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1. Introduction

The design of modern embedded measurement 

and control systems is moving towards hybrid 

solutions [1]. They typically involve two main 

modules: i) a fast acquisition/execution or 

measurement and control module, the name 

depending on the application field, and ii) a 

master module comprising user interfaces, 

logging subsystem, and external data exchange 

links. The former module is connected directly 

to the controlled or monitored system (plant), 

measures signals from sensors and feeds 

signals to actuators. The latter gathers process 

data, performs its registration, interacts with the 

user and interfaces with other devices. The 

control algorithm may be implemented, 

depending on the adopted methodology, either 

in the measurement and control module or in 

the master module. It may be also distributed 

between them with time-critical direct control 

realised by measurement and control device 

and computationally intensive supervisory 

control delegated to the master module, as it 

usually runs on a more powerful processor [2]. 

This study proposes an acquisition/execution 

module based on a 32-bit microcontroller (e.g. 

with an ARM/Cortex-M core) to handle 

analogue to digital converters, binary inputs, 

outputs, PWM generators, and DAC 

converters. This module could also perform 

filtering, parameter estimation, or control tasks. 

The solution ensures short and stable response 

times in the order of 1–100 s [3]. 

A commercial off-the-shelf (COTS) device, 

such as a PDA, a tablet or a smartphone is 

proposed in the literature for the module [1], 

[4–8]. CTOS devices are typically equipped 

with data exchange interfaces, such as Wi-Fi, 

Ethernet, Bluetooth, GSM/EDGE/LTE and 

interact with a user via a touch-sensitive GUI. 

A discussion supporting the use of COTS 

hardware can be found in [5] while a review of 

designing methodologies is presented in [6]. 

Software/hardware COTS solutions are even 

proposed for the demanding military [7] and 

marine [8] applications.  

However, a COTS device, typically a closed 

hardware solution, imposes a serious difficulty 

in using RS232 and SPI interfaces often 

necessary to integrate with sensors or other 

automation equipment. For this reason a 

Universal Serial Bus (USB) interface is 

proposed to link the acquisition/execution and 

the master modules [1,3]. 

Rapid prototyping environments, such as 

MATLAB™ or LabVIEW™, are suggested at 

subsequent steps of the development of the 

acquisition/execution module (prototyping, 

testing and validation of application 

algorithms). Both environments provide 

extensive sets of functionalities, including 

signal processing, identification, and control 

synthesis packages. They also have versatile 

capabilities in graphical data presentation, 

which is an important advantage at the testing 

stage [9]. Both tools can also be used for 

measurement results recording. 
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A question arises whether the Matlab 

environment is able to ensure the kind of 

real-time performance and provide data 

throughput between the acquisition/execution 

and master modules, similar to that expected in 

the target solution. Such compatibility between 

the performance levels at the development and 

production stages is necessary for the 

portability reason. Details of the connection 

performance in target solutions implemented 

with native language can be found in [10], [1], 

where a throughput in the range of 600–700 

kB/s has been obtained. The use of interpreted 

scripted languages (e.g. Matlab) at the 

prototyping stage means that properties thus 

obtained may differ from these based on a 

native compiled code. 

As the USB communication involves some 

device drivers, one can expect that the best 

results can be achieved with dedicated custom 

ones. However implementation of such drivers 

is a very difficult and time-consuming task that 

requires profound knowledge of the operating 

system. Therefore, the reasonable solution is to 

use standard components and bundled hardware 

drivers and to optimise their performance. 

The literature presents a wide range of 

applications of microcontrollers 

communicating with master computers, used in 

measurement and control systems. Typically 

these are 8-bit designs using USB-UART 

converters [11]. However, these full-speed 

class converters provide lower throughput than 

potentially achievable from a USB bus, such as 

3 Mbit/s in the cases of [12], which is a limiting 

factor on the solution. In a detailed study of the 

properties of a direct USB connection between 

a PIC 18Fx550 microcontroller and a PC 

computer various software variants yield 

throughputs in the order of 32 kB/s [13]. An 

analysis of USB induced delays of various 

transaction types shows results in the order of 

30–50 ms [14]. Descriptions of solutions based 

on an ARM core with external USB-UART 

converters can be found in [15]. A data logging 

application presented in these articles achieve 

sampling frequency of 14 kHz for 16-bit data 

samples, that is not very high result either. 

