

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 239

1. Introduction

In the last decades, many complex and
distributed software systems, including process
control system, diagnosis system, and
modelling have used agent-oriented
technologies (AOT). These new technology
provides a new approach that aims at
supporting the whole software development
process (analysis, design, and implementation).
The goal of AOT is to handle all phases and to
offer a level of abstraction adequate to the
problem to be solved, using a single, uniform
concept, namely that of agents.

Agents are defined as autonomous entities, with
cooperating and coordinating capacities, able to
adapt to the new environment conditions and
act together for accomplish a global objective.
Due to these considerations, they have provided
a path to build more robust intelligent
applications from a different point of view.

AOT represent a natural extension to object-
oriented techniques (OOT). In terms of OOT,
agents can be seen as active objects. There are
also main differences between objects and
agents, as stated by [20]: the description of the
internal state of an agent (by using notions like
beliefs, goals, intentions etc.) and
characterization of communication (by
description of message types and the
structuring of messages into protocols).

Over the past few years, researchers in various
domains (computer science, information

technology, engineering etc.) have worked
together and have been several attempts at
creating tools and methodologies for building
multi-agent systems (MAS).

Although more methods and approaches have
been proposed for this purpose, none of these
methods have been accepted as a standard. The
heterogeneous environment, the evolution of
events, the probability of unexpected events
occurrence, the difficulty to trace the system
evolution involve producing a gap between
agent oriented methods and the modelling
needs of agent-based systems. A drawback of
agent oriented software engineering
methodologies, resulted from many discussions
and research works presented in literature, is
the lack of agreement on how to identify roles
in the analysis phase and how to identify agent
types in the design phase [22, 7].

This paper presents a methodology for building
an agent-oriented system applied in oil
industry. After a careful study, the authors have
chosen the ZEUS methodology for multi-agent
system development. MAS-GOSP is the
proposed system that maps the processes of a
Gas-Oil Separation Plant (GOSP) and consists
in an agents’ society with various specific
assigned roles.

The article is organized as follows: section 2
gives the related work regarding agent-oriented
methodology, section 3 contains the MAS-
GOSP architecture and its functionalities,
section 4 presents the experiments and the

A Methodology for Agent-Oriented Systems Development
Applied in Oil Industry

Liviu IONIȚĂ, Irina IONIŢĂ
Petroleum-Gas University of Ploieşti, Blvd. Bucureşti, no. 39, Ploieşti, 100680, Romania,
lionita@gmail.com;tirinelle@yahoo.com

Abstract: Nowadays, the oil and gas industry faces a rapid evolution which involves the use of a wide specialized
software based capabilities to achieve its business targets. Software and information technology represent the
framework for a variety of business processes such as exploration, well construction, production optimization and
operations. Complex oil and gas facilities gather key engineering and related disciplines needed to analyze, desi gn,
engineer, and operate the facility across its entire lifecycle. A solution that is emerging today to assist the processes
developed within an industrial plant (e.g. gas-oil separation plant) is represented by intelligent agents. Due to their
capabilities (reactivity, social ability, mobility, veracity, rationality, and learning/adaptation) agents can successful
work together to solve complex and distributed problems associated to production, storing, transport and processing
the petroleum products. After a careful analysis of agent-based methodologies, the authors of the current paper have
chosen ZEUS methodology for development of a multi-agents system applied in oil industry. The research work
consists in: defining of agents, the inter-agent communication, associating the roles of agents, implementing, testing
and evaluating the designed multi-agent system.
Keywords: intelligent agent, multi-agent system, agent-oriented methodology, gas-oil separator

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 240

results and the final section contains the
conclusion and the future work.

2. Related Work

The agent technology has evolved rapidly
along with a growing number of agent
architectures, theories and languages and
became one of the most important and active
area of research and development. Agent
oriented software engineering (AOSE) has
numerous applications in various domains such
as information management, air traffic control,
electronic commerce, business process
management, industry etc. A growing number
of agent-based software engineering
methodologies have been proposed in recent
years in order to provide models, methods,
tools and techniques for development of
software systems in a systematic way [23].

