
Studies in Informatics and Control, Vol. 23, No. 4, December 2014 http://www.sic.ici.ro 341

1. Introduction

The design of modern embedded measurement

and control systems is moving towards hybrid

solutions [1]. They typically involve two main

modules: i) a fast acquisition/execution or

measurement and control module, the name

depending on the application field, and ii) a

master module comprising user interfaces,

logging subsystem, and external data exchange

links. The former module is connected directly

to the controlled or monitored system (plant),

measures signals from sensors and feeds

signals to actuators. The latter gathers process

data, performs its registration, interacts with the

user and interfaces with other devices. The

control algorithm may be implemented,

depending on the adopted methodology, either

in the measurement and control module or in

the master module. It may be also distributed

between them with time-critical direct control

realised by measurement and control device

and computationally intensive supervisory

control delegated to the master module, as it

usually runs on a more powerful processor [2].

This study proposes an acquisition/execution

module based on a 32-bit microcontroller (e.g.

with an ARM/Cortex-M core) to handle

analogue to digital converters, binary inputs,

outputs, PWM generators, and DAC

converters. This module could also perform

filtering, parameter estimation, or control tasks.

The solution ensures short and stable response

times in the order of 1–100 s [3].

A commercial off-the-shelf (COTS) device,

such as a PDA, a tablet or a smartphone is

proposed in the literature for the module [1],

[4–8]. CTOS devices are typically equipped

with data exchange interfaces, such as Wi-Fi,

Ethernet, Bluetooth, GSM/EDGE/LTE and

interact with a user via a touch-sensitive GUI.

A discussion supporting the use of COTS

hardware can be found in [5] while a review of

designing methodologies is presented in [6].

Software/hardware COTS solutions are even

proposed for the demanding military [7] and

marine [8] applications.

However, a COTS device, typically a closed

hardware solution, imposes a serious difficulty

in using RS232 and SPI interfaces often

necessary to integrate with sensors or other

automation equipment. For this reason a

Universal Serial Bus (USB) interface is

proposed to link the acquisition/execution and

the master modules [1,3].

Rapid prototyping environments, such as

MATLAB™ or LabVIEW™, are suggested at

subsequent steps of the development of the

acquisition/execution module (prototyping,

testing and validation of application

algorithms). Both environments provide

extensive sets of functionalities, including

signal processing, identification, and control

synthesis packages. They also have versatile

capabilities in graphical data presentation,

which is an important advantage at the testing

stage [9]. Both tools can also be used for

measurement results recording.

Evaluation and Optimisation of Communication

Performance in a Hybrid Measurement and

Control System

Jacek AUGUSTYN, Andrzej TUTAJ

AGH University of Science and Technology,

al. A. Mickiewicza 30, 30-059 Krakow, Poland,

jag@agh.edu.pl; tutaj@agh.edu.pl

Abstract: In a modern hybrid measurement and control system a high-speed data acquisition/execution module

communicates with a master management and control unit. A typical solution may involve a System on Chip (SoC)

device, like ARM Cortex-M core based microcontroller, linked via USB bus with a Commercial Off-The-Shelf (COTS)

appliance, such as a tablet, a smartphone, or a PDA. During prototyping stage the COTS is usually temporarily substituted

with a PC computer running a rapid prototyping tool such as MATLAB. The paper presents software design

considerations and discusses the results of extensive experiments conducted in order to assess if such a prototyping

configuration is able to provide a kind of real-time communication performance comparable to that expected in the target

system. An optimisation technique is proposed that considerably improves statistics of throughput, round trip time and

packet exchanged frequency and that utilises standard operating system software components.

Keywords: soft real-time, embedded system, microcontroller, USB interface, MATLAB

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 4, December 2014 342

A question arises whether the Matlab

environment is able to ensure the kind of

real-time performance and provide data

throughput between the acquisition/execution

and master modules, similar to that expected in

the target solution. Such compatibility between

the performance levels at the development and

production stages is necessary for the

portability reason. Details of the connection

performance in target solutions implemented

with native language can be found in [10], [1],

where a throughput in the range of 600–700

kB/s has been obtained. The use of interpreted

scripted languages (e.g. Matlab) at the

prototyping stage means that properties thus

obtained may differ from these based on a

native compiled code.

As the USB communication involves some

device drivers, one can expect that the best

results can be achieved with dedicated custom

ones. However implementation of such drivers

is a very difficult and time-consuming task that

requires profound knowledge of the operating

system. Therefore, the reasonable solution is to

use standard components and bundled hardware

drivers and to optimise their performance.

The literature presents a wide range of

applications of microcontrollers

communicating with master computers, used in

measurement and control systems. Typically

these are 8-bit designs using USB-UART

converters [11]. However, these full-speed

class converters provide lower throughput than

potentially achievable from a USB bus, such as

3 Mbit/s in the cases of [12], which is a limiting

factor on the solution. In a detailed study of the

properties of a direct USB connection between

a PIC 18Fx550 microcontroller and a PC

computer various software variants yield

throughputs in the order of 32 kB/s [13]. An

analysis of USB induced delays of various

transaction types shows results in the order of

30–50 ms [14]. Descriptions of solutions based

on an ARM core with external USB-UART

converters can be found in [15]. A data logging

application presented in these articles achieve

sampling frequency of 14 kHz for 16-bit data

samples, that is not very high result either.

Other researchers propose a solution involving

implementation of a programme in VB.NET

language and subsequent exporting of recorded

sensor data into Matlab [16].