Other researchers propose a solution involving 

implementation of a programme in VB.NET 

language and subsequent exporting of recorded 

sensor data into Matlab [16]. 

The objective of this study is to implement a 

USB connection using Matlab rapid 

prototyping tool and standard USB components 

available in the operating system and to test 

real-time performance and data throughput 

properties of such a solution. Another 

important contribution of the paper is a 

proposition of an optimisation technique 

substantially improving the performance of the 

USB connection. The optimisation aim is to 

achieve with a rapid prototyping configuration 

the performance close to this required in a 

target production system, despite the fact that 

Matlab uses M-file scripts while a production 

system is usually coded in C/C++ language. 

The paper presents experimental results 

concerning closed loop time delay and data 

throughput achievable for communication 

between the acquisition/execution module and 

the Matlab environment. Tests have been 

conducted using hardware based on 32-bit 

ARM/Cortex-M microcontroller. Efficiency of 

the proposed optimisation is demonstrated. 

Results of statistical analyses are presented for 

various data exchange parameters. 

The article is organised as follows. Section 2 

presents the proposed structure of the data 

exchange test system implemented by the 

authors. Results of extensive experiments 

conducted for different configurations of the 

system are gathered, compared and discussed in 

Section 3. An optimisation of the data 

exchange scenario, considerably improving the 

system performance, is proposed in Section 4. 

Results of experiments are provided and 

compared to those presented in the previous 

section. Final remarks and plans for future 

research are given in section 5. 

2. Design and Implementation

The hardware architecture of the considered 

prototyping solution, schematically depicted in 

Figure 1, involves an acquisition/execution 

module and Matlab application. The 

acquisition/execution module is built on a 

32-bit System on Chip (SoC) AT91SAM3U 

with a Cortex-M3 core [17]. The SoC is 

equipped with a hardware user device port 

USB-UDP 2.0 full-speed macrocell, as well as 

a number of other peripherals, including an 

ADC converter, an analogue comparator, SPI, 

I2C, UART ports and a PWM generator. The 

communication devices can use a multichannel 

DMA controller to relieve the CPU core from 

data transmission tasks and free up some 
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processing power. In the tested solution the 

DMA handles an ADC converter, an SPI port 

and UART ports. An alternative could be to use 

a SoC with ARM7, MIPS, or comparable cores. 

One can expect that other SoCs provide similar 

performance since both time delay and 

throughput are affected mainly by the PC 

computer operating system (including device 

drivers) and Matlab application. 

Figure 1. Hardware architecture of 

proposed system 

A Communication Device Class (CDC) 

protocol has been implemented in the 

acquisition/execution module for handling USB 

communications [18]. Two factors determined 

the choice: bulk transactions type for user data 

transfer and a wide range of supported 

operating systems. Indeed, bulk transactions 

used in this class [19] can be performed several 

times per millisecond of a USB frame, thus 

producing faster data streams than control and 

interrupt transactions, such as in the popular 

HID class. In case of control and interrupt types 

the throughput is limited to 64 kB/s because 

only one transaction up to 64 B is permitted per 

single 1 ms long USB frame. The choice of 

available operating systems supporting the 

CDC class includes Windows XP/7/8, 

Windows CE/Mobile, Android and Linux, 

making it useful in target solutions 

implemented on COTS hardware. 

A complete free CDC framework source code 

is available for the selected processor, but it has 

been further optimised by the authors to 

accelerate data exchange handling. An original 

interrupt service routine (ISR) comprised in the 

framework has been rewritten to give the 

precedence to service requests originated by 

two bulk endpoints (EPs) exchanging user data. 

Two other EPs (control EP 0 and interrupt IN 

EP 3) are given a lover priority. Their service 

requests are handled by the original framework. 