The general template of an agent-oriented
methodology consists in three submodels: the
agent model, the organizational model and the
cooperation model [2]. The agent model
contains agents and their internal structure,
described in terms of goals, plans and beliefs.
The organizational model specifies the
relationships between agents and agent types.
Also here are mentioned the relationships
among agents based on their assigned roles in

organizations. The cooperation model describes
the interaction among agents in a detailed way.

In literature, several methodologies for
analysing, designing, and building multi-agent
systems are based on theory of artificial
intelligence (AI) coming from knowledge
engineering (KE). Other methods extends the
object-oriented methodologies or combine them
with knowledge-based methodologies. The
Figure 1 shows the development of agent-
oriented methodologies (AOM) and the
influences of object-oriented methodologies
(OOM) on agent-oriented methodology (AOM).

The Multiagent Systems Engineering (MaSE)
methodology, presented in [8,24] admits the
influences from research work of authors
Kendall, Malkoun and Jiang [12], as well as an
heredity from AAII [13], which was
significantly affected by the OOM recognized
as Object Modeling Technique (OMT) [19].
The Gaia methodology [25, 26] uses the
concepts of OOM of Fusion [4]. Tropos
represents an AO extension from Gaia
methodology. The Rational Unified Process
(RUP) [14], other OO approach, provides the
basis for ADELFE [1] and also for
Methodology for Engineering Systems of
Software Agents (MESSAGE) [3]. The aim of
MESSAGE is to extend existing methodologies

Figure 1. The influences of OOM on AOM (adapted from [11])

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 241

to allow them to support AOSE. UML is used
for notation and also activity diagrams are
generated. The analysis and design process in
MESSAGE are based on the RUP [9].

INGENIAS [18] appears as an extension of
MESSAGE, its concepts being also inherited
from OOM. Prometheus [17], uses OO
diagrams and concepts, even is not a
descendent of OOM. PASSI [6] combines
object-oriented concepts with MAS ideas,
using UML description. ZEUS [16] is a
methodology for building MAS, based on Java
language, which represents an object-oriented
programming language.

In the second part of this section, the authors
shortly describe ZEUS methodology used for
MAS implementation.

ZEUS [16] defines a multi-agent system design
methodology, and automatically generates the
executable source code of the user-defined
agents. The ZEUS steps are: analysis, design,
implementation and testing the system.

In the analysis phase, the main concern is to
better understand the problem that will be
solved. This methodology suggests using a
specific method for analysis such as modelling
roles [15].

An agent can have several roles and multiple
responsibilities are associated to each role. A
role model represents a template for the simplest
solution of a problem. A role of an agent
describes the position and the responsibilities’
list of the agent in a certain context or role
model. ZEUS vocabulary consists in associated
roles of agents and the role models generated for
multi-agent system description.

The first step of system design is to assign the
roles identified at the previous step (analysis) to
agents that form multi-agent system. The
system developer translates the problem
formulated initial in term of roles and
responsibilities, in terms of agents and tasks or
services. The problem is modelled as a multi-
agent system concept. After this step, the
declarative knowledge is modelled. This type
of knowledge is used then by agents. In ZEUS,
the concepts used are defined as facts and are
categorized in: abstract and entity, in a
hierarchical form. Each concept is
characterized by a name and an attributes list
that contains a name, a data type, constrains
and an implicit value. The key concepts defined

by the developer represent the ontology of the
multi-agent system. The used terms will be
found in the messages exchanged between
agents. Their values may be modified as a
result of task/service execution [15, 5].

Agent-based system implementation assumes
the following sub-phases: creating ontology,
creating each task agent (that implies agent
definition, tasks description, agent organization
and agent coordination), agent utilitarian
configuring, task agent configuring and editing
the Java source code). ZEUS provides a
specific tool named Agent Generator
responsible for making these steps. Also, a
ZEUS agent called Visualizer helps the
developer to test the designed multi-agent
system. Its main role is debugging system,
analysing messages passing, analysing agents’
evolution and behaviour, analysing tasks
execution and goals accomplishment [15, 5].