The objective of this study is to implement a

USB connection using Matlab rapid

prototyping tool and standard USB components

available in the operating system and to test

real-time performance and data throughput

properties of such a solution. Another

important contribution of the paper is a

proposition of an optimisation technique

substantially improving the performance of the

USB connection. The optimisation aim is to

achieve with a rapid prototyping configuration

the performance close to this required in a

target production system, despite the fact that

Matlab uses M-file scripts while a production

system is usually coded in C/C++ language.

The paper presents experimental results

concerning closed loop time delay and data

throughput achievable for communication

between the acquisition/execution module and

the Matlab environment. Tests have been

conducted using hardware based on 32-bit

ARM/Cortex-M microcontroller. Efficiency of

the proposed optimisation is demonstrated.

Results of statistical analyses are presented for

various data exchange parameters.

The article is organised as follows. Section 2

presents the proposed structure of the data

exchange test system implemented by the

authors. Results of extensive experiments

conducted for different configurations of the

system are gathered, compared and discussed in

Section 3. An optimisation of the data

exchange scenario, considerably improving the

system performance, is proposed in Section 4.

Results of experiments are provided and

compared to those presented in the previous

section. Final remarks and plans for future

research are given in section 5.

2. Design and Implementation

The hardware architecture of the considered

prototyping solution, schematically depicted in

Figure 1, involves an acquisition/execution

module and Matlab application. The

acquisition/execution module is built on a

32-bit System on Chip (SoC) AT91SAM3U

with a Cortex-M3 core [17]. The SoC is

equipped with a hardware user device port

USB-UDP 2.0 full-speed macrocell, as well as

a number of other peripherals, including an

ADC converter, an analogue comparator, SPI,

I2C, UART ports and a PWM generator. The

communication devices can use a multichannel

DMA controller to relieve the CPU core from

data transmission tasks and free up some

Studies in Informatics and Control, Vol. 23, No. 4, December 2014 http://www.sic.ici.ro 343

processing power. In the tested solution the

DMA handles an ADC converter, an SPI port

and UART ports. An alternative could be to use

a SoC with ARM7, MIPS, or comparable cores.

One can expect that other SoCs provide similar

performance since both time delay and

throughput are affected mainly by the PC

computer operating system (including device

drivers) and Matlab application.

Figure 1. Hardware architecture of

proposed system

A Communication Device Class (CDC)

protocol has been implemented in the

acquisition/execution module for handling USB

communications [18]. Two factors determined

the choice: bulk transactions type for user data

transfer and a wide range of supported

operating systems. Indeed, bulk transactions

used in this class [19] can be performed several

times per millisecond of a USB frame, thus

producing faster data streams than control and

interrupt transactions, such as in the popular

HID class. In case of control and interrupt types

the throughput is limited to 64 kB/s because

only one transaction up to 64 B is permitted per

single 1 ms long USB frame. The choice of

available operating systems supporting the

CDC class includes Windows XP/7/8,

Windows CE/Mobile, Android and Linux,

making it useful in target solutions

implemented on COTS hardware.

A complete free CDC framework source code

is available for the selected processor, but it has

been further optimised by the authors to

accelerate data exchange handling. An original

interrupt service routine (ISR) comprised in the

framework has been rewritten to give the

precedence to service requests originated by

two bulk endpoints (EPs) exchanging user data.

Two other EPs (control EP 0 and interrupt IN

EP 3) are given a lover priority. Their service

requests are handled by the original framework.

Bulk transfer EPs requests bypass the stack and

are rather handled by a compact code written

by the authors. It utilises double hardware

FIFO queues attached to the EPs. Right after

the reception of an OUT transaction from the

host the ISR fills both banks of the FIFO tied to

the IN EP. Thus the data is ready when the first

IN transaction begins. Then for each

consecutive service request the routine refills

the emptied bank while the USB peripheral is

free to send data from the other one. As the

data is always ready, the USB device never

answers with NAK to the host. Thus several

bulk transactions can be executed within a

single 1 ms USB frame, resulting in a large

data stream. Otherwise the first NAK sent in an

answer to the IN token would cause the host to

abandon further attempts till the next frame

thus dramatically increasing the transfer time.

A time stamp generated by a hardware timer is

added to packages as they are sent. The

software has been programmed in C language

using a free GNU C compiler. The tests has

revealed that the USB interface handling

consumes up to 35% of the processor time

leaving 40 MIPS (million instructions per

second) to execute application signal

processing and control tasks.

From the programmer’s viewpoint the solution

can be modelled with cooperating software

layers, as shown in Figure 2.

Figure 2. Software architecture of

key system components

The user application operating in the Matlab

environment works with external layers

handling the USB via a number of M-file

scripts labelled ‘communication functions’ in

Figure 2. All the scripts are implemented in the

Matlab language exclusively without a need for

C/C++. They assemble user data packages and

issue communication requests to the layer of

the CDC driver. A standard driver available in

the Windows 7 system for this class is used and

it cooperates directly with the USB host driver

that sends data to or receives them from the

USB bus via a host controller interface (HCI)

layer. As response data come into Matlab, the

received bytes are converted into floating point

values. The user script interprets them and

computes the time elapsed between

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 4, December 2014 344

corresponding sent and received packages

(closed loop round trip).

Desktop and laptop PC computers are typically

equipped with USB hosts device of the

universal host controller interface (UHCI) [20]

type as well as an enhanced host controller

interface (EHCI) [21] type. Their internal

structures differ and hence they are handled by

separate device drivers. Both versions has been

tested by authors in order to investigate and

compare performances provided by these two

controller types.

In a PC computer all the connected layers are

controlled by an operating system, which can

preempt any component for a indeterminate

period of time. On the microcontroller side, on

the other hand, timing properties can be

assessed in a more deterministic manner,

provided that no operating system is deployed

here and a bare metal programming approach is

used instead. Resulting combined performance

of the tested system is determined by the

interaction between all hardware and software

components it comprises.