Bulk transfer EPs requests bypass the stack and 

are rather handled by a compact code written 

by the authors. It utilises double hardware 

FIFO queues attached to the EPs. Right after 

the reception of an OUT transaction from the 

host the ISR fills both banks of the FIFO tied to 

the IN EP. Thus the data is ready when the first 

IN transaction begins. Then for each 

consecutive service request the routine refills 

the emptied bank while the USB peripheral is 

free to send data from the other one. As the 

data is always ready, the USB device never 

answers with NAK to the host. Thus several 

bulk transactions can be executed within a 

single 1 ms USB frame, resulting in a large 

data stream. Otherwise the first NAK sent in an 

answer to the IN token would cause the host to 

abandon further attempts till the next frame 

thus dramatically increasing the transfer time. 

A time stamp generated by a hardware timer is 

added to packages as they are sent. The 

software has been programmed in C language 

using a free GNU C compiler. The tests has 

revealed that the USB interface handling 

consumes up to 35% of the processor time 

leaving 40 MIPS (million instructions per 

second) to execute application signal 

processing and control tasks. 

From the programmer’s viewpoint the solution 

can be modelled with cooperating software 

layers, as shown in Figure 2. 

Figure 2. Software architecture of 

key system components 

The user application operating in the Matlab 

environment works with external layers 

handling the USB via a number of M-file 

scripts labelled ‘communication functions’ in 

Figure 2. All the scripts are implemented in the 

Matlab language exclusively without a need for 

C/C++. They assemble user data packages and 

issue communication requests to the layer of 

the CDC driver. A standard driver available in 

the Windows 7 system for this class is used and 

it cooperates directly with the USB host driver 

that sends data to or receives them from the 

USB bus via a host controller interface (HCI) 

layer. As response data come into Matlab, the 

received bytes are converted into floating point 

values. The user script interprets them and 

computes the time elapsed between 
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corresponding sent and received packages 

(closed loop round trip).  

Desktop and laptop PC computers are typically 

equipped with USB hosts device of the 

universal host controller interface (UHCI) [20] 

type as well as an enhanced host controller 

interface (EHCI) [21] type. Their internal 

structures differ and hence they are handled by 

separate device drivers. Both versions has been 

tested by authors in order to investigate and 

compare performances provided by these two 

controller types. 

In a PC computer all the connected layers are 

controlled by an operating system, which can 

preempt any component for a indeterminate 

period of time. On the microcontroller side, on 

the other hand, timing properties can be 

assessed in a more deterministic manner, 

provided that no operating system is deployed 

here and a bare metal programming approach is 

used instead. Resulting combined performance 

of the tested system is determined by the 

interaction between all hardware and software 

components it comprises. 

3. Experimental Results

For the experimental purpose the main Matlab 

script has been written in such a way that it 

sends new request package to ARM 

microcontroller immediately after receiving a 

response package from it. Thus the package 

exchange rate is maintained as high as possible. 

The testing programme monitors the timing of 

data package exchanges between the user 

application running in the Matlab environment 

and the acquisition/execution module. 

The total (closed loop) latency is defined as the 

time delay between the sending of the request 

and the reception of the corresponding response 

package. This comprises the assembly of the 

request package in Matlab, its passage through 

the USB protocol stack, transfer across the 

USB link and the reception at the 

microcontroller plus analogous steps for a 

response package travelling in the opposite 

direction. This latency is referred to as RTT 

(round trip time), while the individual cycle of 

data package exchange is referred to as a 

transaction. The presented analysis includes 

also a statistical parameter referred to as SD 

and computed using a standard deviation 

estimation formula that makes it a measure of 

RTT jitter. The lower the SD value the higher 

the communication time stability.  

Presented test results comprise also the data 

throughput defined as a mean number of bytes 

transferred per time unit. The authors decided to 

consider in throughput measure only the data sent 

from measurement and control module to Matlab 

environment. Data travelling the opposite 

direction are not included as their size in 

conducted tests is constant and hence their 

contribution to the total data stream is often 

negligible. 

