
Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 297

1. Introduction

The design of flexible, efficient, reliable
control systems is one of the main concerns in
modern industrial applications. The solution is
developing modular, Internet-enabled, reusable
control logic systems, capable of working in
distributed networks, and able to incorporate
modern technologies like smartphones in the
process control actions. A great attention was
given over the last decades to improving the
process control design and programming
methods that provide patters or generic
software objects and can be used in different
applications with minimum reconfiguration and
integration effort [1-2]. The use of such objects
provide great help for process control engineers
in designing higher quality and more efficient
automation systems in a shorter period of time.

An important support in this direction came
from the IEC 61499 standard [3]. It allows
developing platform-independent, reusable and
even self-configurable function blocks that give
the possibility of exchanging information
between interconnected controllers in a
distributed network. Innovative applications
were developed in domains like Smart GRIDs,
Material Handling Units, Building
Management Systems and Smart Factories to
exploit the standard’s benefits and prove its
reliability [4].

Not much attention was paid until now to the
web integration of an IEC 61499 application.
The standard provides some standard
communication objects [5] that can be further

developed to implement industrial
communication protocols like Modbus,
Profibus, CAN, OPC etc.

Using the free FBDK tool for IEC 61499
application development and execution, this
paper aims to further exploit the standard’s
benefits and develop a web-based system for
the remote configuration and execution of a
function block, with the results being sent to a
specific device. This provides great flexibility
and efficiency to the engineering process, as
the distributed controller has access to greater
computational power than its own resources.
That way the system provides great
accessibility and reliability in using a wide
range of complex algorithms without the need
of a controller upload and just by using an
Ethernet communication link. Applications that
are independent of the process time (like model
learning, detecting optimal parameters,
algorithm testing, plant risk analysis, image
processing etc.) or the ones that don’t have hard
real-time constraints (like slow process control
plants from the agriculture or biology domains,
building management systems etc.) are the ones
that can benefit most from the implementation
based on such a remote execution system.

2. IEC 61499 and FBDK Support

in Implementing Remote Web-

Controlled Applications

One of the main paradigms behind the IEC
61499 standard refers to the development of
truly distributed systems [6]. The standard

Web System for the Remote Control and Execution of an

IEC 61499 Application

Oana ROHAT, Dan POPESCU

Faculty of Automation and Computer Science, Politehnica University,
Splaiul Independenței 313, București, 060042, Romania,
oana.rohat@gmail.com; dan_popescu_2002@yahoo.com

Abstract: Remote control and execution gives the possibility of designing applications where any controller can have
access to high computational power and knowledge just by use of standard network interfaces. This work describes the
structure and components of a system that allows a user to select an algorithm from a web library, configure the execution
parameters and remotely control a plant application that is implemented based on the IEC 61499 standard. The system is
based on open technologies like php, Java and IEC 61499 function blocks allowing the easy integration and
interoperability of its components. The system was successfully tested and represents a novel approach in developing
flexible, efficient and reliable applications.
Keywords: web application; remote execution; distributed systems; function block programming; software integration.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 298

introduces the concept of system configuration
that represents a set of interconnected devices
with one or several resources that can execute
an application or parts of it. This allows the
process control engineer to imagine and test the
functionality of an application as a whole and
then “cut” it and assign parts of it to different
devices that are involved in the control process
and are connected in a distributed network.

Following this methodology, the remote control
of an application means the separation of the
command or user input functions and their
implementation in a web structure. To lower the
processing effort, only the execution parameters
or application output functions are maintained at
the controller level, while the algorithm
implementing the desired functionality runs on a
remote server. The standard provides all the
needed support in designing the distributed
application but no web-interface related
functions are available. The integration with a
web application is possible only by using a
communication interface.

The IEC 61499 standard provides two
communication objects that are also available
in FBDK: Client/Server for bidirectional
communications and Publish/Subscribe for
unidirectional communication [7]. When using
the Publish/Subscribe communication pattern
the information flow is directed from the
Publish to the Subscribe block. Several
Subscribers can receive data from the same
Publisher but no feedback is sent back for
transmission acknowledgement or verification.

The link between the pairing blocks is done by
an ID parameter that represents the multicast
address. This parameter must have the same
value on each side to make a connection. All
parameters are transmitted from the sender to
the receiver in the same order they were
configured at the input of the function block.