3. Experimental Results

For the experimental purpose the main Matlab

script has been written in such a way that it

sends new request package to ARM

microcontroller immediately after receiving a

response package from it. Thus the package

exchange rate is maintained as high as possible.

The testing programme monitors the timing of

data package exchanges between the user

application running in the Matlab environment

and the acquisition/execution module.

The total (closed loop) latency is defined as the

time delay between the sending of the request

and the reception of the corresponding response

package. This comprises the assembly of the

request package in Matlab, its passage through

the USB protocol stack, transfer across the

USB link and the reception at the

microcontroller plus analogous steps for a

response package travelling in the opposite

direction. This latency is referred to as RTT

(round trip time), while the individual cycle of

data package exchange is referred to as a

transaction. The presented analysis includes

also a statistical parameter referred to as SD

and computed using a standard deviation

estimation formula that makes it a measure of

RTT jitter. The lower the SD value the higher

the communication time stability.

Presented test results comprise also the data

throughput defined as a mean number of bytes

transferred per time unit. The authors decided to

consider in throughput measure only the data sent

from measurement and control module to Matlab

environment. Data travelling the opposite

direction are not included as their size in

conducted tests is constant and hence their

contribution to the total data stream is often

negligible.

For typical operating conditions in a target

production system packages sent from master

module to measurement and control module

(OUT) are relatively short at 15–50 B. They

contain a coded request for sensor data, but can

also include data for executing circuits, such as

PWM duty cycles or binary output line settings.

The packages received (IN) contain sensor data

from the ADC converters and digital input

lines. Their length depends on the target

application requirements and ranges from tens

of bytes to several kilobytes.

Short packages represent typical closed loop

control and logging applications where the PC

receives sensor data, computes control values,

and sends them to the output circuits. Short

packages allow shorter RTTs, which is a

crucial parameter for the performance of the

closed control loop.

In another operational scenario sensor data are

captured with a considerably higher frequency,

in the order of 20–500 kHz, and then larger

packages are assembled and sent from the

microcontroller to the PC. This operational

condition represents typical measurement and

recording applications, which require larger

data streams. Also in these applications the

master module can estimate object parameters

and compute some control commands. Such

commands are then send back to the

acquisition/execution module within OUT

packages with the frequency of transaction

repetition, that in this scenario may be several

thousand times lover than the frequency of

sensor signal sampling.

The experiments for real-time performance and

throughput assessment have been conducted for

conditions given in Table 1.

During experiments, the operating system runs

all of its regular processes and programmes in

the background.

Studies in Informatics and Control, Vol. 23, No. 4, December 2014 http://www.sic.ici.ro 345

Table 1. Experiments conditions

Size of input packages (IN) 48,100,200, n500, 8000

B

Size of output packages (OUT) 16 B

Number of repetitions: 10,000

Computer: DELL Latitude E6400,

22.4 GHz

Docking station: E-Port Plus PRO2X

Operating system: Windows 7

Matlab version: R2009b

CDC driver version: 6.1.7601.17514

UHCI driver version: 6.1.7601.17586

EHCI driver version: 6.1.7601.17586

3.1 Experimental results for

UHCI controller

Details of real-time performances for 100 B IN

packages and their analysis are illustrated in

Figure 3. A UHCI controller achieved an RTT

of 9.48 ms. More than 50% of all transaction

times fall within 7–9 ms (Figure 3b) and

90.05% of all transaction times are shorter than

10 ms. SD equals 7.29 ms. As much as 90.51%

of all transaction are executed in less than

(mean+SD).

0 2 4 6 8 10

x 10
4

0

10

20

30

40
16B/100B/x10000 12.24 [kB/s], in=10.55, out=1.69

la
te

nc
y

[m
s/

t]
 (

R
=

0)

(latT
max/2/3

=36/35/34)

[ms]

2.7 2.75 2.8 2.85 2.9 2.95

x 10
4

0

10

20

30

40

zoom

(latT
sr

9.48,s7.29,
min

3.00)

[ms]

[m
s/

t]

0 10 20 30 40
0

2000

4000

6000

8000

10000
empir. prop. den.

oc
cu

r.

[ms]

p:10

0 5 10 15 20
0

1000

2000

3000

4000

5000
zoom T<20.0[ms]

[ms]

T<=10.0ms:90.050%, T<=17ms:90.510%, p:20

latency [ms] zoom

b)

a)

time

histogram

time
zoom < 20ms

Figure 3. Experimental RTT for UHCI controller.

Package size IN=100 B:

a) RTT time series, b) RTT histogram

There are isolated cases of packages transacted

at 3 ms, but they constituted a negligible share

of the total. About 10% of all packages are

transacted at ca. 30–35 ms as a result of

unsynchronisation or preemption by the

operating system of any of the PC programme

components shown in Figure 2. The mean

throughput received is 10.55 kB/s, which is a

measure of the system capability as a

measure-and-record type of application.

Figure 4 illustrates detailed real-time

performance with the IN packages size of 3500

B. This increased size extends mean RTT time

and SD, but the IN data stream is also

considerably larger at 284.3 kB/s. A majority of

transactions falls within 9–11 ms and the mean

RTT time is 12.31 ms. The remaining details

include: 86.3% of the transactions shorter than

13 ms (Figure 4b), 87.99% shorter than 21 ms

and about 10% performed within 30–35 ms.

Some isolated cases of times longer than 90 ms

are also observed and they result from a

preemeption of the entire application by the

operating system (OS). These occasional cases

of very long durations are also observed

sporadically in other experiments.

