
Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 249

1. Introduction

Due to continuous and massive growth of
heterogeneous data collections, new
information retrieval techniques must be
developed or, at least, present techniques
should be improved. Information retrieval
applications are currently widespread and
millions of people are relying on them to
accomplish their professional, academic or
personal targets. Some of traditional
(relational) database searching techniques are
being replaced with data mining techniques
dedicated to various applications such as: text
documents search; image, audio and video
content search; web search engines. Several
challenges of digital information retrieval and
solutions are presented in [3].

While search is the central topic within the area
of information retrieval, researchers and IT
engineers pay attention to a wide variety of
other interrelated problems as well. These
cover storage and data manipulation, document
routing, filtering, and selective dissemination
(e.g. news aggregators, e-mail spam filters),
text clustering and categorization, topic
detection and tracking, information extraction,
summarization, question answering systems,
expert/knowledge search, and other wide
studied fields [1].

The volume of digital data available to be
processed online is staggering. Large
information service providers have massed
databases of petabytes, the biggest intranets
contain over a million web pages, and even

private document collections showed an
exponential growth lately. Internet itself was
proven to closely follow a “Moore like” growth
law [2] As the amount of data grows, searching
and indexing costs rise up altogether with
penalties in response time. Parallel algorithms
and distributed processing and storing
techniques may represent an efficient solution
for enhancing modern search systems.

Although parallel computing algorithms
eventually produce same results as their
sequential equivalents, they have some
advantages over the latter: shorter processing
time, capability of processing higher amounts
of data or solving a more difficult problem.
Though, parallel algorithms usually have a
higher complexity which requires more
complex or additional hardware architectures.
For years, all these were challenges for the
central processing unit (CPU) and the
performance improvement was highly
dependent on the number of cores, being, of
course, limited by the Amdahl's law [27].

During the last years, processing units' design
has split into two major directions. On one
hand, we have multi-core processors (2-10
cores per chip, such as AMD Phenom II, Intel
I3, I5, I7 or Xeon E7) which are mostly
dedicated to general purpose application for
which they offer improved performance due to
increased working frequency and small degree
of parallelization. On the other hand, we have

many-core microprocessors (processors with
huge number of cores, hundreds or even
thousands, such as Nvidia GTX590 – 1024

Using Graphics Processing Units for
Accelerated Information Retrieval

Ştefan MOCANU, Ramona DIN, Daniela SARU, Cosmin POPA
Faculty of Automatic Control and Computer Science,
University Politehnica of Bucharest,
060042, Romania,
stefan.mocanu@upb.ro

Abstract: The Parallel computing platforms enable dramatic increases in computing performance by harnessing the power of
Graphics Processing Units (GPUs). Their design, based on a high level of hardware parallelization achieved through a big
number of processing cores, made GPUs serious competitors for CPU based processing architectures. This fact is most
obvious when it comes to processing huge amount of data. Many recent studies aimed at the development of GPU based
implementations for various fields such as: astronomy, medicine, image processing, data compression and others. However,
very few of them aimed at achieving information retrieval improvement based on GPU. Considering this, along with the latest
stage of content based information retrieval algorithms and their practical efficiency for a wide variety of applications, this
paper focuses on emphasizing parallel GPGPU algorithms performances against their CPU equivalents.
Keywords: content based information retrieval, graphic processing unit, GPU, GPGPU, inverted file, parallel computing

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 250

cores or Radeon HD 7970 – 2048 cores) which
were mainly developed by graphics card
manufacturers in their attempt to improve video
performance with the support of the highly
parallelized GPU.

For the past years, in certain applications,
GPGPUs have shown far better performances
than multi-core microprocessors available on
the market and, also, their performance
improvements from generation to generation
are more consistent than those of CPUs. For
instance, medium and peak floating-point
calculation throughput is about 10 times better
in case of GPGPU as opposed to CPU while the
operating bandwidths of GPGPU and CPU
follow the same ratio. A practical
implementation of a non optimum algorithm in
[6] achieved performances of almost 20 times
better whiles the GPU's manufacturer states [7]
that certain algorithms may achieved
performances up to 400 times better.