For typical operating conditions in a target 

production system packages sent from master 

module to measurement and control module 

(OUT) are relatively short at 15–50 B. They 

contain a coded request for sensor data, but can 

also include data for executing circuits, such as 

PWM duty cycles or binary output line settings. 

The packages received (IN) contain sensor data 

from the ADC converters and digital input 

lines. Their length depends on the target 

application requirements and ranges from tens 

of bytes to several kilobytes. 

Short packages represent typical closed loop 

control and logging applications where the PC 

receives sensor data, computes control values, 

and sends them to the output circuits. Short 

packages allow shorter RTTs, which is a 

crucial parameter for the performance of the 

closed control loop.  

In another operational scenario sensor data are 

captured with a considerably higher frequency, 

in the order of 20–500 kHz, and then larger 

packages are assembled and sent from the 

microcontroller to the PC. This operational 

condition represents typical measurement and 

recording applications, which require larger 

data streams. Also in these applications the 

master module can estimate object parameters 

and compute some control commands. Such 

commands are then send back to the 

acquisition/execution module within OUT 

packages with the frequency of transaction 

repetition, that in this scenario may be several 

thousand times lover than the frequency of 

sensor signal sampling. 

The experiments for real-time performance and 

throughput assessment have been conducted for 

conditions given in Table 1. 

During experiments, the operating system runs 

all of its regular processes and programmes in 

the background. 
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Table 1. Experiments conditions 

Size of input packages (IN) 48,100,200, n500, 8000 

B 

Size of output packages (OUT) 16 B 

Number of repetitions: 10,000 

Computer: DELL Latitude E6400, 

22.4 GHz 

Docking station: E-Port Plus PRO2X 

Operating system: Windows 7 

Matlab version: R2009b 

CDC driver version: 6.1.7601.17514 

UHCI driver version: 6.1.7601.17586 

EHCI driver version: 6.1.7601.17586 

3.1 Experimental results for 

UHCI controller 

Details of real-time performances for 100 B IN 

packages and their analysis are illustrated in 

Figure 3. A UHCI controller achieved an RTT 

of 9.48 ms. More than 50% of all transaction 

times fall within 7–9 ms (Figure 3b) and 

90.05% of all transaction times are shorter than 

10 ms. SD equals 7.29 ms. As much as 90.51% 

of all transaction are executed in less than 

(mean+SD).  
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Figure 3.  Experimental RTT for UHCI controller. 

Package size IN=100 B: 

a) RTT time series, b) RTT histogram

There are isolated cases of packages transacted 

at 3 ms, but they constituted a negligible share 

of the total. About 10% of all packages are 

transacted at ca. 30–35 ms as a result of 

unsynchronisation or preemption by the 

operating system of any of the PC programme 

components shown in Figure 2. The mean 

throughput received is 10.55 kB/s, which is a 

measure of the system capability as a 

measure-and-record type of application. 

Figure 4 illustrates detailed real-time 

performance with the IN packages size of 3500 

B. This increased size extends mean RTT time 

and SD, but the IN data stream is also 

considerably larger at 284.3 kB/s. A majority of 

transactions falls within 9–11 ms and the mean 

RTT time is 12.31 ms. The remaining details 

include: 86.3% of the transactions shorter than 

13 ms (Figure 4b), 87.99% shorter than 21 ms 

and about 10% performed within 30–35 ms. 

Some isolated cases of times longer than 90 ms 

are also observed and they result from a 

preemeption of the entire application by the 

operating system (OS). These occasional cases 

of very long durations are also observed 

sporadically in other experiments. 
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Figure 4.  Experimental RTT for UHCI controller. 