0 5 10 15

x 10
4

0

20

40

60

80

100
16B/3500B/x10000 285.54 [kB/s], in=284.25, out=1.30

la
te

nc
y

[m
s/

t]
 (

R
=

0)

(latT
max/2/3

=90/48/37)

[ms]

3 3.1 3.2

x 10
4

10

20

30

zoom

(latT
sr

12.31,s7.91,
min

5.00)

[ms]

[m
s/

t]

0 20 40 60 80 100
0

2000

4000

6000

8000

10000
empir. prop. den.

oc
cu

r.
[ms]

p:10

5 10 15 20
0

2000

4000

6000
zoom T<20.0[ms]

[ms]

T<=13.0ms:86.380%, T<=21ms:87.990%, p:20

latency [ms] zooma)

time

histogram

time
zoom < 20ms

Figure 4. Experimental RTT for UHCI controller.

Package size IN=3500 B:

a) RTT time series, b) RTT histogram

A summary of observed RTT statistics

depending on package size are illustrated in

Figure 5. The graphs show the minimum,

mean, mean+SD, max3, and maximum

transaction times. The max3 time value is the

third longest of all recorded times. It is

introduced to exclude some sporadic extreme

maximum values thus offering an illustrative

view of the occurrence of long delay times. 0 2000 4000 6000 8000
0

100

200

300

400

500
stream throughput [kB/s]

IN transaction size [B], (R=0)

[k
B

/s
]

0 2000 4000 6000 8000
0

200

400

600
latency [ms]

IN transaction size [B], (R=0)

m
in

,m
e
a
n
,m

e
a
n
+

s
d
,m

a
x
3
,m

a
x

0 2000 4000 6000 8000

0

10

20

30

40

zoom

m
in

,m
e
a
n
,m

e
a
n
+

s
d
,m

a
x
3
,m

a
x

0 2000 4000 6000 8000
0

200

400

600
packet throughput [ms/t]

IN transaction size [B], (R=0)

m
in

,m
e
a
n
,m

e
a
n
+

s
d
,m

a
x
3
,m

a
x

0 2000 4000 6000 8000
0

200

400

600
zoom

m
in

,m
e
a
n
,m

e
a
n
+

s
d
,m

a
x
3
,m

a
x

zoom

IN package size [B]

latency [ms]

IN package size [B]

Figure 5. Statistics of RTT experimental results for

UHCI controller depending on the package size:

minimum (blue), mean (green), mean+SD (red),

max3 (cyan) and maximum (magenta)

The minimum can to some extent be thought

as a limit imposed by the system hardware/

software configuration. For such

interpretation the developer aim can be to

make the mean value as close to the

minimum as possible. Figure 5 shows abrupt

increases of maximum times for packages

larger than 4 kB, running up to 200–500 ms,

even if this only happens sporadically.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 4, December 2014 346

The mean received data stream is illustrated in

Figure 6. The stream is heavily dependent on

the package size. For example, 1000 B

packages are transmitted at 90 kB/s and larger

packages are transferred in an even larger

streams, up to 425 kB/s (for 8000 B).

0 2000 4000 6000 8000
0

100

200

300

400

500
stream throughput [kB/s]

IN transaction size [B], (R=0)

[k
B

/s
]

0 2000 4000 6000 8000
0

200

400

600
latency [ms]

IN transaction size [B], (R=0)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000

0

10

20

30

40

zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

200

400

600
packet throughput [ms/t]

IN transaction size [B], (R=0)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

200

400

600
zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

IN package size [B]

Data stream [kB/s]

Figure 6. Mean stream throughput in kB/s for

UHCI controller depending on the

size of incoming package

In these instances all times measured in the

experiments increase, e.g. the mean RTT for

packages with 8000 B is 18.8 ms (Figure 5).

Experimental results for EHCI

controller

EHCI class controllers provide the same bitrate

as the UHCI class, but their different hardware

design [21] and software drivers allow EHCI to

achieve a somewhat higher actual throughput

and shorter RTT when compared to UHCI.

Detailed results and their analysis for IN

transactions with 100 B packages are shown in

Figure 7. The mean RTT is 8.36 ms, i.e. 1.12

ms better than with the UHCI. There is also a

significant increase in the proportion of

transactions within 4–6 ms (compare with

Figure 3b). SD equals 6.67 ms. 82.31% of

packages are transacted in less than 9 ms and

86.18% in less than 16 ms.

0 2 4 6 8 10

x 10
4

0

10

20

30

40
16B/100B/x10000 13.87 [kB/s], in=11.96, out=1.91

la
te

nc
y

[m
s/

t]
 (

R
=

0)

(latT
max/2/3

=35/34/33)

[ms]

2.1 2.15 2.2 2.25 2.3

x 10
4

10

20

30

40

zoom

(latT
sr

8.36,s6.67,
min

2.00)

[ms]

[m
s/

t]

0 10 20 30 40
0

1000

2000

3000

4000

5000
empir. prop. den.

oc
cu

r.

[ms]

p:10

0 5 10 15 20
0

500

1000

1500

2000

2500
zoom T<20.0[ms]

[ms]

T<=9.0ms:82.310%, T<=16ms:86.180%

latency [ms] zooma)

time
zoom < 20ms

time

histogram
b)

Figure 7. Experimental RTT for EHCI controller.

Package size IN=100 B:

a) RTT time series, b) RTT histogram

Figure 8 shows a summary of time statistics

with an EHCI controller for various package

sizes. In comparison to a UHCI the results are

better approximately by 1 ms for small

packages and by 3 ms for large packages.

