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1. Introduction 

The relational data model is one of the main 
database models and the basis for most existing 
database management systems. It is based on 
the first-order predicate logic which was first 
formulated and proposed in 1969 by Edgar F. 
Codd [3], [4]. The relational database model is 
the most popular data model since it is very 
simple and easily understandable by the 
information systems professionals and by the 
end users. In the relational model of a database, 
all users’ data is represented in terms of tuples 
(records) which are grouped into relations 
(tables). A database organized in terms of the 
relational model is called a relational database. 
The rows of relations (relational matrices) 
represent records and columns represent the 
domains or attributes, respectively. Records or 
tuples can be identified, recorded and searched 
by sets of attributes, so-called keys, in a unique 
way. Generally, a key is an attribute (or a 
combination of several attributes) that uniquely 
identifies a particular record. A given set of 
attributes is a minimal key if its proper subsets 
are not keys. A large variety of algorithms used 
in database technology have as a goal the 
identification of tuples through keys. Examples 
in this direction are algorithms for selection, 
joining, constructing and maintaining tuples. 
These algorithms are as simple as search 
algorithms if key indexes are used. Therefore, 
keys and minimal keys are absolutely 
fundamental to database models.  

Analysts often need to work with large datasets 
in which some of the data is uncertain [2]. This 
is the case when the data is connected to 
hypothetical or future events. For example, the 

data of interest might be the customer order 
sizes for some product under a hypothetical 
price increase of 5%. Data uncertainty is 
frequently modeled as a probability distribution 
over possible data values. These distributions 
are usually specified by means of a complex 
stochastic model. Various system 
characteristics of interest to the analyst can be 
viewed as answers to queries over the uncertain 
data values [9], [10]. Because the data is 
uncertain, there is a probability distribution 
over the possible results of running a given 
query, and the analysis of the underlying 
stochastic model is equivalent to studying the 
features (mean, variance, and so forth) of the 
query-result distribution. The query-result 
distribution is often very complex, and must be 
analyzed using Monte Carlo methods [5]. Such 
analysis is important to assessing for example 
the enterprise risk, as well as making decisions 
under uncertainty. 

Random databases are databases where the 
value of some attributes or the presence of 
some records are uncertain and known only 
with some probability. Applications of random 
databases can be found in many areas such as 
information extraction, Radio-frequency 
identification (RFID) and scientific data 
management, data cleaning, data integration, 
and financial risk assessment. 

At present Data models and databases for 
uncertain and/or probabilistic data are a hot 
topic in data management research. 

The traditional relational databases are 
deterministic. Every record stored in the 
database is meant to be present with certainty, 
and fields in that record have a precise value. 
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The theoretical foundations of relational 
databases are if a logical sentence is true or 
false, if a record is, or is not, in a relation, or in 
a query result [1], but they cannot make any 
less precise statement. Today, however, data 
management needs to include new data sources, 
where data are uncertain [8], and which are 
difficult or impossible to model with traditional 
database systems. In this situation we have the 
following question: what do the traditional 
relational operators become in the case of 
random databases? 

Definition: Consider 1 2, , , nD D D  finite 
domains, not necessarily disjoint. The Cartesian 
product 1 2 nD D D    of the domains 

1 2, , , nD D D  is defined by the set of the 

tuples  1 2, , , nV V V  where 

1 1 2 2, , , n nV D V D V D   . 

Definition: A relation R on the sets 

1 2, , , nD D D  is a subset of the Cartesian 
product 1 2 nD D D   .  

We can represent a relation by a bi-dimensional 
table in which each line corresponds to a tuple 
and each column corresponds to a domain in 
the Cartesian product. A column corresponds to 
an attribute. The number of attributes defines 
the relation’s degree, and the number of tuples 
in the relation defines the relation’s cardinality. 
The relational databases are perceived by the 
users as a set of tables. We consider a table as a 
representation of a relation. 