Package size IN=3500 B: 

a) RTT time series, b) RTT histogram

A summary of observed RTT statistics 

depending on package size are illustrated in 

Figure 5. The graphs show the minimum, 

mean, mean+SD, max3, and maximum 

transaction times. The max3 time value is the 

third longest of all recorded times. It is 

introduced to exclude some sporadic extreme 

maximum values thus offering an illustrative 

view of the occurrence of long delay times. 0 2000 4000 6000 8000
0

100

200

300

400

500
stream throughput [kB/s]

IN transaction size [B], (R=0)

[k
B

/s
]

0 2000 4000 6000 8000
0

200

400

600
latency [ms]

IN transaction size [B], (R=0)

m
in

,m
e
a
n
,m

e
a
n
+

s
d
,m

a
x
3
,m

a
x

0 2000 4000 6000 8000

0

10

20

30

40

zoom

m
in

,m
e
a
n
,m

e
a
n
+

s
d
,m

a
x
3
,m

a
x

0 2000 4000 6000 8000
0

200

400

600
packet throughput [ms/t]

IN transaction size [B], (R=0)

m
in

,m
e
a
n
,m

e
a
n
+

s
d
,m

a
x
3
,m

a
x

0 2000 4000 6000 8000
0

200

400

600
zoom

m
in

,m
e
a
n
,m

e
a
n
+

s
d
,m

a
x
3
,m

a
x

zoom

IN  package size [B]

latency [ms]

IN  package size [B]

Figure 5.  Statistics of RTT experimental results for 

UHCI controller depending on the package size: 

minimum (blue), mean (green), mean+SD (red), 

max3 (cyan) and maximum (magenta) 

The minimum can to some extent be thought 

as a limit imposed by the system hardware/ 

software configuration. For such 

interpretation the developer aim can be to 

make the mean value as close to the 

minimum as possible. Figure 5 shows abrupt 

increases of maximum times for packages 

larger than 4 kB, running up to 200–500 ms, 

even if this only happens sporadically.  
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The mean received data stream is illustrated in 

Figure 6. The stream is heavily dependent on 

the package size. For example, 1000 B 

packages are transmitted at 90 kB/s and larger 

packages are transferred in an even larger 

streams, up to 425 kB/s (for 8000 B). 
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Figure 6.  Mean stream throughput in kB/s for 

UHCI controller depending on the 

size of incoming package 

In these instances all times measured in the 

experiments increase, e.g. the mean RTT for 

packages with 8000 B is 18.8 ms (Figure 5). 

Experimental results for EHCI 

controller 

EHCI class controllers provide the same bitrate 

as the UHCI class, but their different hardware 

design [21] and software drivers allow EHCI to 

achieve a somewhat higher actual throughput 

and shorter RTT when compared to UHCI.  

Detailed results and their analysis for IN 

transactions with 100 B packages are shown in 

Figure 7. The mean RTT is 8.36 ms, i.e. 1.12 

ms better than with the UHCI. There is also a 

significant increase in the proportion of 

transactions within 4–6 ms (compare with 

Figure 3b). SD equals 6.67 ms. 82.31% of 

packages are transacted in less than 9 ms and 

86.18% in less than 16 ms. 
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Figure 7.  Experimental RTT for EHCI controller. 

Package size IN=100 B: 

a) RTT time series, b) RTT histogram

Figure 8 shows a summary of time statistics 

with an EHCI controller for various package 

sizes. In comparison to a UHCI the results are 

better approximately by 1 ms for small 

packages and by 3 ms for large packages.  
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Figure 8.  Statistics of RTT experimental results for 

EHCI controller depending on the package size: 

minimum (blue), mean (green), mean+SD (red), 

max3 (cyan) and maximum (magenta) 

Mean throughputs obtained with an EHCI 

(Figure 9) are higher than with a UHCI. For 

example with an input package of 1000 B the 

stream throughput is 120 kB/s and for large 

packages of 8000 B it reaches nearly 500 kB/s. 

This represents an increase in the order of 20% 

over a UHCI. 
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Figure 9.  Mean stream throughput in kB/s for 

EHCI controller depending on the 

 size of incoming package 

4. Proposed Optimisation and

Its Effect

The performance of the test system given in 

section 3 is actually poorer than capabilities 

reported in [1, 10], where all algorithms has 

been implemented in native (compiled) 

programming languages. The difference is 

particularly large in throughput. This means 

that there exists a potential for optimisation of a 

connection involving the Matlab environment. 