0 2000 4000 6000 8000
0

100

200

300

400

500
stream throughput [kB/s]

IN transaction size [B], (R=0)

[k
B

/s
]

0 2000 4000 6000 8000
0

100

200

300
latency [ms]

IN transaction size [B], (R=0)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000

0

10

20

30

40

50

zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300
packet throughput [ms/t]

IN transaction size [B], (R=0)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300
zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

zoom

IN package size [B]

latency [ms]

IN package size [B]

Figure 8. Statistics of RTT experimental results for

EHCI controller depending on the package size:

minimum (blue), mean (green), mean+SD (red),

max3 (cyan) and maximum (magenta)

Mean throughputs obtained with an EHCI

(Figure 9) are higher than with a UHCI. For

example with an input package of 1000 B the

stream throughput is 120 kB/s and for large

packages of 8000 B it reaches nearly 500 kB/s.

This represents an increase in the order of 20%

over a UHCI.

0 2000 4000 6000 8000
0

100

200

300

400

500
stream throughput [kB/s]

IN transaction size [B], (R=0)

[k
B

/s
]

0 2000 4000 6000 8000
0

100

200

300
latency [ms]

IN transaction size [B], (R=0)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000

0

10

20

30

40

50

zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300
packet throughput [ms/t]

IN transaction size [B], (R=0)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300
zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

IN package size [B]

Data stream [kB/s]

Figure 9. Mean stream throughput in kB/s for

EHCI controller depending on the

 size of incoming package

4. Proposed Optimisation and

Its Effect

The performance of the test system given in

section 3 is actually poorer than capabilities

reported in [1, 10], where all algorithms has

been implemented in native (compiled)

programming languages. The difference is

particularly large in throughput. This means

that there exists a potential for optimisation of a

connection involving the Matlab environment.

Such optimisation is expected to compensate

for a performance drop caused by the usage of

the interpreted Matlab programming language.

The proposed software optimisation involves

concurrent execution of certain part of the

package exchange handling code. Since the

Matlab environment does not support threads in

the script language it is proposed that OUT

packages should be queued at a CDC driver

level. In this configuration the components:

host driver stack – CDC driver – Matlab are

capable of exchanging at much shorter waiting

time. The proposed optimisation allows parallel

execution of certain tasks. Indeed, while one

part of a CDC driver is exchanging data with

Matlab its other part can be communicating

with the host driver. The length of the queue,

marked as R, may be equal to one or higher.

Studies in Informatics and Control, Vol. 23, No. 4, December 2014 http://www.sic.ici.ro 347

The proposed optimisation has also the benefit

of requiring no intervention in either the CDC

driver code or in its settings.

The optimisation with R=1 increases

considerably the mean throughput. The

relationship between throughput and package

size for the EHCI host are illustrated in Figure

10. The gain in throughput is particularly high

with smaller packages, where it increases from

120 kB/s before optimisation to 300 kB/s for

IN=1000 B and from 240 kB/s to 566 kB/s for

IN=2000 B. The optimum operating condition,

suggested by authors, is at around 2 kB, beyond

which the gain in throughput is smaller,

although packages of IN=8 kB are transacted at

710 kB/s. Packages of the size above 2 kB take

significantly longer to transact in real-time.

0 2000 4000 6000 8000
0

200

400

600

800
stream throughput [kB/s]

IN transaction size [B], (R=1)

[k
B

/s
]

0 2000 4000 6000 8000
0

100

200

300

400
latency [ms]

IN transaction size [B], (R=1)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300

400
zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300
packet throughput [ms/t]

IN transaction size [B], (R=1)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300
zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

IN package size [B]

Data stream [kB/s]

Figure 10. Mean stream throughput in kB/s with

optimization (R=1) for EHCI controller depending

on the size of incoming package

Let us introduce additional communication

quality measure equal to time elapsing between

beginnings of two consecutive transactions. Let

us call it Transaction Repetition Time (TRT). In

Figure 11 an exemplary relationship between

RTT and TRT is depicted. Vertical bars located

above the time line represents an action of

request package commissioning by a Matlab

script while bars below the line reflects an event

of reply package reception. Curved solid arrows

connect corresponding request and response

packages. For configuration without package

queuing (R=0), RTT and TRT are equal because

a new transaction is initiated as soon as the

previous one finishes. In case of optimised

solution with R1, TRT can be considerably

shorter than RTT as the next transaction may be

initiated before the previous one ends. Thus

consecutive transactions can overlap

significantly reducing the TRT. For R=1, TRT

can be theoretically as low as half the RTT, for

R=2 TRT can drop to one third of RTT and so

on. One of the main aims of experiments

described in this section is to verify if the

introduction of queuing can reduce RTT, what

conditions are necessary for this to happen, and

how large reduction can be achieved.

Detailed real time performance characterisation

can be broken down into latency (RTT),

repetition period (TRT) and sensor data

throughput. Latency is a key parameter for

control systems, as it defines the capability of

closed control loops to exchange sensor and

control data and represents the combined delay

of packages (IN OUT) for the same control

cycle. Repetition period defines the exchange

time of data packages and is important for

determination of the speed of subsequent

transactions. Sensor data throughput is a key

parameter for data acquisition application

where large data sets have to be transferred

with a high rate.

Figure 11. Theoretical relationship between TRT

and RTT without and with optimisation (for large

IN packages)

In a closed loop control system the RTT

contributes to the total control loop time delay

while the TRT corresponds to the sampling

period. The quality of control usually increases

when both time delay and sampling period are

reduced. The optimisation proposed by authors

can influence both parameters and the change

in the quality of control results from a

combination of this two factors.