We consider a distance d(x, y) for the elements 
in the two sets Di and Dj, where 

 , 1,2,...,i j n , which are assumed to be 
subsets of a metric space where the distance d 
is defined [11]. Many ε-join techniques use as a 
metric the standard Euclidean distance. We 
denote by )(xB  the ball centered in x and 
with radius ε. In this context, the operations in 
the relational algebra will be based upon 
approximations in order to deal with 
uncertainty. The name of the operation we 
intend to investigate are ε-equi-join. 

Definition: Consider two relations R and S. 
Then, the ε-operation above can be described as 
follows:  , {( , ) | ( , ) }A Bjoin R S x y R S d x y     , 

where Ax  takes all values of column A that 

belongs to relation R and By  take all values of 

column B that belongs to relation S. We denote 
by ( ( , ))N join R S   the number of lines in the 
result of the ε-join operation [11]. Whenever 
the context in which we refer these values are 
clear, we denote them by N  for simplicity. 

During our studies concerning the random 
databases, which involved different 
experiments with data sets and analysis of the 
results, we have noticed the existence of some 
relations between the cardinalities of the 
approximate join (ε-join) operation in case of 
various probability distributions of the columns 
of tables.  

Our empirical observations encouraged to find 
the proofs of the relations we conjectured. We 
were able to state them as theoretical results. 
The practical experiments dealt with tables 
containing at least 1000 records, with columns 
having values distributed uniformly, 
exponentially and, respectively, normally. 

Such relations have a great impact in random 
database query optimization, as we have shown 
in [13]. 

2. Problem Formulation 

We denote by NU the number of rows obtained 
from the ε-join operation between two tables 
using columns whose values have uniform 
probability distribution. Analogous we denote 
by NExp and NN the cardinal of the ε-join 
operation between two tables using columns 
whose values have exponential and normal 
distributions. 

The random variables NU, NExp and NN are 
taking values positive integers. Our aim is to 
prove the following inequalities: 

   U Exp NE N E N E N    . (1) 

Consider R(A) and S(B) the projections of the 
attributes A and B from the relations R, 
respectively S. Let X, Y be the common 
attribute of the two relations,   X A andY B

. Let 1 2{ , ,..., }mX X X  and  1 2{ , ,..., }nY Y Y  be the 
sets of distinct values of the attributes X, 
respectively Y. The elements of these sets are 
independent and identically distributed, with 
the probability distributions F, respectively G. 

We denote by , |{( , ) || | }|m n i jN i j X Y      the 
number of records resulting from the ε-join 
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operation [1]. Graphically, this is the number of 
points in the region Aε in Figure 1. 

In this picture, the region Aε is the band 
symmetric to the first bisectrix, of width 2

2
 . 

 
Figure 1. The ε-join of the sets of distinct values of 

the attributes X and Y.  

Proposition 1. Let X, Y be the ε-join attributes 
between the relations R and S. The values of 
these attributes follow the probability 
distributions F, respectively G. Then: 

, ( )( )m nN
F G A

m n



 


. (2) 

Prof. We use the Glivenko-Cantelli theorem 
[12]. This states that a series of empirical 
distribution functions Fk (k is the sample size)

|{ | }|
( ) j

k

j k X x
F x

k
 

 , converge almost 

sure to the theoretical distribution function F
 kF F . 

A corollary of this theorem states that, for two 
series of distribution functions{ }n nF ,{ }n nG  
such that nF F , nG G  the following 
convergence holds: 

n nF G F G   . (3) 

For the case of the empirical distribution 
functions corresponding to the two attributes 
we have that: 

,

|{ | }||{ | }|= =

.

ji
n n

m n

j n Y xi m X xF G
m n

N
m n



  
 




 (4) 

From the relations (3) and (4), the conclusion is 
immediate. ⁫ 

If the ε-join attributes follow the distribution
 F G U 0, 1  , then we have to determine 

the limit in proposition 1 for 0.01  . 
Graphically this area is: 

 
2

2(1 )1 2 1 1 2 (2 )
2

Area A


   


         . (5) 

For the value 0.01  , the area of this region is
  0.01 1.99 0.0199Area A    . This means 

that, for 1000m n  , the value of the ε-join 
operation’s cardinality ,m nN  can be estimated 
by 0.0199 19900m n    records. 