The high parallelism of the GPUs' hardware
design recommends them not only for video or
graphic applications but for general purpose
applications that require massive data
processing. Development extensions (such as
CUDA or C++ AMP) allow programmers to
interact directly with the GPU and write and
run applications that are not related to video or
graphical purposes. In fact, this is the reason
for which particular GPUs are also known as
GPGPUs (General Purpose GPUs) which will
be addressed from now on in this paper.

All these can justify once more the interest for
exploiting GPGPUs in other areas than video or
graphic rendering especially when it comes to
implementing applications with a considerable
amount of parallel sections. Furthermore,
parallel algorithms as a concern of
programming paradigm, have as long of a
tradition as the one of sequential ones [4] and,
although future processor generations promise
to come along with hundreds of cores per
socket [5], an application can only benefit from
this if it’s designed for parallel execution.

As already stated, information retrieval is the
foundation of any modern search process.
Considering this along with the great potential of
graphic processors, especially CUDA enabled
platforms, and advanced researches in the field
of parallel information retrieval algorithms, this
paper aims to analyze and compare
performances of GPGPU specific algorithms
against their similar CPU’s implementations.

The results will be compared and presented
against each other, and further used in the design
process of a GPU search engine.

2. State of the Art

For long time now, the central data structure of
any information retrieval system has been the
inverted file, i.e. a mapping between terms and
their occurrences [10]. Many specialized
algorithms such as terms and phase searching,
proximity ranking, or Boolean query processing
were implemented using such techniques as
galloping search, based on inverted indexes.
Although many other data structures have been
studied, all failed to provide more efficient
support and more flexibility than inverted files.
One of the most analyzed approaches and an
important competitor for inverted indexes was the
signature files based approach [11]. This method
intended to speed-up the process by eliminating
documents which didn’t match the query. With
excellent results at beginning, signature files
started to lose in popularity. Good behaviour in
low memory conditions is no longer a strong
point in the context of today’s hardware systems
and, in addition, scaling from simple word-
queries to phrase queries is not an easy task.

Moreover, for large data volume, the frequency
of false positive matches was too high for these
algorithms to perform well.

The most common retrieval methods aim to
produce ranked results, ordering them
according to the relevance they have against the
initial query. Oftentimes, queries designed for
this type of retrievals are referred to as term
vectors, each term within the query (usually
placed in between white spaces or other distinct
separators) mapping to a correspondent vector
component. Ranking algorithms usually pay
attention to terms ordering, thus the name of
this approach, vector, instead of set. As one
base principle of ranking algorithms, not all
terms in the query need to be comprised in it
for a result to be ranked and returned as
relevant, otherwise users would have been
forced to create exhaustive queries and the
results would have been highly coupled to
specific data. Therefore, although many
relevant results will contain some of the
query’s results, few will contain all. It is the
ranked retrieval algorithm’s role to decide
which results should be returned and which is
the impact of any missing data on the final

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 251

ordering. One of the oldest and best known
information retrieval models is the one
designed by Gerald Salton, starting back in
1960s under the name of vector space model
[10]. As its name states, the algorithm relies on
a vector representation of both queries and
documents to search in. It ranks the set of
document vectors according to a given query
vector by comparing the angle between vectors
and deciding the similarity level between the
input and result. The smaller the angle, the
more similar the vectors are. On a wide variety
of implementations, the vector space ranking
implementations may vary from explicitly
depending on term and/or inverted document
frequencies to relying only on term proximity,
in which case features like document frequency
or length play no role at all. In recent years
though, vector space model has been
overshadowed by machine learning approaches
and probabilistic models.

