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1. Introduction 

With the development of space technologies, 
different classes of satellites are constructed 
and utilized for various space missions. From 
the moment that a satellite is launched into its 
initial orbit, commonly called a transfer orbit, 
multiple attitude and orbital changes must be 
performed to obtain the desired final orbit. The 
motion of a spacecraft can be divided into two 
types: translational motion and rotational 
motion. Translational motion describes the 
motion of a spacecraft in an orbit, whereas the 
rotational motion describes the orientation 
(attitude) of the spacecraft in space with respect 
to a particular reference like the earth and sun. 
The Attitude control is the process of orienting 
the spacecraft in a specified predetermined 
direction. It is an important subsystem in a 
spacecraft and is responsible for pointing and 
slewing of the spacecraft. The spacecraft is 
considered to be a rigid body whose attitude 
can be described by Euler’s equations of 
rotational motion which govern the rotational 
dynamics of rigid bodies.  

Their solution gives the angular velocity vector 
due to applied torque and kinematic differential 
equations, which relate the time derivatives of 
the orientation angles to the angular velocity 
vector. Attitude representation can be done 

using three or four parameters. The three-
parameter attitude representation techniques are 
Euler angles, Gibbs vector, Cayley Rodrigues 
vector and Modified Rodrigues parameter. The 
four-parameter representation of attitude is 
given by the unit quaternion (Euler parameters). 

 Attitude is the three-dimensional orientation of 
a vehicle with respect to a specified reference 
frame. Attitude systems include the sensors, 
actuators, avionics, algorithms, software, and 
ground support equipment used to determine 
and control the attitude of a vehicle. Spacecraft 
attitude changes according to the fundamental 
equations of motion for rotational dynamics, 
the Euler equations. 

Attitude determination is the process of 
combining available sensor inputs with 
knowledge of the spacecraft dynamics to 
provide an accurate and unique solution for the 
attitude state as a function of time, either 
onboard for immediate use, or after the fact (i.e. 
post-processing). 

Attitude control is the combination of the 
prediction of and reaction to a vehicle’s 
rotational dynamics. Because spacecraft exist 
in an environment of small and often highly 
predictable disturbances, they may in certain 
cases be passively controlled. Alternately, a 
spacecraft may include actuators that can be 

Spacecraft Attitude Control Using Control Moment 
Gyro Reconfiguration 

Kanthalakshmi SRINIVASAN1, Deepana GANDHI1, Manikandan VENUGOPAL2 

1  Department of Instrumentation and Control Systems Engineering, 
PSG College of Technology, 
Coimbatore - 641004, India, 
klakshmiramesh@yahoo.co.in, deepana.gandhi@gmail.com   

2  Department of Electrical and Electronics Engineering, 
Coimbatore Institute of Technology, 
Coimbatore - 641014 , India, 
manikantan-cit@gmail.com  

Abstract: The orientation of a satellite in space described relative to some other object or system is known as the 
attitude of the satellite. The attitude may be changing with time. To be able to control the attitude of the satellite, it must 
be equipped with actuators that can produce the required torque. Control Moment Gyroscope is a space craft control 
actuator which acts as torque amplifier. It is suitable for three axis slew manoeuvring by providing the necessary torques 
via gimbaling a spinning flywheel.  Control Moment Gyroscope is considered to be more efficient in terms of power 
consumption and slew rate. A major drawback encountered with the use of the Control Moment Gyroscope is the 
possibility of singularities for certain combinations of gimbal angles. The objective of this work is to detect these 
singularities so that robust steering laws can be developed. 
Keywords: Control Moment Gyroscope, Gimbal angles, Singularities, Attitude Control, Steering laws. 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 286 

used to actively control orientation. These two 
general types of attitude control are not 
mutually exclusive.  

A general framework for the analysis of the 
attitude tracking control problem for a rigid 
body is presented in [1]. A survey of attitude 
representations in a single consistent notation 
and set of conventions is given in [2]. The 
relations between the various representations of 
the attitude and the kinematic equations are 
given completely. The transformations 
connecting different attitude covariance 
representations are presented by an 
infinitesimal rotation.  

A case study on spacecraft attitude control is 
presented in [3]. The plant (spacecraft attitude 
model) is a second order, nonlinear, multi-
input-multi-output system defined by Euler’s 
equations of rotational motion and the 
kinematic differential equations. The Modified 
Rodrigues parameter (MRP) is used for 
kinematic parameterization and is the only 
measurable variable at the plant output.  