These function blocks can also be used for web
integration if they are used to implement open
services communication protocols. They can be
used for data transfer between remote devices
but cannot be used for execution control. More
advanced functions for OPC-UA protocol or
web servers are available in commercial
engineering software applications like
NxtStudio but are not available in FBDK.

To fully control a distributed component of an
application remotely, a user must also have the
possibility to start or stop that function block. As

is the case of most process control programming
environments, the execution control of a system
configuration or of a function block is not
directly accessible in FBDK. As is later detailed
in Section 3, FBDK has a “back door”, the
System Manager Configuration tool, which can
be used for such operations.

3. System Modelling and

Components Integration

The system for the remote execution of an IEC
61499 application was developed as a web
library allowing access to different algorithms,
organized according to their purpose and
functionality. Using such a system implies little
reconfiguration effort at the plant level which
refers to changing the source of the
corresponding controlled parameters. These
parameters are usually entered manually, at the
time of the application development or by use
of a HMI. To run an algorithm, a user must add
a communication interface that will link the
desired control parameters to the remote
execution system.

As can be seen in Figure 1, the system has three
main entities: the web interface, controlled by
the user, the library server which is
independent of a particular application and the
remote device whose particularities are not
known. The user has access to the web
interface that allows him to configure the
parameters of the selected algorithm so that the
execution results can be sent to the
corresponding remote device from the plant
application. He must add the corresponding
communication interface at the plant level
according to the whole system configuration.
The communication was designed as
unidirectional, so no feedback is received by
the library from the remote device execution.
Still, some cases (like the PID algorithm) may
require a process parameter for algorithm
execution. In this case, the execution will
require an additional Subscribe/Publish pair so
that the controlled value can be received from
the plant. The user acts as an active observer
able to adjust at runtime the algorithm
parameters according to the process response.

The remote execution system is based on open
technologies which allow the easy integration
and interoperability of its components.
Information exchange between different
components is done using standard Internet

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 299

communication protocols TCP and UDP
because of their ease of implementation at
each level.

The Web Library Interface was developed
using HTML for interface design and PHP for
database querying, forms and user session
handling and data encapsulation into XML.

The Library Server has two components: the
Library Controller and the Algorithm
Execution environment. The Library Server is
responsible for delivering the content for the
web interface, for the management of execution
commands and data flow through the system.
The Library Controller was implemented using
Java. The Algorithm Execution environment is
based on FBDK.

The Remote Device implements a specific
application using the IEC 61499 standard. The
connection to this component is based on the
Publish/Subscribe mechanism through UDP
multicast packages. The details of the remote
device are not known in the system, the only
connection to it being through the
communication interface.

4. How It Works

4.1 The Web interface

The Web Interface allows the user to select de
desired algorithms based on their description of
functionality, to configure the execution
parameters and remote device address and to
start or stop the execution of an algorithm. The
execution parameters can be modified at
runtime, so the user can adapt the algorithm
according to the process response. Using PHP
scripts, the Start Controller or Stop Controller
commands are sent from the web page to the
Library Controller using a TCP connection.

The Start Controller command that is sent from
the web application encapsulates the algorithm
parameters into an XML message that is
transmitted to the Library Controller. This
XML package contains information regarding
the algorithm ID, the algorithm parameter
names and corresponding values and the
remote device IP address and port.

Figure 1. Integration of system components

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 300

4.2 The library controller

The Library Controller is a Java application
that is in charge of session management and
parameter value transmission between the web
application and the FBDK environment. When
a user presses the Start Controller button the
Library Controller executes the following
actions: creates an instance of the algorithm,
starts the specific algorithm execution and
sends the parameters from the web interface to
the algorithm function block. The controller
can receive connections from many different
web browser clients. These connections use the
TCP protocol over a predefined port known by
both web browser and the Library Controller.

Once the XML message from the Web
application is received, the Library Controller
parses it and extracts the parameters and their
values. The parameter fields and their values
are stored in a hash map for later use, when
Library Controller will need to send these
parameters through the Publish/Subscribe
mechanism to the Algorithm Execution System.

4.3 Starting the Algorithm

Execution System

Once a new instance of the algorithm is created,
the Library controller needs to start its
execution. Using the FKDB runtime libraries
the controller makes a call to the
“fb.rt.tools.SystemManager” Java application
that will open a stand-alone FBDK system
configuration. The System Manager library
uses a .sys file received as a command
line argument and starts the execution of all
the block components of that system in
separate panels.