Among latest retrieval and ranking algorithm
implementations and as part of probabilistic
approaches, relevance and pseudo-relevance
feedback models play also a major role. On one
hand, the query terms might be easily re-weighted
based upon their distribution among queries’
results (terms which occur within relevant results
gain increased weights for later results and,
conversely for those within non-relevant results,
which get decreased weights). On the other hand,
feedback is often used for changing the terms in
the query, so that relevant not-found results which
do not contain initial query terms may be ranked
as relevant. One step further, language modeling
and methods related to it offer great support for
message retrieval and ranking, language
categorization, online adaptive spam filtering,
fusion and meta-learning [10]. The field of
information retrieval also covers the World Wide
Web, users requesting and performing documents
browsing, filtering, clustering based on their
contents. In order to provide high throughput and
fast response time and since not even the most
sophisticated and clever algorithm optimizations
alone are not sufficient, almost all current highly
competitive systems within information retrieval
area use large clusters consisting of thousands of
servers, where each server is responsible for
searching a subset of indexed data. According to
Google, in 2000 the size of its search index
reached a total size of about 1 billion documents
[12]; in 2014, Google's search index covers about
50 billion webpages [28].

The World Wide Web architecture successfully
distributes the heavy workload over many servers,
therefore indexing and searching even over a
small percentage became a great challenge for the
computational power of a single machine. The
problem revealed itself as a non-trivial one since
all major information systems already use many
performance optimizations including caching,
index compression, galloping, and early
termination. By the scale at which these systems
apply, they fall under three classes: web search –
where they have to overcome challenges as
searching over billions of documents, distributed
within the entire world web; enterprise,
institutional, and domain-specific search – where
retrieval applies to enterprises’ internal
documents, databases, or enterprise resource
platforms, and personal information retrieval
systems – which usually applies to personal
devices, and include large ranges of document
types, in the same time requiring fast computer
startup and well-balanced disk usage without
making it visible to the user.

From a practical perspective, as a starting point,
this paper focuses on basic text processing
aiming to analyze the performance factor
between CPU, classical parallel, and GPGPU
implementations of simple text processing
algorithms. The text processing techniques are
fairly simple, but their effects may reveal
important aspects. Although, complex reasoning
and computer text understanding are still
challenges for modern information retrieval
systems, none of these is vital. Search engines
for instance, capture the meaning of text by
using ranking algorithms and retrieving data
based upon the number of occurrences. Within
all texts, there are a few words with high
frequencies, but many others have low
frequencies. In English for instance, “the” and
“of” cover about 10% of all words and the first 6
most used words account for 20% of
occurrences, whilst the 50 most frequent already
cover 40% of all text. In literature, Zipf’s law
(Figure 1) describes this distribution, stating that

Figure 1. Rank vs. probability of words occurrence

(Zipf’s law)

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 252

the frequency of the r-th most common word is
inversely proportional to r [13].

Phrases also follow Zipf’s law. Moreover,
combining the phrases and words in a relevant
way, may result in better predictions for
frequencies, even at low ranks as well [14].

There are many ways in which parallelism may
help retrieval systems process information
faster but existing studies are mostly limited to
design systems appropriate for cluster running,
comprising not more than a few dozen
machines. Furthermore, although there are
various parallel implementations for search-
related algorithms, in order to achieve great
performance increases, they must run against
clusters with large number of machines.

During the past few years, general-purpose
computing on GPU [8] has gained a lot of
popularity in various yet very different areas
such as chemistry, astronomy, applied
mathematics and physics, not to mention the IT
fields such as cryptography, database indexing
and retrieval, neural networks and many others
[15], [16]. Highly efficient processing based on
a low cost hardware is a good reason to
consider GPGPU computing a viable method
for implementing algorithms with a
considerable degree of parallelism [17].

Experiments revealed that pure algorithm
optimizations may lead to impressive
improvements over the single CPU-core version
and, even more, the improvement factor rises
along with a better coordination between
GPGPU and CPU [18]. Unfortunately, this is not
an universal truth, mobile GPUs, for example,
being designed paying much more attention to
power consumption rather than focusing on
performance, thus lowering the bus traffic
between GPU and other devices, (e.g. external
memory, CPU) represent an exception [19].