An important feature of ZEUS is represented
by the embedded specialized editors (e.g.
Ontology Editor, Task Description Editor,
Organization Editor, Agent Definition Editor,
Coordination Editor etc.) which essentially
facilitate the identification and description of a
set of agents, selecting agent functionality and
inputting task and domain-related data. The
output of the ZEUS methodology is a logical
description of a set of agents and a set of tasks.

A ZEUS agent encapsulates the BDI model,
meaning that Beliefs in ZEUS are translated to
facts/beliefs, desires to goals, and intentions to
commitments. The authors from [15, 5] consider
that ZEUS methodology is more prescriptive
and comprehensive than the BDI approach.

Having as starting point the above discussion
regarding agent-oriented methodologies, in the
following section, the authors of the current
paper describe a multi-agent system
architecture design for managing the activities
of an industrial plant. In example given, a Gas-
Oil Separation Plant (GOSP) is analyzed and
modelled from an intelligent agent approach.

3. MAS-GOSP Architecture

A short description of GOSP
Before describing the multi-agent system
architecture for GOSP, the authors shortly
present the separation process in a three-
phase separator.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 242

Inside of a three-phase separator the free water
is separated and removed from the mixture of
crude oil and water. Figure 2 contains a
schematic representation of a three phase
horizontal separator. The input of the separator
is the fluid that hits an inlet diverter. At this
moment, an initial gross separation of liquid
and vapour is produced. In most designs, as is
seen in literature [20] the inlet diverter contains
a down comer that guides the liquid flow below
the oil/water interface. The inlet mixture of oil
and water is forced to mix with the water
continuous phase in the bottom of the vessel
and rise to the oil /water interface. In industrial
domain terms, this process is known as “water-
washing” [20]. The role of the inlet diverter is
to assure that little gas is carried with the
liquid. Supplementary, this device assures that
the liquid is not injected above the gas /oil or
oil /water interface, which would mix the liquid
retained in the vessel. On the contrary, if the
undesirable process occurred the control of the
oil /water interface would became difficult.
Some of the gas flows over the inlet diverter
and then follow the horizontal line through the
gravity settling section above the liquid. A
consequence is that small drops of liquid mixed
with gas are separated out by gravity and fall to
the gas-liquid interface. The smallest drops are
not easily separated in the gravity settling
section and a new separation process is needed.

As a result, before the gas leaves the vessel it
passes through a coalescing section or mist
extractor to coalesce and remove them [20].

Monitoring this complex process of separation
is not an easy task. Automation devices such as
transmitters, actuators, control valves, and
controllers are used according to a control
scheme, with several control loops in order to
maintain the proper state of the GOSP.

In the next section, a gas-oil separator is
modelled through agent-oriented approach,
resulting a multi-agent system named MAS-
GOSP. A detailed description of the proposed
system and how it’s working is given below.

System architecture
The three-phase separator is equipped with
sensors (for pressure, temperature and level
measuring), control valves, PID controllers and
a "radiator" in the form of coil used for heating
the mixture. The heater is connected to a boiler
providing heating agent. Since the boiler serves
several separators in the same park of
separators, there is a second unit that supplies
the heating agent rapidly, if it’s necessary.

The environment is common to all the agents.
In the example given, the environment is
represented by the GOSP where agents act and
accomplish assigned services. The agents’
environment has the following characteristics:

Figure 2. GOSP Agency

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 243

- The environment is inaccessible – the
agents do not have access to the entire state
of the environment;

- The environment is non-deterministic –
permanently, the environment is influenced
by the other agents;

- The environment is not episodic;
- The environment is dynamic, continuously

changing during the separation process;
- The environment is continuously, whereas

the indicators go through a continuous
range of values.