0 1 2 3

x 10
4

0

10

20

30

40
16B/100B/x10000 38.67 [kB/s], in=33.34, out=5.33

pk
t

th
r.

,
la

te
nc

y
[m

s/
t]

 (
R

=
1)

(thrT
max/2/3

=31/30/24)(latT
max/2/3

=34/33/32)

[ms]

5800 5900 6000 6100 6200

0

10

20

30

zoom

(thrT
sr

3.00,s2.96,
min

0.00)(latT
sr

5.99,s3.35,
min

2.00)

[ms]

[m
s/

t]

0 10 20 30 40
0

2000

4000

6000

8000
empir. prop. den.

oc
cu

r.

[ms]

p:10

0 5 10 15 20
0

2000

4000

6000

8000
zoom T<20.0[ms]

[ms]

T<=6.0ms:83.520%, T<=10ms:95.600%, p:20

RTT, TRT [ms] zooma)

time
zoom < 20ms

time

histogram
b)

Figure 12. Experimental results of RTT and TRT

with optimization (R=1) for EHCI controller.

Package size IN=100 B: a) TRT (blue) and RTT

(green) recorded, b) RTT histogram

Figure 12 illustrates results obtained for

transactions of IN=100 B packages and an

EHCI host controller with R=1. The

optimisation clearly shortens all data exchange

time measures (compare Figures 12a and 7a).

The mean latency achieves 5.99 ms, which is

significantly lower than that prior to the

optimisation (8.36 ms). The SD parameter is

also lower at 3.35 ms, which means a better

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 4, December 2014 348

time stability (lower jitter) than with no

optimisation. Latency lower than 6 ms is

recorded for 83.5% packages and lower than 10

ms for 95.6% packages. The mean repetition

time TRT drops to 2.99 ms and the IN data

stream throughput grows to 33.3 kB/s.

For larger packages (IN=2000 B, Figure 13) the

mean latency is 7.05 ms and SD equals 2.59

ms. Latency lower than 8 ms is achieved in

88.7% package exchange cycles and lower than

10 ms in 97.22% cycles. The mean data stream

throughput is 566 kB/s and the mean repetition

time TRT equals 3.53 ms. The ratio of mean

values of TRT and RTT is approximately equal

to 1:2. This is however not necessarily the case

for their instantaneous values as can be clearly

seen in Figures 12 or 13. A sporadic increase in

the TRT causes the ratio to be temporarily

closer to one.

0 1 2 3 4

x 10
4

0

10

20

30

40
16B/2000B/x10000 571.23 [kB/s], in=566.70, out=4.53

pk
t

th
r.

,
la

te
nc

y
[m

s/
t]

 (
R

=
1)

(thrT
max/2/3

=34/33/31)(latT
max/2/3

=36/34/33)

[ms]

6400 6500 6600 6700 6800 6900
0

10

20

30

zoom

(thrT
sr

3.53,s2.05,
min

2.00)(latT
sr

7.05,s2.59,
min

4.00)

[ms]

[m
s/

t]

0 10 20 30 40
0

2000

4000

6000

8000
empir. prop. den.

oc
cu

r.

[ms]

p:10

0 5 10 15 20
0

1000

2000

3000
zoom T<20.0[ms]

[ms]

T<=8.0ms:88.760%, T<=10ms:97.220%, p:20

RTT, TRT [ms] zooma)

time
zoom < 20ms

time

histogram
b)

Figure 13. Experimental results of RTT and TRT

with optimization (R=1) for EHCI controller.

Package size IN=2000 B: a) TRT (blue) and RTT

(green) recorded, b) RTT histogram

A summary of real-time properties after

optimisation (R=1) is illustrated in Figure 14.
0 2000 4000 6000 8000

0

200

400

600

800
stream throughput [kB/s]

IN transaction size [B], (R=1)

[k
B

/s
]

0 2000 4000 6000 8000
0

100

200

300

400
latency [ms]

IN transaction size [B], (R=1)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

10

20

30

40

zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300
packet throughput [ms/t]

IN transaction size [B], (R=1)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000

0

10

20

30

40

zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

RTT [ms] zooma)

TRT [ms] zoomb)
IN package size [B] IN package size [B]

IN package size [B]IN package size [B]

Figure 14. Statistics of RTT and TRT experimental

results with optimization (R=1) for EHCI controller

depending on the package size: minimum (blue),

mean (green), mean+SD (red), max3 (cyan) and

maximum (magenta) of: a) RTT, b) TRT

The mean latency for the smallest packages

tested, IN=48 B, is 5.37 ms, which is nearly

1.45 times less than without the optimisation.

The mean repetition time TRT recorded is 2.69

ms. With packages of IN=4000 B the mean

latency equals 14.33 ms and the mean TRT –

7.16 ms.

The data stream performance can be further

improved at an expense of latency. Figure 15

presents a summary of throughput results

depending on the package size at the

optimisation parameter R=3. A data stream

throughput of 924.8 kB/s is achieved with the

package size as low as IN=3000 B, with the

corresponding latency of 12.98 ms and

SD=0.66 ms.

0 2000 4000 6000 8000
0

200

400

600

800

1000
stream throughput [kB/s]

IN transaction size [B], (R=3)

[k
B

/s
]

0 2000 4000 6000 8000
0

100

200

300

400
latency [ms]

IN transaction size [B], (R=3)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300

400
zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300

400
packet throughput [ms/t]

IN transaction size [B], (R=3)

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

0 2000 4000 6000 8000
0

100

200

300

400
zoom

m
in

,m
ea

n,
m

ea
n+

sd
,m

ax
3,

m
ax

IN package size [B]

Data stream [kB/s]

Figure 15. Mean stream throughput in kB/s with

optimization (R=3) for EHCI controller depending

on the size of incoming package

Details of the real-time performances for

packages of IN=1250 B and R=3 are shown in

Figure 16.