Although there are many studies dedicated to
information retrieval optimization of CPU based
implementations [20], there are very few studies
focused on using GPGPUs for implementation of
information retrieval (parallel) algorithms [21].

The next section presents some information
retrieval related algorithms, altogether with
their GPGPU’s implementation. They were
meant to represent a starting point for further
GPGPU image processing researches, in case
of positive results.

The fourth section of the paper presents and
compares the results after executing the code
both on CPU and GPGPU. The last section
presents conclusions and future plans for
GPGPU programming.

3. Text based Information
Retrieval Algorithms for GPUs

As applications which involve high modeling
complexity and request much iteration,
information retrieval algorithms are perfect
candidates for GPUs implementation. For such
a problem to be solved with parallel computing,
it must be decomposed into sub-problems
which can be safely computed at the same time,
using a massive number of CUDA threads.
Usually, the process of parallel programming
can be divided into four steps: problem
decomposition, algorithm selection,
implementation, and performance tuning [9].
The starting key, when writing CUDA based
applications, is to identify the work to be
performed by each unit of parallel execution (a
CUDA thread) so that both the problem
parallelism and all hardware parallel units are
well utilized. A typical CUDA application
consists of several phases which can run either
on CPU platform (host) or on GPGPU (device).
Basically, any code which can run on device
may be as well designed to run on host, but
without guarantees about reaching the same
performance level. Also, it is highly
recommended that phases which exhibit little
or no data parallelism to be implemented in the
host code, otherwise the required
communication time between host and device
may lead to even lower performances than a
single CPU implementation.

To analyze and compare the performance
differences between CPU implementations and
their GPGPU equivalent, the case study is
based on implementation of two algorithms
detailed in [29]. The first one is an information
retrieval algorithm within an unsorted text file.
The CPU implementation iterates over the
input file and compares the target value against
current iteration value; whenever all characters
within the target string matches current value’s
characters in the exactly same order, the
algorithm returns first character’s position.
Regarding the GPGPU execution, the
implementation has to map software threads to
as many hardware units as possible, in order to
exploit GPGPU’s parallelization. Considering

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 253

that the input file consists of up to 2.5 million
characters which have to be read and compared
against one target string’s characters, the
algorithm's implementation spawns one thread
for each character so that, each of them can
determine if the characters starting at one
specific index matches the target. Once a value
has been found, its starting index is returned
and a special flag with global GPGPU’s
memory is reset so that the other threads may
be aware of this occurrence identification.

The second implemented algorithm computes
the number of words in a text input. It identifies
the characters at the beginning of a word by
checking both that current character is an
alphabetical one and that the one before it is not.
The GPGPU implementation uses a specific
CUDA library [7], known as thrust library. This
application can be useful when implementing an
automatic recommendation system based on
searching certain keywords into big data
collections such as documents or webpages.

4. Experimental Results

The hardware configuration has a strong impact
on both CPU and GPGPU execution results,
thus it is imperative to consider it during
performance evaluation. The following
experimental results are based on executing the
algorithms on a mobile platform configuration
with an AMD Turion64 X2 TL-62, running at
2.2GHz with 2 GB DDRAM400 of memory and
one CUDA-enabled GTX470 graphics card with
1280 MB GDDR5 of global memory and 448
CUDA cores.

The text files used as input for both algorithms
enclosed up to 2.5 million unsorted characters,
while the target string used to search for was
randomly generated with a fixed length of 3
characters. Within the scope of first approach,
the input file has been entirely copied to
GPGPU’s global memory and the results were
compared with the same algorithm
implementation, but working only with limited
blocks of data in memory at a time. Figure 2
presents the results gathered running the
algorithm on CPU alone and using GPGPU as
co-processor.

Figure 2. Search time on CPU vs. GPGPU

For larger data amounts a performance gain in
favour of the GPGPU implementation can be
observed, but for smaller input files, copying entire
data set to GPGPU’s memory proved to be an
overhead, introducing significant delays. The
crossing point between these two implementations
was set around 45.000 data elements.