Control Moment Gyroscopes (CMGs) are 
proposed in [4] as torque actuators that can 
effectively answer the attitude control 
requirements of future spacecraft. The CMG’s 
technology presented can greatly improve the 
torque and momentum capability of 
spacecraft’s and consequently their agility.  

The work on CMG based AOCS is of great 
interest for past few years. A top-down analysis 
strategy so as to define the right product future 
missions, starting from review of system needs 
in Earth observation and scientific missions to 
the preliminary mechanism design is presented 
in [5]. An innovative solutions, which simplify 
the system, the operations and the CMG 
mechanisms is presented. A cluster of small-
sized single-gimbal control moment gyros 
(SGCMGs) is proposed in [8] as an attitude 
control actuator for high-speed manoeuvre of 
small satellites.  

Two objectives dominate consideration of 
control moment gyroscopes for spacecraft 
manoeuvres: high torque (equivalently 
momentum) and singularity-free operations. A 
significant body of research toward these two 
goals using a minimal three-control-moment-
gyroscope array to provide significant 
singularity-free momentum performance 
increase spherically (in all directions) by 
modification of control-moment-gyroscope 

skew angles is presented in [9], and compared 
with the ubiquitous pyramid geometry skewed 
at 54.73 deg. 

The performance of a control moment 
gyroscope cluster for 3-axis attitude control for 
small satellites is presented in paper 
[10].Experimental results on the performance 
of a Control Moment Gyroscope (CMG) cluster 
are presented in [12]. The experimental data are 
compared with simulation (theoretical) results 
and both are used to verify the principles, 
benefits and performance specifications of the 
CMG cluster.  

The major problem encountered with the 
application of CMG is the occurrence of 
singularities for certain combination of gimbal 
angles. This paper describes the techniques 
used to detect the occurrence of singularity and 
the robust steering laws that can be used to 
overcome singularity. 

2.  Spacecraft Dynamics 
and Kinematics 

It is convenient to think of a spacecraft as being 
a collection of those particles and bodies that 
lie within a closed surface S as shown in  
Figure 1. 

 
Figure 1. Dynamics of Spacecraft 

This concept allows the surface to be chosen at 
one's convenience, to embrace the complete 
craft or just part of it or when considering a 
docking manoeuvre or a tethered configuration. 
The dynamics of the craft (or whatever is within 
the surface S) may now be described in terms of 
its momentum- its linear momentum L and its 
angular momentum H - the former leading to 
equations that describe the trajectory and the 
latter leading to equations that describe the 
attitude motion. In particular, it is the centre-of-
mass C whose trajectory will be described.  
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2.1 The centre-of-mass, C 
The centre-of-mass of the particles in S, 
relative to an arbitrary point 0, is the point 
whose position vector roc obeys equation (1). 

Mroc =  ∑(mrop)  (1) 

where  rop  is the position vector of a general 
particle P shown in Figure 2, 𝑚 is the mass of 
the general particle and  𝑀  is the total mass 
within S. 

 
Figure 2. Trajectory Dynamics 

When an object has a continuous mass 
distribution, the integral equivalent of equation 
(1) should be used, this being 

Mroc =  ∫ rop  dm  (2) 

In the development of the theory of dynamics, 
the Centre-of-mass C is useful as an origin or 
reference point for the particles in S. Putting the 
origin there leads to 𝑟𝑜𝑐 = 0 and so equations 
(1) and (2) become 

∑(𝑚𝑟𝑐𝑝) = 0   𝑎𝑛𝑑 ∫ 𝑟𝑐𝑝𝑑𝑚 = 0  (3) 

Since this is true at all times, its derivatives are 
also zero, leading to 

∑(𝑚𝑉𝐶𝑃) = 0 𝑎𝑛𝑑 ∫ 𝑉𝐶𝑃  𝑑𝑚 = 0  (4) 

where  𝑉𝐶𝑃 is the velocity of a particle at P 
relative to the Centre-of-mass C. 

2.2 General Attitude Dynamics 
Trajectory dynamics supplies rules governing 
the motion of the Centre-of-mass C relative to 
some inertially fixed frame of reference. 
Attitude dynamics on the other hand uses the 
Centre-of-mass C as a reference point. 