The architecture proposed for MAS-GOSP
consists in nine agents with specific roles:
Operator Agent, Diagnosis Agent, Input Agent,
Process Agent, RFG Agent, RFP Agent, RFA
Agent, AT1 Agent and AT2 Agent (Figure 2).

The agents that constitute the MAS for
monitoring the GOSP have assigned several
roles and responsibilities depicted below:

- Operator Agent – is responsible for
providing all the information needed
referring to the system functioning, to the
human operator. This agent represents the
interface between system and human
operator, located to the control room.

- Input Agent – this agent has the role to
monitor the inlet flow of mixture;

- Process Agent – this agent is responsible
with the separation of fluid extracted from
oil fields in three phases: gas, oil and water
reservoir, through a fluid process heating
using hot water;

- RFA Agent – this agent controls the water
phase obtained after separation process;

- RFP Agent – the role of this agent is to
control the oil phase obtained after
separation process;

- RFG Agent – this agent controls the gas
phase obtained after separation process;

- AT1 Agent – this agent is responsible with
the heating unit HU1 that supplies the heat
water necessary during the separation
process;

- AT2 Agent – this agent has in charge the
heating unit HU2, which supplies heating
agent only if the HU1 does not provide,
from different reasons (e.g. several faults
occur during process), the heating agent
quantity requested;

- Diagnostic Agent – this agent is
responsible with system diagnosis, with
subordinate agents RFA Agent, RFG
Agent, RFP Agent and Process Agent.

The agents of MAS-GOSP form the control
plan in real time and interact and collaborate
together to achieve the proposed objectives.
The planning process is characterized by a
distributed and cooperative planning. Each
agent creates its own plans and adapts them to
the other agents’ plans during the negotiation.

These agents proposed by the authors will be
added utilitarian agents needed for a correct
functioning of the MAS in ZEUS environment
(ANS Agent, Facilitator and Visualizer).

Considering the system requirements and
constrains, the initial analysis generate the
following agent acquaintance diagram,
presented in figure 3.

Figure 3. Agent acquaintance diagram

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 244

Each agent has assigned one or multiple roles,
as is presented in the Table 1.

The agent types of a MAS-GOSP are defined
by considering the roles and scenarios of the
system requirements. The agents should be
evaluated against the criteria of coupling and
cohesion, in order to establish the data needed
by the different roles.

Table 2 contains a description of agents is
given in form of Percepts, Actions, Goals and
Environment known as PAGE description.

4. Experiments and Results
The authors present the following evaluation
scenario, where only three agents are
implemented in ZEUS framework: Process

Agent, AT1 Agent and AT2 Agent. The
formulation of scenario is: we assume that

Process Agent requires heating agent from AT1
Agent and AT2 Agent. The availability for
agents to accomplish this objective is different.
The authors consider the case that AT1 Agent
has a decrease availability (e.g. Availability=1),
and AT2 Agent has an increase availability
(e.g. Availability=10).

Figure 4 presents the graphical interface of the
agents and the results of a negotiation.

During negotiation, the agents communicate
and message change in order to achieve the
goal. As a result, AT1 Agent is refused and
AT2 Agent provides the heating agent for
Process Agent.

Table 1. The correspondent roles for MAS agents

Agent Name Roles
Operator Agent System data and alarm presentation to human operator

Diagnosis Agent
Alarm generation on the base of critical situation detection by agents: Input Agent, RFG Agent, RFP
Agent, RFA Agent; inputs/output system presentation (input mixture flow, output gas flow, output oil
flow and output water flow)

Process Agent Heating mixture for separation in three phases (gas, oil, water) (initiator for AT1 Agent and AT2 Agent)

Input Agent Three-phase Separator supply, input mixture flow measuring, critical situation detection (e.g.
measured values outside the range of values)

AT1 Agent Process supply with heating agent (Respondent to Process Agent, initiator for AT2 Agent)
AT2 Agent Process and AT1 Agent supply with heating agent (Respondent to AT1 Agent and to Process Agent)