The same algorithm has been executed, but
copying only segments of data into memory
instead of copying the entire input set. For each
copied segment, the implementation runs a call
to one search method (known as kernel in
GPGPU literature) which performs the actual
information retrieval process inside of the input
file. Next segment of data gets copied into
memory only if no thread identified the target
within the segment already in memory. This
approach revealed even better processing times
of the GPGPU's as opposed to its CPU similar
implementation. This was a very small
optimization in favour of GPGPU, not at the
search algorithm level but at the data
manipulation level. Since the purpose of this
study was solely to analyze and compare the
behaviours of the similar algorithm in CPU and
GPGPU versions no other optimization was
brought to the latter. Basically, even if there was
no great concern for optimization, the results
revealed a significant improvement when a large
amount of data was involved in processing.

However, for a reduced set of input data, the
CPU still performed better proving that there
were noticeable delays introduced by
communications between host and device in
case of GPGPU. It can also be noticed a
threshold after which the GPGPU processing
time is increasing very slow as opposed to the
CPU's behaviour. This observation is consistent
with the Amdahl's law [27]. Another problem
may come from different availability of
GPGPU's resources at different but very close

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 254

moments of time. Figure 3 illustrates the fact
that GPGPU performance is nearly constant, as
opposed to CPU who’s processing time
increases in proportion as input data set. A very
similar behaviour was observed in a different
study where the GPGPU was used in image
processing applications [6].

Figure 3. Search time on CPU vs. GPGPU

improved implementation

The second case study revealed more dramatic
performance differences between the CPU and
GPGPU. The word counting algorithm has a
different stop condition and a different return
value than the search algorithm. It ends only
when the entire input set was analyzed and
returns the number of occurrences for the
searched keyword. For this reason,
fragmentation of the input set was not
considered necessary nor implemented.
However, this time, the difference was almost
150 times better on GPGPU platform. The
results represented as a ratio between CPU and
GPGPU execution time can be seen in Figure 4.

Once again, the input file has a major impact
on final results, both on CPU and GPGPU
versions. Just like in our previous experiments,
GPGPU performed much better than CPU, this
time even for small amounts of input data. The
computed performance ratio reached a peak for
198.236 characters in the input file when the
GPGPU was 144 times faster than CPU.

Figure 4. Performance ratio GPGPU vs. CPU

5. Conclusions and Future Work

This paper’s main objective was to analyze the
behaviour of two classic information retrieval
algorithms’ execution on CPU and GPGPU
respectively as basis for future research.

The actual results have shown once again that
low cost hardware can be a solution for
supporting software applications that exhibit
similar performances as ones that need far more
expensive dedicated hardware platforms.
Furthermore, for achieving superior but not
optimum performance little specific training is
required, medium parallel programming
understanding and skills are sufficient.

Even though the software applications are
portable over similar hardware platforms a
significant dependence on them was noticed. For
the presented case studies, a graphic card from
NVIDIA along with CUDA Toolkit was used.
Considering the results revealed a speed up of
144 times in case of detecting one word
occurrences in a text without any advanced
optimization, this has been marked as one strong
argument for further research whether the
GPGPUs may be efficiently exploited as an
alternative to cloud computers for running
enhanced search engines. If classic parallel
information retrieval algorithms could be scaled
to run on GPGPUs as hundreds of crawlers and
for extremely large amounts of data, this may
lead to excellent search results for World Wide
Web or other massive data collections stored
either local or distributed over many storage units.

Giving the results obtained so far it is expected
that similar behaviours will be noticed in other
areas where massive parallelization is involved.
For instance, a rather cheap system with a
GPGPU can be used instead of the more
complex and expensive system presented in
[30] with similar or better results.