0 0.5 1 1.5 2

x 10
4

0

5

10

15

20

25
16B/1250B/x10000 664.22 [kB/s], in=655.82, out=8.39

pk
t

th
r.

,
la

te
nc

y
[m

s/
t]

 (
R

=
3)

(thrT
max/2/3

=20/15/14)(latT
max/2/3

=25/24/20)

[ms]

6600 6650 6700 6750 6800 6850

0

5

10

15

20

zoom

(thrT
sr

1.91,s1.02,
min

1.00)(latT
sr

7.63,s1.18,
min

5.00)

[ms]

[m
s/

t]

6 8 10 12 14 16 18 20 22 24
0

2000

4000

6000
empir. prop. den.

oc
cu

r.

[ms]

p:10

5 10 15 20
0

1000

2000

3000

4000

5000
zoom T<20.0[ms]

[ms]

T<=8.0ms:80.770%, T<=9ms:94.530%, p:20

b)

d)

RTT, TRT [ms] zooma)

time
zoom < 20ms

time

histogram
b)

Figure 16. Experimental results of RTT and TRT

with optimization (R=3) for EHCI controller.

Package size IN=1250 B: a) TRT (blue) and RTT

(green) recorded, b) RTT histogram

The data stream is 655.8 kB/s, the mean latency

equals 7.63 ms and SD=1.18 ms. This is a far

better performance than without the

optimisation, both in terms of lower latency

variability (lower jitter) and data throughput.

The mean repetition time TRT is 1.91 ms.

An exemplary selection of data presented in

this and previous sections is given in Tables 2

and 3. They contain only a very limited

information compared to several figures

included in the discussion, however they can

immediately reveal the main tendencies

discovered through the research that are

important for system designers and developers.

Table 2 shows that an increase in the response

package size elongates the RTT but also

enlarges the throughput (that is a beneficial

result for data acquisition systems). The

Studies in Informatics and Control, Vol. 23, No. 4, December 2014 http://www.sic.ici.ro 349

difference between system performance with

UHCI and EHCI controller are also noticeable

in favour of the latter solution.

Table. 2. Selective performance comparison for

UHCI versus EHCI controllers without optimisation

(TP – IN data mean throughput)

IN packet size

48 B 100 B 1000 B 3500 B 8000 B

C
o
n

tr
o

ll
er

U
H

C
I RTT, ms

SD, ms
TP, kB/s

9.47

7.48
5.01

9.48

7.29
10.6

11.1

8.49
90.1

12.3

7.91
284

18.8

15.0
426

E
H

C
I RTT, ms

SD, ms
TP, kB/s

8.13

6.61
5.90

8.36

6.67
12.0

8.33

7.25
120

12.1

8.20
289

16.3

12.3
490

Table 3 shows benefits of optimization. Let us

compare two rows corresponding to R=0 and

R=1 respectively. Optimization technique can

increase the throughput over twice (in case of

small and medium size packages). For large

packages the increase is less pronounced.

Counter intuitively, for small and medium size

packages, parameter R=1 reduces also

noticeably round trip time. It is however not the

case for large packages where RTT increases.

Optimisation decreases also substantially

transaction repetition time. For small packages

TRT shortens roughly three times while for

large ones the ratio is one and a half.

Table. 3. Selective performance comparison for

EHCI controller with and without optimisation (TP

– IN data mean throughput)

Optimisation

parameter

IN packet size

48B 100B 1000B 2000B 4000B 8000B

R
=

0

RTT, ms 8.13 8.36 8.33 8.33 12.2 16.3

SD, ms 6.61 6.67 7.25 8.20 8.05 12.3

TP, kB/s 5.90 12.0 120 240 328 490

TRT, ms 8.13 8.36 8.33 8.33 12.2 16.3

R
=

1

RTT, ms 5.37 5.99 6.66 7.05 14.3 22.5

SD, ms 2.89 3.35 3.71 2.59 9.13 15.4

TP, kB/s 8.93 33.3 300 566 559 710

TRT, ms 2.69 2.99 3.33 3.53 7.16 11.3

R
=

3

RTT, ms 7.50 7.62 7.37 9.50 18.2 39.7

SD, ms 4.13 1.87 2.43 2.56 4.08 8.53

TP, kB/s 25.6 52.5 582 842 878 806

TRT, ms 1.88 1.90 1.84 2.37 4.56 9.92

It is obvious from Table 3 as well as Figure 11

that request package queuing can be beneficial

for data acquisition applications as it may

increase the throughput twice or even more

thus allowing for a higher data collection rate.

What is less obvious, the queue may be

advantageous also for application with closed

control loop. Admittedly, a queue introduces a

shift in a train of request packages, but it also

causes packages to be sent with a higher

frequency. The latter phenomenon can fully

compensate for the former or even dominate it

(for small and medium size packages). This

results in a noticeably shorter RTT (that

corresponds to shorter loop time delay)

coinciding with considerably shorter TRT (and

hence higher sampling period). This is the case

for example for EHCI controller with R=1 and

IN=100 B. Larger amount of information

available to the controller combined with lower

time delay in a control loop can result in

control quality improvement.