RFG Agent Gas pressure measuring inside the separator, pressure control, critical situation detection (e.g.
measured values outside the range of values), output gas flow measuring

RFP Agent Oil level measuring inside the separator, level control, critical situation detection (e.g. measured
values outside the range of values), output oil flow measuring

RFA Agent Water level measuring inside the separator, level control, critical situation detection (e.g. measured
values outside the range of values), output water flow measuring

Figure 4. MAS-GOSP GUI

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 245

Figure 5 presents the information flow between
the three implemented agents (Process Agent,
AT1 Agent and AT2 Agent):

- Process Agent requires heating agent from
AT1 Agent;

Figure 5. Negotiation

Table 2. The correspondent roles for MAS agents

Agent Name Precepts Actions Goals Environment
Input Agent Measured values of

input flow in the
separator

Measures oil-well fluid,
detects critical situation

Assures the optimal flow
for a correct mixture
separation

Gas-Oil Separation
Plan

Process Agent Measured values of
mixture temperature

Negotiates with AT1 Agent
and AT2 Agent to obtain
heating agent

Heats the mixture for
separation in three phases
(gas, oil and water)

Gas-Oil Separation
Plan

AT1 Agent The need for heating
agent (liquid units)

Negotiates with Process
Agent for heating agent
supply and negotiates with
AT2 Agent for heating agent
supplementation in case of
unavailability /failure of AT1
Agent

Provides heating agent
for Process Agent

Gas-Oil Separation
Plan

AT2 Agent The need for heating
agent (liquid units)

Negotiates with Process
Agent for heating agent
supply and negotiates with
AT1 Agent for providing
supplementary heating agent

Provides heating agent
for Process Agent and for
AT1 Agent, only if is
necessary

Gas-Oil Separation
Plan

Operator Agent Data offered by
Diagnosis Agent

Represents and assists the
human operator

Offers the information to
the human operator
regarding the global state
of system operation and
presents the alarms

Gas-Oil Separation
Plan

Diagnosis
Agent

Flow, level, pressure,
temperature readings
offered by Process
Agent, Input Agent,
RFG Agent, RFP Agent
and RFA Agent

Transmits the system data to
Operator Agent and identifies
the possible failures occurred
inside the system (generates
alarms)

Maintains the system in
the operating limits

Gas-Oil Separation
Plan

RFG Agent Gas pressure into
separator

Opens, closes valve, adjusts
gas pressure with pressure
control loop, detects critical
situation

Evacuates the gas phase
from oil-well fluid due
the separation process

Gas-Oil Separation
Plan

RFP Agent Oil level into separator Opens, closes valve, adjusts
oil level with level control
loop, detects critical situation

Evacuates the oil phase
from oil-well fluid due
the separation process

Gas-Oil Separation
Plan

RFA Agent Water level into
separator

Opens, closes valve, adjusts
water level with level control
loop, detects critical situation

Evacuates the water
phase from oil-well fluid
due the separation
process

Gas-Oil Separation
Plan

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 246

- Process Agent requires heating agent from
AT2 Agent;

- AT2 Agent provides heating agent after
negotiations to the Process Agent;

- AT1 Agent is refused (is unavailable
because provides heating agent to other
separator).

AT1 Agent uses FIPA Contract Net Protocol
Manager coordinating protocol, and Growth
Function strategy, as a strategy of initiator (tick
"Initiator"). AT1 Agent also uses FIPA
Contract Net Protocol Coordination Contractor,
and Decay Function strategy, as the
respondent’s strategy (tick "Respondent").

In the example given, the authors consider
Process Agent, AT1 Agent and AT2 Agent
which form a subsystem of MAS. The entire
agent-based architecture implementation
represents authors’ future work.

5. Conclusions

The current paper is based on the research
work of the authors regarding the designing a
multi-agent system applied in industrial
field. MAS-GOSP consists in nine agents
with specific roles which work together
for goal achievement. For MAS
implementation the authors uses ZEUS, an
agent-oriented methodology.