A mid-term research goal is to use GPGPUs for
improving medical images processing,
classification and retrieval, exploiting them both
for diagnoses and treatment procedures. Skin
cancer, one of the most common form of cancer
worldwide [22] and, also, the most aggressive
one may benefit from faster and more precise
computing offered by GPGPUs so that medical
teams can promptly process and compare
medical images and also develop new treatment
plans and simulate biological processes. When
treating various forms of cancer, oftentimes

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 255

healthy tissue is unnecessarily affected. We
intend to study new techniques of reducing
patient exposure to treatment by faster
processing of live images in order to improve
precision of radiation therapy or allow fast and
precise surgical interventions. Noticing the
highly competitive and powerful general
purpose graphic processors, researches have
already begun conducting studies for including
them in medical computations [23], [24], [25],
[26] their results showing relevant performance
improvements at low investment costs.

In addition to the performance gain offered by the
parallel architecture of the GPGPUs, algorithms'
optimization will be addressed in our future studies.
First step may be represented by the
implementation of a dynamic selection mechanism
between the CPU implementation and GPGPU
implementation which should choose a preferred
implementation based on several parameters: size
of input data, hardware configuration and
performance and hardware availability.

Acknowledgements

 This work was partially supported by the
Romanian Ministry of Labor, Family and Social
Protection, in contract POSDRU/89/1.5/S/62557.

REFERENCES

1. MANNING, C. D., P. RAGHAVAN, H.
SCHUTZE, Introduction to Information
Retrieval, Cambridge University Press,
England, 2009.

2. http://www.physorg.com/news151162452.
html, 2012

3. MITEA, A.-C., D. I. MORARIU, M.
BREAZU, D. VOLOVICI, Digital
Information Retrieval, Studies in
Informatics and Control, vol. 19(2), 2010,
pp. 185-192.

4. MOCANU, Ş., R. DOBRESCU, D. SARU,
R. DIN, A. GRUMǍZESCU, Arhitecturi
complexe folosite în prelucrarea paralelă
a imaginilor (in Romanian), Revista
Română de Informatică şi Automatică, vol.
20(1), 2010, pp. 97-105.

5. FEINBUBE, F., P. TROEGER, A. POLZE,
Joint Forces: From Multithreaded
Programming to GPU Computing,
Software, IEEE, vol. 28(1), 2011, pp. 51-57.

6. DOBRESCU, R., Ş. MOCANU, D. SARU,
A. GRUMĂZESCU, R. DIN, Aplicaţii
pentru procesarea de imagini pe
platforma CUDA – studiu de caz (in
Romanian), Revista Română de
Informatică şi Automatică, vol. 21(2), 2011,
pp. 81-86.

7. *** NVIDIA – GPU Computing,
http://www.nvidia.com/object/cuda_home_
new.html

8. OWENS, J. D., M. HOUSTON, D.
LUEBKE, S. GREEN, J. E. STONE, J. C.
PHILLIPS, GPU Computing, Proc. IEEE,
vol. 96(5), 2008, pp. 879-899.

9. KIRK, D. B., W. W. HWU, Programming
Massively Parallel Processors. A Hands-
on Approach, Elsevier, USA, 2010.

10. SALTON, G., A. WONG, C. S. YANG, A
Vector Space Model for Automatic
Indexing, Comm. ACM, vol. 18(11), 1975,
pp. 613-6205.

11. BUETTCHER, S., C. CLARCKE, G.
CORMACK, Information Retrieval.
Implementing and Evaluating Search
Engines, MIT Press, USA, 2010

12. http://googleblog.blogspot.ro/2008/07/ /we-
knew-web-was-big.html, 2014

13. CROFT, B., D. METZLER, T.
STROHMAN, Search Engines:
Information Retrieval in Practice,
Addison Wesley, First Edition, Feb 2009

14. QUAN, L. H., E. I. SICILIA-GARCIA, J.
MING, F. J. SMITH, Extension of Zipf’s
Law to Words and Phrases, Proc. of the
19th Intl. Conf. on Comp. Linguistics,
COLING-2002, pp. 315-320.

