented on 

it, is applied to explore the train schedules.  

This procedure is elaborated here with a 

simplified arbitration strategy which considers 

disjunctions according to the track plane of 

figure 1 and which gives priority to the train 

first starting move. The illustration of the 

search tree is presented in Figure 3.  

 

Figure 3. Illustration of the constraint 

propagation mechanism. 

Besides, in order to limit the number of nodes, 

the evaluation phase is supposed to use a 

constraint propagation mechanism. Thereby, for 

each train station k, two nodes are considered. 

Each one corresponds to the arbitration of one of 

the disjunctions (i.e. order of arrival and 

departure for each pair of train (i, j)). That is to 

say, disjunctive constraints constitute the 

branches of the tree, while the potential 

schedules are defined by the tree leafs. 

Then, for each leaf of the search tree and when 

all the disjunctive constraints are considered, 

the binary variables are instantiated and the 

MILP model is launched (Eqs. (1)-(26)). If it 

has a solution, the considered schedule is 

feasible and unfeasible otherwise. 

Finally, the best feasible solution is returned as 

the optimal solution of the problem.  

3.5 Complexity 

The complexity of this problem is related to the 

number of trains, directions and stations (or / 

and tracks).  

For this proposed scheduling model, there are 

1 2 1 2 1 2(27 4 4 )m n n n n n n     constraints. 
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Besides, there are four types of decisions 

variables: a total of 1 24 ( ) 1m n n   integer 

variables and 1 26mn n  binary variables to find. 

3.6 Formulation limits 

This model can be used in general to find a 

timetabling for a single track line layout, with 

bi-directional train movements problem. 

Nevertheless, due to some unexpected events, 

train traffic can be disturbed. Consequently, a 

new, quick and robust schedule solution should 

be found. 

For this aim, we propose: firstly, a new solving 

methodology for the problem on hand, using 

metrics that takes into account the scheduling 

characteristics under train transportation time 

uncertainty and we illustrate it by an example. 

Secondly, an evolution of the previous model is 

performed to make it able to find efficient 

schedule solution, when an unforeseen event 

happens. This aim can be achieved by applying 

a new control policy based on: speed train 

control and train waiting time control. These 

studies will be presented consecutively, in the 

following sections. 

4. Problem Resolving Methodology 

Getting motivated by such transportation 

scheduling problems and previous robustness 

studies in optimization literature and more 

precisely in job-shop scheduling problems [13]-

[14], a scenario based stochastic problems 

methodology is proposed in this section to 

define the fastest and the most robust schedule. 

The performance of the schedule can be 

evaluated in terms of the makespan required 

while random transportation durations are 

satisfied. In this proposed methodology, train 

travelling durations are assumed to vary by P% 

about their nominal values. Realistically, this 

probability may be calculated for each line 

track and each period of the year, on the basis 

of the historic of railways transportation 

companies (i.e. SNCF in France). Then, for 

each one of the S considered case studies, the 

MILP model is launched to find the optimal 

solution (Cmax,s) which has a probability of ps to 

take place. Afterward and when all these 

scenarios are simulated, the sought schedule 

can be found by applying the procedure of 

Algorithm 1. 

Algorithm 1 Sought Schedule 

 1: maxC ← integer vector <Cmax,1, …, Cmax,s> 

  
 

►Obtained by the MILP model 

 2: p ← probability vector <p1, …, ps> 

  
 

►pi is the probability of scenario i 

 3: for s from 1 to S do 

 4:  max,.s s s

s

Z p C  (27)  

   ►S is the total of generated scenarios 

 5: return sZ  

Furthermore, the deal consists on finding the 

most robust schedule. This robustness, as 

defined for same problems, measures the 

resilience of the schedule objective to vary 

under uncertain parameters and disruptive 

events. Moreover, as explained previously, the 

weather can have a big impact on the train time 

travelling durations and consequently on the 

disturbance network. Thus, in order to 

determine the more resilient schedule, the 

standard deviation is proposed here as a metric 

for robustness evaluation. 

Therefore, the most robust schedule can be 

found using the procedure of Algorithm 2. 

Algorithm 2 Robust Schedule 

 1: maxC ← integer vector <Cmax,1, …, Cmax,s> 

  
 

►obtained by the LP Model 

 2: p ← probability vector <p1, …, ps> 

  
 

►pi is the probability of each scenario 

 3: for s from 1 to S do 

 4:  max,.s s s

s S

Z p C


   

(28)  

      
2 2

max, max,. .s s s s

s S s S

p C p C
 

   

 5: return sZ  

The proposed resolution methodology is very 

helpful for the decision maker to find the best 

schedule. In other word, it can help him to find 

the most probably solution with the fastest 

completion time, where time durations 

uncertainties are considered. Moreover, the 

solution stability is also evaluated using a new 

metric (see Eq. (28)) in order to help the 

decision maker to choose the more flexible 

schedule (e.g. which can be affected less than 

the others by any disturbance). 
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To illustrate this new resolution methodology, 

an illustrative example is proposed in the 

following subsection. 