In the example given, the environment of
agents is a gas-oil separation plant (GOSP).
The main contribution of the authors is
represented by agent-oriented architecture that
maps the real system on the oil field. Each
agent has assigned a role in order to cover the
entire functions of the GOSP. A PAGE
description is used to better understand the
agents’ lifecycle in the MAS.

The research work presented in the paper
consists in only three agents’ implementation in
ZEUS framework: Process Agent, AT1 Agent
and AT2 Agent, that forms a subsystem of
MAS. An evaluation scenario is formulated to
describe the interaction between agents.

Future work will focus on implementing to the
others agents of MAS so that MAS-GOSP will
become a monitoring and diagnosis system.

REFERENCES

1. BERNON, C., M.-P. GLEIZES, G.
PICARD, P. GLIZE, The ADELFE
Methodology for an Intranet System
Design, In P. Giorgini, Y. Lespérance, G.
Wagner, & E. Yu (Eds.), Proceedings of
Agent-Oriented Information Systems,
AOIS-2002, AOIS.org, 2002, pp. 1-15.

2. BURMEISTER, B., Models and
Methodology for Agent-oriented
Analysis and Design, Working Notes of
the KI 96.96-06, 1996, pp. 52.

3. CAIRE, G., W. COULIER, F. GARIJO,
J. GOMEZ, J. PAVON, F. LEAL, P.
CHAINHO, P. KEARNEY, J. STARK,
R. EVANS, P. MASSONET, Agent-
oriented Analysis using
MESSAGE/UML, In M. Wooldridge, G.
Wei, & P. Ciancarini (Eds.), Agent-
oriented Software Engineering II LNCS
2222. Berlin: Springer-Verlag, 2001, pp.
119-135.

4. COLEMAN, D., P. ARNOLD, S.
BODOFF, C. DOLLIN, H. GILCHRIST,
Object Oriented Development. The
Fusion Method, Englewood Cliffs, NJ:
Prentice Hall, 1994

5. COLLIS, J., D. NDUMU, C. VAN
BUSKRIK, The ZEUS Technical
Manual. Intelligent Systems Research
Group, BT Labs, British
Telecommunications, 1999.

6. COSSENTINO, M., C. POTTS, A CASE
Tool supported Methodology for the
Design of Multi-agent Systems, In H. R.
Ababnia & Y. Mun (Eds.), Proceedings
of the 2002 International Conference on
Software Engineering Research and
Practice (SERP’02), Las Vegas, June 24-
27, 2002, pp. 315-321.

7. DASTANI, M., J. HULSTIJN, F.
DIGNUM, J. JULES, C. MEYER, Issues
in Multi-agent System Development,
ACM Press, International Conference on
Autonomous Agents Proceedings of the
Third International Joint Conference on
Autonomous Agents and Multi-agent
Systems – Vol. 2, 2004, pp. 922-929.

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 247

8. DELOACH, S. A., Multi-agent Systems
Engineering: A Methodology and
Language for Designing Agent
Systems, in Proceedings of the First
International Bi-conference Workshop
on Agent-Oriented Information
Systems (AOIS ’99), May 1, Seattle.
AOIS.org, 1999.

9. EVANS, R., P. KEARNEY, G. CAIRE,
F. GARIJO, J. GOMEZ SANZ, J.
PAVON, P. MASSONET, MESSAGE:
Methodology for Engineering Systems
of Software Agents, EURESCOM
Conference, EDIN, 0223-0907, 2001.

10. GARIJO, F. J., J. J. GOMEZ-SANZ, P.
MASSONET, The MESSAGE
Methodology for Agent-oriented
Analysis and Design, Agent-Oriented
Methodologies, vol. 8, 2005,
pp. 203-235.