Such optimisation is expected to compensate 

for a performance drop caused by the usage of 

the interpreted Matlab programming language. 

The proposed software optimisation involves 

concurrent execution of certain part of the 

package exchange handling code. Since the 

Matlab environment does not support threads in 

the script language it is proposed that OUT 

packages should be queued at a CDC driver 

level. In this configuration the components: 

host driver stack – CDC driver – Matlab are 

capable of exchanging at much shorter waiting 

time. The proposed optimisation allows parallel 

execution of certain tasks. Indeed, while one 

part of a CDC driver is exchanging data with 

Matlab its other part can be communicating 

with the host driver. The length of the queue, 

marked as R, may be equal to one or higher. 
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The proposed optimisation has also the benefit 

of requiring no intervention in either the CDC 

driver code or in its settings.  

The optimisation with R=1 increases 

considerably the mean throughput. The 

relationship between throughput and package 

size for the EHCI host are illustrated in Figure 

10. The gain in throughput is particularly high

with smaller packages, where it increases from 

120 kB/s before optimisation to 300 kB/s for 

IN=1000 B and from 240 kB/s to 566 kB/s for 

IN=2000 B. The optimum operating condition, 

suggested by authors, is at around 2 kB, beyond 

which the gain in throughput is smaller, 

although packages of IN=8 kB are transacted at 

710 kB/s. Packages of the size above 2 kB take 

significantly longer to transact in real-time. 
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Figure 10.  Mean stream throughput in kB/s with 

optimization (R=1) for EHCI controller depending 

on the size of incoming package 

Let us introduce additional communication 

quality measure equal to time elapsing between 

beginnings of two consecutive transactions. Let 

us call it Transaction Repetition Time (TRT). In 

Figure 11 an exemplary relationship between 

RTT and TRT is depicted. Vertical bars located 

above the time line represents an action of 

request package commissioning by a Matlab 

script while bars below the line reflects an event 

of reply package reception. Curved solid arrows 

connect corresponding request and response 

packages. For configuration without package 

queuing (R=0), RTT and TRT are equal because 

a new transaction is initiated as soon as the 

previous one finishes. In case of optimised 

solution with R1, TRT can be considerably 

shorter than RTT as the next transaction may be 

initiated before the previous one ends. Thus 

consecutive transactions can overlap 

significantly reducing the TRT. For R=1, TRT 

can be theoretically as low as half the RTT, for 

R=2 TRT can drop to one third of RTT and so 

on. One of the main aims of experiments 

described in this section is to verify if the 

introduction of queuing can reduce RTT, what 

conditions are necessary for this to happen, and 

how large reduction can be achieved. 

Detailed real time performance characterisation 

can be broken down into latency (RTT), 

repetition period (TRT) and sensor data 

throughput. Latency is a key parameter for 

control systems, as it defines the capability of 

closed control loops to exchange sensor and 

control data and represents the combined delay 

of packages (IN OUT) for the same control 

cycle. Repetition period defines the exchange 

time of data packages and is important for 

determination of the speed of subsequent 

transactions. Sensor data throughput is a key 

parameter for data acquisition application 

where large data sets have to be transferred 

with a high rate. 

Figure 11.  Theoretical relationship between TRT 

and RTT without and with optimisation (for large 

IN packages) 

In a closed loop control system the RTT 

contributes to the total control loop time delay 

while the TRT corresponds to the sampling 

period. The quality of control usually increases 

when both time delay and sampling period are 

reduced. The optimisation proposed by authors 

can influence both parameters and the change 

in the quality of control results from a 

combination of this two factors. 
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Figure 12.  Experimental results of RTT and TRT 

with optimization (R=1) for EHCI controller. 

Package size IN=100 B: a) TRT (blue) and RTT 

(green) recorded, b) RTT histogram 

Figure 12 illustrates results obtained for 

transactions of IN=100 B packages and an 

EHCI host controller with R=1. The 

optimisation clearly shortens all data exchange 

time measures (compare Figures 12a and 7a). 