In terms of momentum, attitude dynamics is 
mathematically identical to trajectory dynamics. 
That is to say angular momentum H responds 
to a torque T. But the physical motions 
associated with the two types of momentum are 
quite different. In order to establish the 
fundamental principles in terms of momentum, 
it is convenient to refer once more to the closed 

surface S (Figure 1), the boundary that 
separates particles that are of interest from 
those that are not.  

2.3 Angular momentum (H) 
The angular momentum Ho referred to a point 
0 is defined as the aggregate of the moments of 
the momenta of all the particles within S. In 
mathematical terms, angular momentum 
referred to 0 is defined as  

Ho =  ∑(r × mv)  (5) 

where both r and v are relative to O. In physical 
terms the angular momentum of a rigid body is 
a measure of the torque impulse that is needed 
to create its rotational motion. Thus the rotation 
of a body will be brought to rest by the 
application of a torque impulse that is equal 
and opposite to its angular momentum H. The 
reference point that is most useful for attitude 
dynamics is the Centre-of-mass C. The rule 
governing the transfer of reference point from 
C to some other point 0 is 

Ho =  Hc + Mho = Hc + (r × Mṙ)  (6) 

Figure 3 illustrates the terms used. The transfer 
involves adding on the moment-of-momentum 
to the transfer of inertia from C to 0. Equation 
(6) could be used, for example, for expressing 
the contribution to a spacecraft's total angular 
momentum referred to its Centre-of-mass, 
which arises from a momentum wheel. 

 
Figure 3. Transfer of reference point from C to O. 

2.4 Rate of change of angular momentum 
The following explanation applies only when 
the reference point is the Centre-of-mass C or 
an inertially fixed points l. It does not apply for 
other points. The angular momentum may be 
changed in two ways, the first being: 

1. By applying an external couple or a force 
that has a moment about the reference point. 
Its consequence is a rate of change of H. 
referred to C or I, described by the 
Newtonian equation 
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d(H)

dt
= T  (7) 

Internal torques, acting between particles or 
bodies, will not change the total momentum. 
Thus mechanisms, fuel movement and so on 
will not change the total angular momentum of 
a spacecraft. Similarly, the forces between two 
docking spacecraft will not affect their 
combined angular momentum. 

The second means of changing H is: 

2. By the ejection of some particles from S 
whose momenta have moments about the 
reference point. This will occur during the 
firing of rockets, when their thrust vector 
does not pass precisely through the Centre-
of-mass. 

As the angular momentum H becomes very 
large, the effect of a torque impulse becomes 
less, leading to the property known as 
gyroscopic rigidity. This characteristic is made 
use of by spacecraft designers when they give 
their craft momentum bias, as a means of 
making the bias direction insensitive to 
disturbance torques. Making H large causes the 
precession rate to become small in response to 
a given torque. The rate of change of the 
components of H depends upon the rotation of 
the axis system chosen, in addition to the 
change described by the Newtonian equation 
(7). When the axis system has an angular 
velocity 0 relative to inertial space, then 
equation (7) must be interpreted using the 
Coriolis theorem, as 

d(HC)dt =
d

dtcompts(HC)
+ (Ω × HC) =  T  (8) 

where d

dtcompts
 means the rate of change of the 

components of (HC). 

2.5 Angular momentum of rigid bodies 
The angular momentum HC  of a single rigid 
body referred to its Centre-of-mass C maybe 
expressed as 

HC =  [IC] ω  (9) 

where ω is its angular velocity relative to an 
inertial (non-rotating) frame of reference and 
[IC] is the inertia matrix based upon the centre-
of-mass C. In general, [𝐼𝐶] may be expressed as 

[IC] =  [

Ixx −Ixy −Izx

−Ixy Iyy −Iyz

−Izx −Izy Izz

] (10) 

where  Ixx, Iyy and Izz  are the moments of 
inertia.  Ixy, Iyz and Izx  are the products of 
inertia, broadly representing a measure of the 
lack of mass symmetry, leading to cross-
coupled behaviour. Everybody has a set of 
orthogonal axes at each point, for which the 
products of inertia are zero. These are called 
principal axes, and there may be more than one 
set of them, depending upon the mass 
symmetry of the body. Principal axes are 
eigenvectors of the inertia matrix. 