11. GIORGINI, P., B. HENDERSON-
SELLER, Agent-Oriented
Methodology: An Introduction, Idea
Group Publishing, 2005

12. KENDALL, E. A., M. T. MALKOUN, C.
JIANG, A Methodology for Developing
Agent based Systems for Enterprise
Integration, in P. Bernus & L. Nemes
(Eds.), Modelling and Methodologies for
Enterprise Integration. London: Chapman
and Hall, 1996.

13. KINNY, D., M. GEORGEFF, M., A.
RAO, A Methodology and Modelling
Technique for Systems of BDI Agents,
Technical Note 58, Australian Artificial
Intelligence Institute, also published in
Proceedings of Agents Breaking Away,
the 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent
World (MAAMAW’96), Springer-Verlag,
1996, pp. 56-71.

14. KRUCHTEN, P., The Rational Unified
Process. An Introduction. Reading,
MA: Addison-Wesley, 1999.

15. NDUMU, D., J. C. COLLIS, H. S.
NWANA, L. C. LEE, The Zeus Agent
Building Toolkit, BT Technology
Journal, vol. 16, issue 3, 1998.

16. NWANA, H., D. NDUMU, L. LEE,
ZEUS: An Advanced Tool-Kit for
Engineering Distributed Multi-Agent
Systems, In: Proceedings of PAAM.
1998, pp. 377-392

17. PADGHAM, L., M. WINIKOFF,
Prometheus: A Methodology for
Developing Intelligent Agents, In F.
Giunchiglia, J. Odell, G. Weiß (Eds.),
Agent oriented Software Engineering III
Proceedings of the Third International
Workshop on Agent-Oriented Software
Engineering (AAMAS’02), LNCS 2585,
2002, pp. 174-185.

18. PAVÓN, J., J. GOMEZ-SANZ, R.
FUENTES, The INGENIAS
Methodology and Tools, In B.
Henderson-Sellers & P. Giorgini (Eds.),
Agent-oriented Methodologies (Chapter
4). Hershey, PA: Idea Group, 2005.

19. RUMBAUGH, J., M. BLAHA, W.
PREMERLANI, F. EDDY, W.
LORENSEN, Object-oriented
Modelling and Design, Englewood
Cliffs, NJ: Prentice-Hall, 1991.

20. SAYDA, A. F., J. H. TAYLOR,
Modelling and Control of Three-Phase
Gravity Separators in Oil
Production Facilities, American Control
Conference, 2007. ACC '07, IEEE, 2007,
pp. 4847-4853.

21. SHOHAM, Y., Agent Oriented
Programming, Stanford University
Technical Report STAN-CS-90-1335,
Stanford, 1990.

22. STURM, A., D. DORI, O. SHEHORY,
Single-model Method for Specifying
Multi-agent Systems, ACM Press, 2003,
pp. 121-128.

23. SUKHVIR, S., PRACHI, S. RICHA,
Evaluation of Agent Oriented Software
Engineering (AOSE) Methodologies - A
review, International Journal of Latest
Research in Science and Technology,
Vol.1, Issue 2, ISSN (Online): 2278-
5299, 2012, pp. 94-97.

24. WOOD, M., S. A. DELOACH, An
Overview of the Multi-agent Systems

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 248

Engineering Methodology, in P.
Ciancarini & M. Wooldridge (Eds.),
Proceedings of the 1st International
Workshop on Agent-Oriented Software
Engineering (AOSE-2000), LNCS 1957,
Springer-Verlag, 2000, pp. 207-222.

25. WOOLDRIDGE, M., N. R. JENNINGS,
D. KINNY, The Gaia Methodology for
Agent-oriented Analysis and Design,
Journal Autonomous Agents and
Multi-Agent Systems, vol. 3, 2000,
pp. 285-312.

26. ZAMBONELLI, F., N. R. JENNINGS,
M. WOOLDRIDGE, Developing Multi-
agent Systems: The Gaia Methodology,
In: ACM Transactions on Software
Engineering and Methodology, vol. 12,
issue 3, 2003, pp. 417-470.