The mean latency achieves 5.99 ms, which is 

significantly lower than that prior to the 

optimisation (8.36 ms). The SD parameter is 

also lower at 3.35 ms, which means a better 
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time stability (lower jitter) than with no 

optimisation. Latency lower than 6 ms is 

recorded for 83.5% packages and lower than 10 

ms for 95.6% packages. The mean repetition 

time TRT drops to 2.99 ms and the IN data 

stream throughput grows to 33.3 kB/s. 

For larger packages (IN=2000 B, Figure 13) the 

mean latency is 7.05 ms and SD equals 2.59 

ms. Latency lower than 8 ms is achieved in 

88.7% package exchange cycles and lower than 

10 ms in 97.22% cycles. The mean data stream 

throughput is 566 kB/s and the mean repetition 

time TRT equals 3.53 ms. The ratio of mean 

values of TRT and RTT is approximately equal 

to 1:2. This is however not necessarily the case 

for their instantaneous values as can be clearly 

seen in Figures 12 or 13. A sporadic increase in 

the TRT causes the ratio to be temporarily 

closer to one. 
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Figure 13.  Experimental results of RTT and TRT 

with optimization (R=1) for EHCI controller. 

Package size IN=2000 B: a) TRT (blue) and RTT 

(green) recorded, b) RTT histogram 

A summary of real-time properties after 

optimisation (R=1) is illustrated in Figure 14.  
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Figure 14.  Statistics of RTT and TRT experimental 

results with optimization (R=1) for EHCI controller 

depending on the package size: minimum (blue), 

mean (green), mean+SD (red), max3 (cyan) and 

maximum (magenta) of: a) RTT, b) TRT 

The mean latency for the smallest packages 

tested, IN=48 B, is 5.37 ms, which is nearly 

1.45 times less than without the optimisation. 

The mean repetition time TRT recorded is 2.69 

ms. With packages of IN=4000 B the mean 

latency equals 14.33 ms and the mean TRT – 

7.16 ms. 

The data stream performance can be further 

improved at an expense of latency. Figure 15 

presents a summary of throughput results 

depending on the package size at the 

optimisation parameter R=3. A data stream 

throughput of 924.8 kB/s is achieved with the 

package size as low as IN=3000 B, with the 

corresponding latency of 12.98 ms and 

SD=0.66 ms. 
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Figure 15.  Mean stream throughput in kB/s with 

optimization (R=3) for EHCI controller depending 

on the size of incoming package 

Details of the real-time performances for 

packages of IN=1250 B and R=3 are shown in 

Figure 16.  
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Figure 16.  Experimental results of RTT and TRT 

with optimization (R=3) for EHCI controller. 

Package size IN=1250 B: a) TRT (blue) and RTT 

(green) recorded, b) RTT histogram 

The data stream is 655.8 kB/s, the mean latency 

equals 7.63 ms and SD=1.18 ms. This is a far 

better performance than without the 

optimisation, both in terms of lower latency 

variability (lower jitter) and data throughput. 

The mean repetition time TRT is 1.91 ms. 

An exemplary selection of data presented in 

this and previous sections is given in Tables 2 

and 3. They contain only a very limited 

information compared to several figures 

included in the discussion, however they can 

immediately reveal the main tendencies 

discovered through the research that are 

important for system designers and developers.  

Table 2 shows that an increase in the response 

package size elongates the RTT but also 

enlarges the throughput (that is a beneficial 

result for data acquisition systems). The 
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difference between system performance with 

UHCI and EHCI controller are also noticeable 

in favour of the latter solution. 