2.1 Inequalities between sets that are ε-
joins for the case of uniform and 
exponential distributions  

In the following, we denote by 
( ) ( )( )Fp F F A    the limit in proposition 1. 

Using (5), for U = U(0, 1), we obtain: 
2( ) 2Up     . (6) 

We want to establish the relation between 
U ( )p   and ( )Expp  . In the following 

proposition we calculate the value of ( )Expp  . 

Proposition 2. Exp ( ) 1p e    . 

Prof. From Figure 1, we have: 

 
0

0

( )d ( ) [ ( ) ( )]d ( )

(1 )d ( ) (1 1 )d ( )x x x

Area A F x F x F x F x F x
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          

   
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⁫ 

Proposition 3. For small value of   the 
following inequality holds: ( ) ( )U Expp p  . 
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Prof. From the relation (6) and the proposition 
2 result that we want to prove that 

22 1 e      . We develop e   in series: 
2 3

22 1 1 ...
2 6
 

  
 

        
 

 

2 3 4
22 ...

2 6 24
  

           

2 3 4

...
2 6 24
  

      

We divide the last inequality by ε and thus we 
get: 

2 311 ...
2 6 24

 
    . (7) 

Relation (7) is true for a small ε. For such 
values of ε, we get: 

( ) ( )U Expp p  . (8) 

2.2 The cases of one-dimensional and bi-
dimensional distributions 

The practical observations suggested the 
following inequality: ( ) ( ) ( )U Exp Np p p    . 
In order to verify the second part of this 
inequality, we will evaluate the             
following expression: 

2

2
( ( ) ( )) d

2

x

ex x x 






     . (9) 

The expression (9) could be computed using 
numerical methods. 

The number of records in the ε-join result set, 
denoted by ,m nN , can be written as: 

,

,
1, 1

m n

m n ij
i j

N 

 

  , (10) 

where ij  is the indicator function 

(( , ) )1
i jij X Y A  . 

One can notice that ij  follows a discrete 
distribution: 

0 1
( ) ( )ij q A p A 

 
  

 
, (11) 

where ( ) ( )( )p A F G A    and 
( ) 1 ( )q A p A   . 

Reference [7] shows that ij  is a Bernoulli 
random variable, whose mean is: 

 E ( )ij p A  . (12) 

Consequently, the mean of the random variable   
,m nN  is given by the following relation: 

 ,E ( )m nN m n p A
   . (13) 

In order to compute the variance, we use the 
property according to which the variance of a 
sum of random variables equals the sum of 
their covariance: 

1 1 1
( ) ( , )

n n m

i i j
i i j

Var X Cov X X
  

  . (14) 

From this property we get: 
, ,

2 2
,

, ,
,

( ) ( , )
m n m n

m n ij ij i j
i j i j

i j

N Cov   

 

 
     

 
  . (15) 

Using that 2( , ) ( )Cov X X X  the relation 
(15) becomes: 

, ,
2 2

,
( , ) ( , ) ( , ) ( , )

( ) ( ) ( , )
m n m n

m n ij ij i j
i j i j i j i j

N Cov   

    

      . (16) 

Because ij  is a Bernoulli random variable: 

2( ) ( ) (1 ( )) ( ) ( )ij p A p A p A q A          . (17) 

Using (17) in the formula (16) we get:  
,

2
,

( , ) ( , )
( ) ( ) ( )

m n

m n iji j
i j i j

N m n p A q A c

   

 

      . (18) 

The sum is a positive number, so we have: 
2

,( ) ( ) ( )m nN m n p A q A

      . (19) 

From the last inequality, we obtain: 
2 2

, ,( ) ( )m n m nN K   . (20) 

where , (( , ) )
1
1

k k

m n

m n X Y A
k

K








 the number of 

points in the region is A  provided the m n  
random points follow a bi-dimensional 
probability distribution. We will have 

1 1( ) (( , ))k k m n k k k m nz x y       two dimensional 
random variables, independent and identically 
distributed. Then, the mean of this random 
variable is: 
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, ,E Em n m nK N  . (21) 

Since ( , ) 0i jCov z z  , where i j , it follows 

that iz , jz  are uncorrelated. This implies that 
the variance of this variable is: 

,( ) ( ) ( )m nK m n p A q A

      . (22) 

The last relation allows us to state that it exists 
an order relation , , m n m nK N  . 