It is evident from equation (9) that the 
components of the angular momentum may in 
general be expressed as 

HC =  [(

(Ixxωx −Ixyωy −Ixxωz)

Iyyωy −Iyzωz −Ixyωx)

(Izzωz −Izxωx −Iyzωy)

]  (11) 

When principal axes are used, then 

HC =  [Ixxωx Iyyωy Izzωz]T  (12) 

2.6 Rotational kinetic energy 
The rotational energy of a rigid body may be 
expressed as 

𝐸 =
1

2
(𝐻𝐶 . 𝜔)𝑜𝑟

1

2
(𝐼𝐶𝜔. 𝜔)  (13) 

work is done by a torque 𝑇 at a rate 𝑇. 𝜔, and the 
rate at which the rotational energy is increased 
by a torque 𝑇𝐶 about 𝐶 is 𝑇𝐶 . 𝜔. It follows that in 
the absence of any external torque Te the 
rotational energy will remain constant. 

2.7 Equations of motion 
The equation of motion of attitude dynamics 
can be divided into two sets: the kinematics 
equations of motion and the dynamic 
equations of motion. Dynamics is the study of 
motion irrespective of the forces that bring 
about the motion. The kinematics equations of 
motion are a set of first-order differential 
equations specifying the time evolution of the 
attitude parameters. 

2.8 Dynamic equations of motion 
The basic equation of attitude dynamics relates 
the time derivative of the angular momentum 
vector dH, to the applied torque N.  

The rate of change angular momentum 
 dH

dt
= N − ω ∗ H = I

dω

dt
  (14) 

where the torque vector, 𝑁, is defined as: 
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 N ≡  ∑ ri
n
i=1 xFi  (15) 

and ω is instantaneous angular velocity vector. 
The force Fi , on the ith mass consists of two 
parts: an externally applied force  Fi

ext , and 
internal force consisting of the number of 
forces Fij, exerted by the other masses 

Fi =  Fi
e×t +  ∑ Fij

n
j=1; j≠i   (16) 

Thus  

N = ∑ ri × Fi
e×t + ∑ ∑ ri × Fij

n
j=1;j≠i

n
i=1

n
i=1  (17) 

Each pair of masses contributes two terms to 
the second number, 𝑟𝑖 × 𝐹𝑖𝑗 and 𝑟𝑗 × 𝐹𝑗𝑖 .By 
newton’s third law of motion𝐹𝑗𝑖 =  −𝐹𝑖𝑗, so the 
contribution to the sum of each pair of masses 
is (𝑟𝑖 − 𝑟𝑗) × 𝐹𝑖𝑗 . If the line of action of the 
force between each pair of masses is parallel to 
the vector between the masses, (𝑟𝑖 − 𝑟𝑗) , the 
cross product vanishes, and the net torque N, is 
equal to the torque due to external forces alone. 
This is always assumed to be the case in 
spacecraft applications.  

Equation (14) is the fundamental equation of 
rigid body dynamics. The presence of the 𝜔 ×
𝐻  term on the right side means that H, and 
hence 𝜔,  is not constant in the spacecraft 
frame, even if N=0 and the resulting motion is 
called nutation. Rotational motion without 
nutation occurs only if 𝜔 and H are parallel, 
that is, only if the rotation is about a principal 
axis of rigid body. 

Using H=I 𝜔 in equation (14) 

I
dω

dt
= N − ω × (Iω)  (18) 

or 
dH

dt
= N − (I−1 × H) × H  (19)  

In the principal axis system, equation (18) has 
the components: 

 

 

 

1
1 1 2 3 2 3

2
2 2 3 1 3 1

3
3 3 1 3 1 2

dωI  N I I ω ω
dt
dωI  N I I ω ω
dt

dωI  N I I ω ω
dt

 
   

 

 
   

 

 
   

 

  (20) 

and above equation can be written as: 

1
1 2 3

2 3

2
2 3 1

3 1

3
3 1 2

1 2

dH 1 1N L L
dt I I

dH 1 1 N L L
dt I I

  dH 1 1 N L L
dt I I

 
   

 

 
   

 

 
   

 

  (21) 

The dynamic equation of motion of rigid s/c are 
given by Euler’s equation as 
dH

dt
=  NDist + NCtrl −  ω × H  (22) 

where I is the moment of inertia tensor and 𝜔 is 
the spacecraft angular velocity vector. The time 
derivative is taken and the vectors are resolved 
in a body – fixed coordinate system. The 
terms NDist + Nctrl are disturbance and control 
torques, respectively, acting on the spacecraft. 