4.1 Illustrative example 

In this example three trains have to travel on a 

line with 4 stations including the starting and 

the ending stations. Train 1 and 2 travel on 

LtoR direction, while train 3 travels on RtoL 

direction. The travelling time durations are 

assumed to vary from 0% to 25% about their 

nominal values. These distributions are given in 

Table 1. 

Table 1. Travelling time distribution 

Train Track 
Nom. 

Value 

Real 

Value 

1  

1 45 Rand(NV;1.25NV) 

2 28 Rand(NV;1.25NV) 

3 50 Rand(NV;1.25NV) 

2  

1 47 Rand(NV;1.25NV) 

2 27 Rand(NV;1.25NV) 

3 49 Rand(NV;1.25NV) 

3  

1 45 Rand(NV;1.25NV) 

2 26 Rand(NV;1.25NV) 

3 40 Rand(NV;1.25NV) 

NV: Nominal Value (Nom. Value) 

Rand (): Randomly generated value. 

The parameter Probability in this table could 

define the frequency of spending these time 

durations over a period of time. This 

probability can vary from one season to another 

due to weather conditions for example. The 

total number of considered scenarios is 96. And 

the remaining problem parameters used for 

simulations are given as follows:  

5k

i
Lwwt  ; 

,
1k

i j
Sfte  ; 

,
2k

i j
Sfts  ; 

,
3k

i j
Mmt  . 

Applying the proposed MILP model and the 

Algorithm 1 procedure to these data example, 

several makespans are obtained. These 

makespans values are varying from 428 to 453 

t.u. with various probabilities of occurrence, as 

reported in Figure 4. 

According to this histogram, it is easy to notice 

that the most expected values of the makespan 

is 445 t.u. which is defined in literature as the 

deterministic value of the makespan [13]. In 

other words, it determines the most likely 

schedule to be followed, where probabilistic 

travelling time durations are considered. 

Then, in the aim to quantify robustness, the 

standard deviation metric is used in this 

example by applying the procedure of the 

Algorithm 2. The simulation results of Figure 5 

show that the most robust schedule is for the 

makespan of 446 t.u. 

 

Figure 4. Probability of scenarios expected 

makespans. 

It is clear that under these conditions, the most 

frequent and fastest schedule is corresponding 

to the makespan of 445 t.u. Nevertheless, it is 

not the more robust one (see Figure 5). 

 

Figure 5. Probability of scenarios expected 

makespans plus standard deviation. 

In this case study, the decision maker has to 

choose between these schedules: the most 

frequent schedule with a fast completion time 

and the most robust one. Nevertheless, this 

choice is not always easy to do, as it seems in 

this example. Hence, a tradeoff between these 

two criteria (fast completion and robustness 

and/or reliability) has to be held. 

Graphic timetable of the makespans 445 t.u. 

and 446 t.u. are reported on Figure 6-(a) and 6-

(b), respectively.  

Moreover, we use direct graph models to 

characterize the difference between slight and 

heavy robustness (see figure 6-(c)). 

In this figure, we model priority moving 

constraints; and as we can see, schedule 1 presents 

more precedence constraints than schedule 2. In 

fact, in schedule 2, train 1 leaves station 3 before 

the arrival of train 2. Moreover, the safety time 

duration for the starting move of train 2 is achieved 

before it arrives to the departure station which 

makes it free to move at any time. Thus, schedule 
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1 is a slight robust schedule whereas schedule 2 is 

a heavy robust one. 

After making his choice, the decision maker has 

to apply the selected train timetable schedule. 

Despite of the high level of solution robustness, 

disruptions can happen and can affect very badly 

the train traffic network. For this aim, a control 

policy for railway traffic management is 

proposed in the following section. 

5. Control Policy 

Such as several previous approaches [3]-[4]-

[6]-[8]-[9]-[10], the MILP model of sections 3 

is incapable to face disruptive events when 

there is a perturbation on the train network. 

Thus, to make it able to find new feasible and 

performing schedules, if conflicts occur due to 

one or several delays, several new constraints 

are added to solve these inconsistencies. 

Two alternatives of control policy can be 

applied to find quickly a good solution: 

1st alternative of control policy 

It consists on the propagation of the delay on 

all the over train travelling dates. For example, 

if a disturbance k

i
  happens at Dd  for a train i. 

All the transportation movements scheduled 

before Dd are not altered. Despite the others, 

they have to be delayed by k

i
 . 

This solution can be applied but the optimality 

is not guaranteed. Moreover, the propagation of 

the delay can have a snowball effect. Therefore, 

the train delays and the refund fees of railway 

companies will increase drastically. 

2nd alternative of control policy 

It consists on updating all the starting move 

dates of all the trains. To apply this policy, a 

train speed control and a train waiting time 

control strategies are applied. These strategies 

can be traduced in our MILP model by the 

following constraints: 

1    k k k k k

i i i i i
s Rtd Tgs e  (29) 

k k

i i
Lwtd Tgs

 (30) 
k k

i i
Tgs Uptd

 (31) 

1   k k k k

j j j j
s Rtd Tgs e  (32) 

k k

j j
Lwtd Tgs  (33) 

k k

j j
Tgs Uptd  (34) 

  k k k k

i i i i
e Rwt Tgw s  (35) 

k k

i i
Tgw Upwt  (36) 

k k

i i
Lwwt Tgw  (37) 

NOTE 4: We denote by x  the new decision 

variable value of x  when a regulation is 

performed after a disturbance. In other words 

x  is the new value of x after a new schedule. 