Following the ideas presented above, a question 
could raise: what are the conditions under 
which one can state that ( ) ( )F Gp p  , 
regarding the probability distributions F and G? 

We denote the following inequality 
( )( ) ( )( )F F A G G A     by F G , where 

0  . This inequality is equivalent to: 

( ( ) ( ))d ( )

( ( ) ( ))d ( ), 0.

F x F x F x

G x G x G x

 

  

   

    




. (23) 

We try to prove the following implication: 

( stochasticdominance)st stF G G F  . (24) 

First, we will prove this implication in 
particular cases of probability distributions. We 
intend to prove this implication for the uniform, 
exponential and normal probability 
distributions cases. 

Let F = U(0, a), G = Exp(λ). From the relations 
(6) and (7) we get the equivalence: 

2

2 1G F e
a a

     
       

   
. (25) 

From (24) and (25) it means that we want to 
prove that: 

 
2

2 1 e
a a

     
      
   

. (26) 

Suppose that 0 a    and denote x
a


 . In 

the particular case of the uniform and normal 
distributions [14], we have: 

( ) ( ) 1

1 .

x
st

x

xF G F x G x e
a

x e
a









     

 

. (27) 

The inequality holds if the following condition 
is true: 

1a  . (28) 

From the relation (28), it results that: 

1 1ax xe e    . (29) 

For 1x the inequality 21 2xe x x    holds, 
so we get 21 2axe x x   . 

We obtain the relation we were looking for: 
2

2 1 e
a a

     
      
   

. (30) 

The stochastic dominance between the uniform 
and exponential distributions leads to an order 
relation between the two distributions, 
regarding the cardinality of the ε-join result set. 

3. Experimental Results 

In reference [6] was shown that the estimation 
of the intermediate cardinality of the 
approximate join’s result sets could be a 
support to the database query optimization.  

In our previous research [13] we studied the 
probability distribution of the ε-join result set 
cardinality. In this paper, taking into account 
the probability distributions of the columns, we 
determined the right order of the intermediate 
ε-join operations. This improves the query 
optimization in the random databases context. 

In practical tests were considered queries which 
extract data from at least three tables, with 
columns that were spread uniform, normally 
and exponentially.  

In order to generate the tables in our 
experiments we used the following functions 
written in PL/SQL on Oracle o11g: 

 

DBMS_RANDOM.VALUE 
 
DBMS_RANDOM.NORMAL 
 
CREATE OR REPLACE FUNCTION 
EXPONENTIALA (L REAL) 
RETURN REAL IS 
X REAL; 
BEGIN 

X:= 1
L

 
 
 

*  

 LN(DBMS_RANDOM.VALUE(0,1)); 
RETURN X; 
END; 
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We created three tables T1, T2 and T3 using the 
following code: 

 
Each table contain three columns: U1 values 
have a uniform probability distribution, N1 

values have a normal probability distribution 
and E1 values have an exponential     
probability distribution. 

We populate the previous tables with at least 
10,000 lines using the function: 

 
In the Table 1 are displayed some values from 
the table T1: 

Table 1. First ten values from the table T1 

1U  1N  1E  

0.6279 -2.0536 0.3298 
0.7931 -1.1162 0.8181 
0.0036 0.4992 0.0681 
0.6177 -0.6501 1.0179 
0.3855 -1.5024 0.9870 
0.0057 1.5128 0.0739 
0.8816 0.4102 0.7697 
0.2943 0.8052 0.2419 
0.4077 -0.4987 0.6351 
0.1045 0.5776 0.7663 

It is known that the join operation is 
commutative and associative. 