Table. 2.  Selective performance comparison for 

UHCI versus EHCI controllers without optimisation 

(TP – IN data mean throughput) 

IN packet size 

48 B 100 B 1000 B 3500 B 8000 B 

C
o
n

tr
o

ll
er

 

U
H

C
I RTT, ms 

SD, ms 
TP, kB/s 

9.47 

7.48 
5.01 

9.48 

7.29 
10.6 

11.1 

8.49 
90.1 

12.3 

7.91 
284 

18.8 

15.0 
426 

E
H

C
I RTT, ms 

SD, ms 
TP, kB/s 

8.13 

6.61 
5.90 

8.36 

6.67 
12.0 

8.33 

7.25 
120 

12.1 

8.20 
289 

16.3 

12.3 
490 

Table 3 shows benefits of optimization. Let us 

compare two rows corresponding to R=0 and 

R=1 respectively. Optimization technique can 

increase the throughput over twice (in case of 

small and medium size packages). For large 

packages the increase is less pronounced. 

Counter intuitively, for small and medium size 

packages, parameter R=1 reduces also 

noticeably round trip time. It is however not the 

case for large packages where RTT increases. 

Optimisation decreases also substantially 

transaction repetition time. For small packages 

TRT shortens roughly three times while for 

large ones the ratio is one and a half. 

Table. 3.  Selective performance comparison for 

EHCI controller with and without optimisation (TP 

– IN data mean throughput)

Optimisation 

parameter 

IN packet size 

48B 100B 1000B 2000B 4000B 8000B 

R
=

0
 

RTT, ms 8.13 8.36 8.33 8.33 12.2 16.3 

SD, ms 6.61 6.67 7.25 8.20 8.05 12.3 

TP, kB/s 5.90 12.0 120 240 328 490 

TRT, ms 8.13 8.36 8.33 8.33 12.2 16.3 

R
=

1
 

RTT, ms 5.37 5.99 6.66 7.05 14.3 22.5 

SD, ms 2.89 3.35 3.71 2.59 9.13 15.4 

TP, kB/s 8.93 33.3 300 566 559 710 

TRT, ms 2.69 2.99 3.33 3.53 7.16 11.3 

R
=

3
 

RTT, ms 7.50 7.62 7.37 9.50 18.2 39.7 

SD, ms 4.13 1.87 2.43 2.56 4.08 8.53 

TP, kB/s 25.6 52.5 582 842 878 806 

TRT, ms 1.88 1.90 1.84 2.37 4.56 9.92 

It is obvious from Table 3 as well as Figure 11 

that request package queuing can be beneficial 

for data acquisition applications as it may 

increase the throughput twice or even more 

thus allowing for a higher data collection rate. 

What is less obvious, the queue may be 

advantageous also for application with closed 

control loop. Admittedly, a queue introduces a 

shift in a train of request packages, but it also 

causes packages to be sent with a higher 

frequency. The latter phenomenon can fully 

compensate for the former or even dominate it 

(for small and medium size packages). This 

results in a noticeably shorter RTT (that 

corresponds to shorter loop time delay) 

coinciding with considerably shorter TRT (and 

hence higher sampling period). This is the case 

for example for EHCI controller with R=1 and 

IN=100 B. Larger amount of information 

available to the controller combined with lower 

time delay in a control loop can result in 

control quality improvement. 

5. Conclusions

The study focuses on an experimental testing of 

real-time properties of a USB link between a 

measurement/control system and the Matlab 

environment. The acquisition/execution module 

has been implemented with a 32-bit 

microcontroller based on an ARM Cortex-M3 

core and equipped with a hardware USB-UDP 

port. The study demonstrates that it is possible 

to achieve a high throughput and low latency 

with a standard CDC communication class 

without developing device specific drivers. The 

proposed optimisation has been proved to 

deliver the mean sensor data stream in the order 

of 920 kB/s. This result is comparable to 

performance achievable in systems where 

master module is implemented in C/C++ 

language. Thus, in the proposed solution, 

Matlab m-file based prototyping environment 

provides the performance compatible to that 

expected in a target system. 

The entire solution has a universal, low-budget 

and compact nature thanks to the application of 

a single SoC microcontroller. Importantly, it 

allows rapid prototyping, development and 

validation, as well as laboratory evaluation. 

The results are applicable for systems 

implemented on different hardware platforms 

(with MIPS, AVR32 or FPGA cores).  

It is envisaged to extend the research to a USB 

network comprising several nodes. 
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