5. Conclusions

The study focuses on an experimental testing of

real-time properties of a USB link between a

measurement/control system and the Matlab

environment. The acquisition/execution module

has been implemented with a 32-bit

microcontroller based on an ARM Cortex-M3

core and equipped with a hardware USB-UDP

port. The study demonstrates that it is possible

to achieve a high throughput and low latency

with a standard CDC communication class

without developing device specific drivers. The

proposed optimisation has been proved to

deliver the mean sensor data stream in the order

of 920 kB/s. This result is comparable to

performance achievable in systems where

master module is implemented in C/C++

language. Thus, in the proposed solution,

Matlab m-file based prototyping environment

provides the performance compatible to that

expected in a target system.

The entire solution has a universal, low-budget

and compact nature thanks to the application of

a single SoC microcontroller. Importantly, it

allows rapid prototyping, development and

validation, as well as laboratory evaluation.

The results are applicable for systems

implemented on different hardware platforms

(with MIPS, AVR32 or FPGA cores).

It is envisaged to extend the research to a USB

network comprising several nodes.

Acknowledgements

This work was partially funded by National

Centre for Research and Development (NCBiR,

Krakow, Poland), grant No. PBS/1/A9/1/2012.

REFERENCES

1. AUGUSTYN, J., New Methodology of

Designing Inexpensive Hybrid Control-

acquisition Systems for Mechatronic

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 4, December 2014 350

Construction, Sensors, vol. 13(12), 2013,

pp. 17222-17240.

2. HAIKAL, A. Y., M. A. ELHOSSEINI, A

Smart Robot Arm Design for Industrial

Application, Studies in Informatics and

Control, vol. 23 (1), 2014, pp. 107-116.

3. AUGUSTYN, J., Design of embedded

systems with application to SAM7S

family with ARM7TDMI core, IGSMiE

PAN, Kraków, 2007, p. 302.

4. AUGUSTYN, J., A. BIEŃ, Rapid

prototyping methodology of embedded

control-acquisition system, Metrology

and Measurement Systems, vol. 19, iss. 4,

2012, pp. 777-786.

5. SALAH, K., M. HAMAWI, Impact of

CPU-bound Processes on IP

Forwarding of Linux and Windows XP,

Journal of Universal Computer Science,

vol. 16, iss. 21, 2010, pp. 3299-3313.

6. GARCIA, J. Q., A Study on PDAs for

Onboard Applications and Technologies

and Methodologies, Journal Personal and

Ubiquitous Computing, vol. 15, iss. 5,

2011, pp. 457-478.

7. WOOLLEY, A., D. DUFF, Using COTS

Technologies for Battlefield Applica-

tions, 2011 Military Communications

Confer., Baltimore, 2011, pp. 1506-1510.

8. SHANG, M., X. AIQUIANG, Z. XIULI,

Y. CHUNYING, L. TINGJUN, COST-

based Design PMA for Certain

Navigation Radar, 2011 International

Conference on Power Electronics and

Engineering Application, vol. 23, 2011,

pp. 235-240.

9. GUPTA, R., J.N. BERA, M. MITRA,

Development of an Embedded System

and MATLAB-based GUI for Online

Acquisition and Analysis of ECG

Signal, Measurement, vol. 43, iss. 9, 2010,

pp. 1119-1126.

10. AUGUSTYN, J., A. BIEŃ, Real Time

Performance of USB Interface in

Embedded Control and Measurement

Systems. Przegląd Elektrotechniczny, vol.

85, iss. 7, 2009, pp. 1-7.

11. AHMAD, M.A., A.N.K. NASIR, N.S.

PAKHERI, N.M. GHANI, at. el.,

Microcontroller-Based Input Shaping

for Vibration Control of Flexible

Manipulator System, Australian Journal

of Basic and Applied Sciences, vol. 5, iss.

6, 2011, pp. 597-610.

12. AN232B-04 Data Throughput, Latency

and Handshaking, AN232B-03

Optimizing D2XX Data Throughput,

FTDI Ltd., www.ftdi.com, 2006.

13. POSADA-GOMEZ, R., J. JORGE

ENRIQUEZ-RODRIGUEZ, G. ALOR-

HERNANDEZ, A. MARTINEZ-SIBAJA,

USB bulk Transfers Between a PC and

a PIC Microcontroller for Embedded

Applications, Electronics, Robotics and

Automotive Mechanics Conference,

Morelos, 2008, pp. 559-564.

14. RAMADOSS, L., J.Y. HUNG, A Study

on Universal Serial Bus Latency in a

Real-time Control System, 34th Annual

Conference of IEEE Industrial Electronics,

IECON 2008, Orlando, 2008, pp. 67-72.

15. TAN, B., S. QUAN, A High-speed Data

Acquisition Card Based on USB Bus,

International Conference on Machine

Vision and Human-machine Interface,

Kaifeng, 2010, pp. 357-360.

16. AREFIN, M.M.N., M.N. AMBIA, T.

AHAMMAD, A.S.M SHIHAVUDDIN,

Low Cost Design of a PC Based

Integrated System for Signal Measu-

rement and Generation using Micro-

controller, 2nd International Conference

on Signal Processing Systems (ICSPS),

Dalian, 2010, pp. V3-747-V3-751.

17. AT91SAM ARM-based FLASH MCU

SAM3S Series. Doc. 6500C. Atmel, 2011.

18. Universal Serial Bus Class Definitions

for Communications Devices. Rev. 1.2,

November 16, 2007, www.usb.org.

19. Universal Serial Bus Specification, Rev.

2.0, April 27, 2000, www.usb.org.

20. Universal Host Controller Interface

(UHCI) Design Guide. Rev 1.1, March

1996, Intel, http://download.intel.com/

technology/usb/UHCI11D.pdf, 1996.

21. Enhanced Host Controller Interface

Specification for USB, Rev. 1.0, March

12, 2002, www.intel.com, 2002.