2.9 Kinematic equations of motion 
The kinematic equation be written in 
differential form using the quaternion 
representation of the attitude as: 
dq

dt
=

1

2
Ωq  (23)  

 where  𝛺 =  [

0 𝜔3 −𝜔2 𝜔1

−𝜔3 0 𝜔1 𝜔2

𝜔2 −𝜔1 0 𝜔3

−𝜔1 −𝜔2 −𝜔3 0

] 

The quaternion representation is generally 
preferred to the Euler angles representation 
because of its analytical characteristics.  

As the dynamic complexity of spacecraft 
increases, each degree of freedom must be 
represented by its appropriate equation of 
motion. For example incorporating momentum 
or reaction wheels for attitude stability and 
manoeuvring adds additional degree of freedom. 
Momentum wheel dynamics can be included as 
an additional term in Euler’s equation and an 
additional equation of motion for the wheels 
themselves. Equation (22) is rewritten as: 

   Dist Ctrl WHEEL
d Iω N N ω Iω ω h  N
dt

        (24) 

where h is the total angular momentum of the 
reaction wheels and 𝑁𝑊𝐻𝐸𝐸𝐿  is the net torque 
applied to the momentum wheels, which is a 
function of bearing friction, wheel speed and 
applied wheel motor voltage. The equation of 
motion of the wheels is  



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 290 

dh

dt
= NWHEEL 

The dynamic and kinematic equation of motion 
are taken as a set of coupled differential 
equation and integrated.  

The capability to attitude-manoeuvre a satellite 
is based on using control torques. The most 
common control laws include Euler angles 
based control laws and quaternion error 
terminologies based control laws. The simplest 
torque control law is based on Euler angle 
errors. The major shortcoming of this law is 
that the six off-diagonal elements of the error 
matrix must be computed continuously.  

The quaternion error vector expresses the 
attitude error between (i) the satellite attitude 
direction in space and (ii) the target direction 
toward which the satellite is oriented at the end 
of the attitude manoeuvre. The quaternion error 
vector is written as: 

         
1 1

E T S T SA q A(q ) A q A q A q  
                (25) 

The attitude control laws are given by: 

cx x 1E 4E xd

cy y 2E 4E yd

cz z 3E 4E zd

T 2K q q K p,
T 2K q q K q,
 T 2K q q K r

 

 

 

 (26) 

As this method requires fewer algebraic 
operations, it is the most preferred control law. 

3. Control Moment Gyros – 
Actuator for Spacecraft 
Attitude Control 

A Control Moment Gyro (CMG) (Figure 4) is a 
torque generator for attitude control of an 
artificial satellite in space. Also it is a 
momentum exchange device which is used as 
an actuator for spacecraft attitude control. It 
rivals a reaction wheel in its high output torque 
and rapid response.  

A CMG consists of a flywheel rotating at a 
constant speed, one or two supporting gimbals, 
and motors which drive the gimbals. A rotating 
flywheel possesses angular momentum with a 
constant vector length. Gimbal motion changes 
the direction of this vector and thus generates a 
gyro-effect torque. The working principle of 
CMG installed on a spacecraft can be described 
as a rotor that spins at a constant speed and is 
gimballed to apply a gyroscopic torque on the 

spacecraft. When the gimbal is rotated, the spin 
axis of the rotor points along different 
directions causing a change in its angular 
momentum orientation. The gyroscopic torque 
is proportional to the rate of change of the 
angular momentum. 

 
Figure 4. Control Moment Gyro 

There are two types of CMG units: single 
gimbal and double gimbal. A single gimbal 
CMG generates a one axis torque and a double 
gimbal CMG generates a two axis torque. In 
both cases, the direction of the output torque 
changes in accordance with gimbal motion. For 
this reason, a system composed of several units 
is usually required to obtain the desired torque. 

4. Mathematical Formulation 

A generalized system is considered consisting 
of n identically sized single gimbal CMG units. 
The number n is not less than 3 to enable three 
axis control. The system configuration is 
defined by the relative arrangement of the 
gimbal directions. The system state is defined 
by the set of all gimbal angles, each of which 
are denoted by  𝛿𝑖 . Three mutually orthogonal 
unit vectors are shown in Figure 5a. and are 
defined as follows: 

  𝑔𝑖 : Gimbal vector,   𝑐𝑖 :Torque vector 

  ℎ𝑖 : Normalized angular momentum vector, 

where  
ci = ∂hi ∂δi⁄ =  gi × hi  (27) 
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Figure 5a. Ortho normal vectors of a CMG unit 