Constraints (29), (32) and (35) have to be used 

instead of constraints (2), (3) and (6). And new 

time windows constraints ((30), (31), (33), (34), 

(36) and (37)) have to be added. 

Let’s detail and analysis these new constraints. 

We assume that a disruption happens when a 

LtoR train i leaves a station k-1, then the arrival 

date of this train at station k will be equal to:  
1   k k k k

i i i i
s Rtd e  in spite of equality (2). 

Moreover, due to ground topology and thanks 

to train technology evolution, a first control 

strategy can be applied. In fact, each train can 

increase its speed on some segments of its 

course. Generally, this speed is not 

deterministic but confined on a speed interval: 

limited by lower and upper bounds. So, using 

 

Figure 6. Graphic timetable and robustness analysis 
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this problem specificity, we introduce a new 

parameter called term gain speed ( k

i
Tgs ) to 

determine the gain that it can be reached when 

the train speeds are well controlled. 

Consequently, equalities (29) and (32) have to 

be used instead of constraints (2) and (3). 

Besides, train speed limits have to be respected. 

For this aim, we introduce the new constraints 

(30) and (33). 

The second control strategy proposed in our 

MILP model is the waiting time control 

technique. In fact, for this class of scheduling 

problem, a waiting time is defined on each train 

station. This time duration can be decreased, to 

absorb the time disruption, provided that a 

minimum waiting duration on each station is 

respected. These statements are traduced by 

constraints (35), (36) and (37). 

To illustrate the effectiveness of the control 

policy, the following example is proposed and 

several disruption cases are presented. 

5.1 Illustrative example 

Similarly to the illustrative example of section 

3, let’s consider the same track configuration 

(with 4 stations) and let’s consider that two 

trains are moving in LtoR direction while a 

third one is moving on RtoL direction.  

The travelling time durations are assumed to be 

equal to the nominal value, as given by table 1. 

Further, the following data: time windows and 

parameters values; have to be defined 

according to the defined control strategy.   

- Time windows values: 

10 15k

i
Rtd  ; 5 15k

i
Rwt  ; 0 2k

i
Tgs  ; 

15 20k

j
Rtd  ; 5 15k

j
Rwt  ; 0 2k

j
Tgs  . 

0 3k

i
Tgw  ; 0 3k

j
Tgw  . 

- Parameters values: 

,
1k

i j
Sfte  ; 

,
2k

i j
Sfts  ; 

,
3k

i j
Mmt  ; 

,
1k

i j
Sfte  ; 

,
2k

i j
Sfts  ; 

,
3k

i j
Mmt  . 

Let’s analyze the following cases study: 

5.2 Case 1. No disturbance.  

Using the elaborated linear programming 

model, while disruption and gains are omitted, 

the optimal solution is obtained for a Cmax of 

147 t.u. as reported on figure 7-(a). 

5.3 Case 2. A disturbance of 5 t.u. for train 3 

at time Dd=10.  

Thanks to the speed and waiting time control 

strategies, the optimal solution remains the 

same (see figure 7-(b)).  

In fact, thanks to the defined train gain speed 

time window ( 0 2k

j
Tgs  ), we can win 2 t.u. 

and then, we reduce the delay to 3 t.u. only. 

Moreover, the train gain waiting window 

( 0 3k

j
Tgw  ) allows us to absorb the 3 t.u. 

remaining of the delay.   

5.4 Case 3. Moreover the departure of train 

2 is delayed to 25.  

As illustrated on figure 7-(c), by applying our 

control strategy we find a schedule where only 

the train 3 (train where disturbance has 

occurred) was delayed. 

However, it is very important to notice that we 

gain about 2,3% on the Cmax , which cannot be 

neglected, compared to the solution where 

control strategies are not applied. 

In conclusion, on these cases study, we 

illustrate by a scholar example the effectiveness 

of the proposed control policy to find a 

performing schedule solution when an expected 

event happens. 

 

Figure 7. Graphic timetable when the control policy is applied. 
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6. Conclusion 

In the aim to optimize a train traffic scheduling 

problem under time travelling uncertainty, we 

proposed a scenario based stochastic problems 

methodology to solve the problem. Moreover 

we defined new objective function criteria to 

quantify the schedule robustness. Besides, we 

extended the proposed Mixed Integer Linear 

Programming model to solve the problem on 

hand where unexpected event happens. For this 

aim, we developed a control policy based on 

train speed and waiting time control strategies.  

The proposed control policy shows its 

efficiency on terms of solution quality (e.g. 

total delay and number of delayed trains). 

For future work, we propose to extend the 

elaborated control policy model, to more 

complex lines’ configurations (e.g. double-

track sections, trains with variable 

characteristics and priorities). 
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