15. COHEN, J., Novel Architectures: Solving
Computational Problems with GPU
Computing, Computing in Science &
Engineering, IEEE, vol. 11(5), Nvidia,
Santa Clara, CA, USA, 2009, pp. 58-63.

16. DING, S., J. HE, H. YAN, S. TORSTEN,
Using Graphics Processors for High
Performance IR Query Processing,
WWW ’09, Proc. 18th Intl. Conf. on WWW,
New York, USA, 2009, pp. 421-430.

17. SULLIVAN, T., H. NELSON, T. McBEE,
M. ALVINO, General-purpose
Computing on Graphics Processing
Units: GPU Processing of Protein

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 256

Structure Comparisons, Technical report,
2007.

18. TEODORO, G., R. SACHETTO, O.
SERTEL, M. N. GURCAN, W. MEIRA, U.
CATALYUREK, R. FERREIRA,
Coordinating the Use of GPU and CPU
for Improving Performance of Compute
Intensive Applications, Cluster
Computing and Workshops, CLUSTER ’09.
IEEE Intl. Conf., New Orleans, LA, 2009,
pp. 1-10.

19. AKENINE-MOLLER, T., J. STROM,
Graphics Processing Units for
Handhelds, in Proc. of the IEEE, vol.
96(5), 2008, pp. 779-789.

20. ZAKI, M. J., Data Mining Parallel and
Distributed Association Mining: A
Survey, IEEE Concurrency, vol. 7(4), 1999,
pp. 14-25.

21. WENBIN, F., K. K. LAU, M. LU, X.
XIANGYE, C. K. LAM, P. Y. YANG, B.
HE, Q. LUO, P. V. SANDER, K. YANG,
Parallel Data Mining on Graphics
Processors, Technical Report HKUST-
CS08-07, Oct 2008.

22. ***, Death and DALY Estimates for
2004 by Cause for WHO Member States,
http://www.who.int/entity/healthinfo/global
_burden_disease/gbddeathdalycountryestim
ates2004.xls, published 2009

23. SPOERK, J., C. GENDRIN, C. WEBER.,
M. FIGL, S. A. PAWIRO, H. FURTADO,
D. FABRI, High-performance GPU-
based Rendering for Real-time, rigid
2D/3D Image Registration and Motion
Prediction in Radiation Oncology,
Zeitschrift für Medizinische Physik, vol.
22(1), Elsevier GmbH., 2012, pp. 13-20.

24. BROWN, K., UCSD Hospital Tests GPU-
accelerated Cancer Treatment, Nvidia
Blog, 2012, http://blogs.nvidia.com/2012/
04/ucsd-hospital-tests-gpu-accelerated-
cancer-treatment/

25. *** NVIDIA, Improving the Quality of
Healthcare, Many Steps at a Time;
Medical Imaging Technologies Running
on GPU Produce better, Safer Results in
Less Time, http://www.nvidia.com/object/
gcr-medical-imaging.html, 2012

26. HUANG, C. H., D. RACOCEANU, L.
ROUX, T. C. PUTTI, Bio-inspired
Computer Visual System using GPU and
Visual Pattern Assessment Language
(ViPAL): Application on Breast Cancer
Prognosis, Neural Networks (IJCNN), The
2012 Intl. Joint Conf., Barcelona, Spain,
July 2010, pp. 1-8

27. AMDHAHL, G. M., Validity of the
Single-Processor Approach to Achieving
Large Scale Computing Capabilities,
AFIPS Conf. Proceedings, 1967.

28. http://www.worldwidewebsize.com/, 2014
29. DIN, R., Techniques for Medical Images

Analysis using Parallel Processing, PhD
Thesis, UPB, 2012.

30. SIROMASCENKO, AL. - AL., I. LUNGU,
A Massive Multilevel-parallel
Microscopic Traffic Simulator with
Gridlock Detection and Solving, Studies
in Informatics and Control, vol. 22(3),
2013, pp. 279-288.