The gimbal vectors are constant while the 
others are dependent upon the gimbal angle  𝛿𝑖. 
Once the initial vectors are defined as in Figure 
5b, the other vectors are obtained as follows: 

i i0 i i0 i

i i0 i i0 i

h h cosδ  c sinδ ,
c h sinδ  c cosδ
 

  
  (28) 

 
Figure 5b. Gimbal angle and vectors 

The total angular momentum is the sum of 
all  ℎ𝑖 multiplied by the unit’s angular 
momentum value which is denoted by ℎ. In this 
work, H denotes the total angular momentum 
without the multiplier h: 

H = ∑ hi  (29) 

This relation is simply written as a nonlinear 
mapping from the set of 𝛿𝑖to H 

H = f(𝛅)  (30) 

The variable, δ = (δ1, δ2, … . , δn), is a point 
on an n dimensional torus denoted by 
𝑇(𝑛) which is the domain of this mapping. 
The mapping range is a subspace of the 
physical Euclidean space and is denoted by 𝐻. 
This space is the maximum workspace. By 
the analogy of this relation with a spatial link 
mechanism, this relation will be called 
kinematics or kinematic equation. 

The output torque without the multiplier h is 
obtained by taking the time derivative as follows: 

T =  − dH dt⁄ = − ∑
∂hi

∂δi
×

dδi

dt
  (31) 

The total output torque is a sum of output of 
each unit, it is also given as: 

i iT  c ω Cω      (32) 

where  

ωi =
dδi

dt
,  and  ω = (ω1, ω2, . . , ωn)t (33) 

The variable 𝜔𝑖 is the rotational rate of each 
gimbal. The vector w is a component vector of 
a tangent space of T(n).  

4.1 Steering Law 
The ‘steering law’ functions to compute the 
gimbal rates,  𝜔  necessary to produce the 
desired torque, Tcom, and is generally given as 
a solution of the linear equation given in 
Equation (32). 

    1 1t t t t
comω C CC T I C CC C k

 

     (34) 

where I is the𝑛 × 𝑛 identity matrix and k is an 
arbitrary vector of n elements. 

The first term has the minimum norm among 
all solutions to the equation. The matrix 
Ct(CCt)−1  is called a pseudo-inverse matrix. 
The second term, denoted by 𝜔𝑁, is a solution 
of the homogeneous equation: 

C ωN = 0  (35) 

This implies that the motion by this 𝜔𝑁 does 
not generate a torque (T) and keeps the angular 
momentum (H) constant. In this sense, this 
term is called a ‘null motion’. The null motion 
has n-3 degrees of freedom because it is an 
element of the kernel of the linear 
transformation represented by C. 

4.2 Singularity 
A singularity is encountered when there exists 
some direction in the body in which the array 
of CMGs is not capable of producing torque. 
This phenomenon occurs when the gimbal 
angles of CMGs become some specific 
arrangement. 

It is assumed each CMG has equal and constant 
angular momentum of unit magnitude. Total 
output torque for this system is given by the 
time rate of change of total angular momentum 
vector: 

τ = h = A(δ)δ̇  (36) 
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Each column of the Jacobian matrix represents 
the output torque vector of the respective CMG 
in the cluster. The 3xn Jacobian matrix 𝐴 is a 
function of the gimbal angle, as shown in 
equation (36), and it has maximum rank of 3. 
When rank (𝐴)  = 2, equation (36) deteriorates, 
where all 𝑎𝑖  become coplanar and there exists a 
unit vector 𝑢 orthogonal to that coplanar plane; 
i.e.: 

ai. u = 0, (i = 1,2, … . , n)  (38) 

Therefore, the output vector 𝑇, that is a linear 
combination of 𝑎𝑖, is also normal to 𝑢 and the 
CMG system cannot produce any momentum 
along the direction of 𝑢. There exists a vector u 
normal to all 𝑎𝑖 at the singular point. Therefore 
we select 𝑢 as parameter and solve this 
equation with respect to 𝑎𝑖 . Since 𝑎𝑖  is 
perpendicular to both  𝑢 and gimbal-axis 
vector 𝑔𝑖, 

ai
S =  {

εi (gi × u) |gi × u|⁄ (gi ≠ u)

arbitrary (gi = u)
  (39) 

where,  εi = ± 1  and subscript S denotes 
singular point. Let 𝑢 be a unit vector of the 
punctured unit sphere defined as: 

S = { u: │u│ = 1 }  (40) 

The angular momentum at a singular point is 
given by the following equation: 

hi
S =  ai

S × gi  (41) 

At the singular point, all ℎ𝑖 is in the direction 
that is along with 𝑢 or  −𝑢  as close as possible. 