Even if the information is extracted from two 
tables, with 10000 rows each, the join operation 

is performed on columns which have the same 
distribution, some differences are noticed: 

Table 2. Expected rows number of join   
between 2 columns with different probability 

distributions 

, 0.01join    Repartition N  

1T ⋈N 2T  normal 566597 

1T ⋈E 2T  exponential 980357 

1T ⋈U 2T  uniform 1990504 

We denote by 1T ⋈N 2T  the join   operation 

between 1T  and 2T  using the column in which 
values follows a normal distribution. 
Analogous for the similar notations. N  
represents the number of rows in the query 
evaluation. The numerical results presented 
above show that when the number of tables, 
from which the information is extracted, is 
bigger than 2 ( 1T ⋈ 2T ⋈ 3T ⋈…), the time 
required to evaluate such requests vary widely, 
depending on the probability distribution of the 
columns used in the join   operations: 

 
Table 3. Running time for join   operation 

between three tables with 45 10 rows each 

4
1,3

0.01, 5 10i i
T


    Time (seconds) 

1T ⋈U 2T ⋈E 3T  2156s 

1T ⋈N 2T ⋈U 3T  1732s 

1T ⋈N 2T ⋈E 3T  1226s 

The results of the experiments presented in 
Figure 2 show significant differences between 

SELECT COUNT(*) N   
FROM TI, TJ 

WHERE ABS(NI,NJ)< ; //  , 1,2,3I J  
SELECT COUNT(*) N   
FROM TI, TJ 

WHERE ABS(EI,EJ)< ; //  , 1,2,3I J  

SELECT COUNT(*) N   
FROM TI, TJ 

WHERE ABS(UI,UJ)< ; //  , 1,2,3I J  
 

CREATE OR REPLACE FUNCTION 
P_TABLE (N INTEGER) RETURN 
INTEGER IS 
LAM NUMBER: = 1; 
M NUMBER: = 200; 
P REAL: = 0.5;  
BEGIN 
  FOR I IN 1 .. N LOOP     

INSERT INTO TI  
VALUES ( 
DBMS_RANDOM.VALUE, 
DBMS_RANDOM.NORMAL, 
EXPONENTIALA(LAM)); 

  END LOOP; 
RETURN 1; 
END;  /*  1,2,3I  */ 

CREATE TABLE TI (U1 NUMBER, 
N1 NUMBER,  
E1 NUMBER);  /*  1,2,3I  */ 
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running time evaluations of join operations in 
the same tables. 

 
Figure 2. ε-join query optimization 

In Figure 2 with blue we represented the 
running time for evaluating the ε-join operation 
between tables 1T , 2T  and 3T  each with 10000 
tuples, with orange for 20000 tuples, with gray 
for 50000 tuples and with yellow for 100000 
tuples. In first histogram we depicted the 
running time for evaluating the 1T ⋈ 2T ⋈ 3T  
using in the first join the columns which 
follows uniform probability distribution and in 
the next one the columns which follows 
exponential distribution, in the second 
histogram with normal and uniform 
distributions, and at last with normal and 
exponential distributions. 

In conclusion if we evaluate multiple ε-join 
between tables having columns with different 
probability distribution, it is recommended to 
choose first the columns with normal 
distribution (see. Table 2 – lowest number of 
rows in the result), afterwards the columns with 
exponential distribution and ultimately the 
columns with uniform distribution.   

4. Future Work 

In [8] it was proposed a new algorithm EGO- 
Efficient Global Optimization (called Super-
EGO) for implementing the ε-join operations. 
The new algorithm prevails over the others 
through a new technique of subsets ordering 
which take part in join operations and through a 

parallel implementation that can run on devices 
with multiple processors. 

The basic EGO-join algorithm analyzes 
dimensions in a sequential order from 1 to n. 
However, for higher dimensional cases, some 
of the dimensions might have more 
discriminative power than the others. The 
Super-EGO algorithm use data sampling 
techniques to measure this discriminative 
power to make a new order. 

We believe that by studying the distributions of 
values that these dimensions could have and by 
using the result presented in this paper it is 
possible to improve the technique of reordering 
the dimensions enhancing the performance of 
this algorithm. 
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