5. Results and Discussion 

In this work a satellite with moments of inertia 
Ix = 27 , Iy = 17 , Iz = 25  kg − m2  is 
considered. Satellite dynamic equations used 
are Euler’s momentum equations. The satellite 
kinematic equations used are the time 
derivatives of the quaternion vector. The 
control torques are generated using Quaternion 
error vector command law.  

In many cases the satellite is required to carry 
out small manoeuvres in order to orient it in a 
specified direction. Such a case of small attitude 
command is considered. The attitude commands 
in the three axis considered are [−6𝑜, −4𝑜, 4𝑜]. 
The open loop and closed loop results are 
presented in Figure 6 and Figure 7 respectively. 

5.1 Open loop response 

 
Figure 6a. Angular velocities of the satellite 

 
Figure 6b. Quaternion outputs of the satellite 

 
Figure 6c. Time response satellites kinematics 

where A instantaneous Jacobian matrix is: 

 
1 2 3 4

1 2 3 4

1 2 3 4

cos cos sin cos cos sin
sin cos cos sin cos cos

sin cos sin cos sin cos sin cos

hA
     

      


       

  
  

   
 
  

 (37) 
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5.2 Closed loop response 
Figure 7a to Figure 7c that shows the closed 
loop response reveals that the angular velocities, 
the quaternion response and the attitude in 
Euler`s angles are stabilised. The control 
torques and the quaternion errors are shown in 
Figure 7d and Figure 7e. It can be seen that 
maximum of 0.1Nm is sufficient for the 
manoeuvre. The relationship between four 
quaternions is that sum of squares of 
quaternions is always one.  

 
Figure 7a. Angular velocities of the satellite 

 
Figure 7b. Quaternion outputs of the satellite 

 
Figure 7c. Time response satellites kinematics  

 
Figure 7d. Control Torques 

 
Figure 7e. Quaternion error 

5.3 Singularity detection - effects of 
singularity on developed torques  

The effects of singularity on developed torques 
on increasing and sinusoidal control torques are 
shown below. It can be seen that when 
singularity occurs the torque values are 
reducing to zero 

5.3.1 Increasing Torque 

It can be seen from Figure 8. that the actual 
torque is increasing throughout with respect to 
time but the developed torque is decreased to 
zero at the instant when singularity occurs 
(t=20 seconds). 

Figure 8. Control Torques and Developed Torques 
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5.3.2 Sinusoidal Torques 

It can be seen from Figure 9. that the actual 
torque is sinusoidal throughout with respect to 
time but the developed torque is decreased to 
zero at the instant when singularity occurs 
(t=20 seconds). 

 

 
Figure 9. Control Torques and Developed Torques 

5.4 Effect of Singularity on angular 
velocities 

The changes in angular velocities of satellites 
due to occurrence of singularity are shown in 
Figure 10. 

From Figure 10, it can be seen that the angular 
velocity does not change with time when 
singularity occurs, it saturates for particular 
interval (time 20 – 30 seconds). At that 
corresponding interval of time the attitude of 
one axis starts decreasing. 

 
Figure 10. Angular velocities of the satellite 

6. Conclusion 

A control moment gyro (CMG) is a device used 
as an actuator for attitude control of spacecraft. 
It generates torques through angular 
momentum transfer to and from the main 
spacecraft body. This is achieved by changing 
the direction of the angular momentum vector 
of a gimballed flywheel. Because a CMG 
operates in a continuous manner, it can achieve 
precise attitude control. Moreover, as it does 
not consume any propellant, the operational life 
of the spacecraft can be prolonged.  

An obstacle when using a CMG system in 
practice is the existence of singular gimbal 
angle states for which the CMGs cannot 
generate a torque along arbitrary directions. At 
each singular state, all admissible torque 
directions lie on a two-dimensional surface in 
the three-dimensional angular momentum 
space; therefore, the CMG system cannot 
generate a torque normal to this surface. These 
singular states at which a CMG cannot generate 
torque are detected in this work. Simulation 
results show that when singularity occurs the 
developed torque deviates from its original 
value. In future this work can be extended by 
providing exact steering laws to avoid 
singularities so the CMGs can generate a torque 
even in the presence of singularity. 
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