In case of conventional use of the FBDK
environment running the same algorithm twice
simultaneously is not possible. That is because
two instances of the same algorithm running on
the same machine will create UDP port
conflicts and the communication between
publishers and subscribers will not be possible.

The System Manager is also responsible for
starting the algorithm execution in the standard
use of the FBDK environment. When the user
selects an algorithm and clicks the “Run”
button, the FBDK Editor calls the System
Manager Java library with the
corresponding .sys file to create an instance of
that algorithm.

Sending the parameters from the Library
Controller to the Algorithm Execution module
is done using the Publish – Subscribe
mechanism. The publisher sends multicast
UDP packets on a specific UDP port over the
network. For the subscriber blocks to receive
this information, the FBDK environment will
open a UDP socket on the same UDP port as
the publishing blocks on which it will listen for
incoming messages. For each algorithm that is
running at a specific period of time, a different
pair of communication blocks must be used.
These blocks will also use different
communication sockets.

In the current implementation, for the
communication between the Java Controller
and Algorithm System to allow different
users to use the same algorithm, the IP/Port
allocation must be different for each user
session. If multiple users use the same
algorithm, the session of the first user will
use the default IP of 225.0.0.1 and UDP port
1024. The allocation of the UDP ports
follows an incremental basis that adds the
value of 1 for each new executed algorithm
starting from 1024. Once the maximum
number of 65535 is reached, the IP is then
incremented and the counting restarts. In this
way, different users will be able to use the
same algorithm and the Java Controller will
be able to send the parameters of the
algorithm introduced by the user in the web
page to the correct Algorithm System.

The FBDK logic which is responsible for the
algorithm execution must use a subscribe block
with a number of inputs according to the
number of required algorithm parameters. As
mentioned previously, this subscriber block
will listen for incoming publisher packets on a
specific UDP port.

The Library Java Controller, since it is not an
FBDK application, must emulate an FBDK
publisher block by creating a UDP socket on
the corresponding UDP port. Then it must
convert the information into FBDK custom
packets that an FBDK subscriber block will
know how to understand.

To achieve this, we have used the well-known
network packet capture tool Wireshark to
analyse the exchanged packets between an
FBDK publisher and subscriber over the
loopback network interface. Then we have
inspected the UDP payload and extracted the
required fields that need to be customized by

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 301

the Library Controller. What we have noticed
is that the parameters of a frame device that
are entered as input in the FBDK editor are
sent by the publisher blocks in an encoded
format. The encoding used by FBDK is a
custom one in which the values of an input
parameter are inserted in the UDP packet, one
after another. The encoding is documented in
the Annex E.3.3.2 of IEC 61499-1 and
referenced by the Presentation Layer chapter
of the Compliance Profile of FDBK. Using
this encoding the Java Controller publishers
can send the parameters from the webpage to
the FBDK native subscribers.

4.4 Multiple concurrent connections

Another aspect of the application development
is handling concurrent connections from
different users or when a user starts more
algorithms. For this function the Library Java
controller creates one thread for each incoming
TCP connection received from the Web
interface module. The new thread reads the
XML received from the Web interface, parses
the parameters, sends them to the Algorithm
Execution module and transmits a feedback to
the web interface for the confirmation of
starting the execution.

4.5 Handling Internet connection problems

Internet - Based Control Systems (IBCS) like
the one presented in this paper provide great
flexibility and accessibility for process control
engineers. Still this implies implementing
specific measures for ensuring the safety,
security and data integrity of such a connection.

The main aspects that need to be considered
when designing such a system are [8]:

- Assuring the integrity of the data received
by the remote device;

- Securing remote access by use of data
encryption methods;

- Authenticating and validating the
communication nodes.

The most common action [8 - 11] for solving
these problems is using a dedicated VPN
(Virtual Private Network) security solution. This
solution implies the existence of a specialized
VPN router at the plant level acting as a server
that uses a public IP. At the router level the
process control engineer will define a user and a
password that will be used by the Library
controller to authenticate as a VPN client.

While this solution minimizes the data loss and
integrity, additional safety measures need to be
considered when connecting to an industrial
plant. For example, a network loss during an
algorithm execution dynamic can lead to an
instable process. Handling such cases may
imply dedicated plant analysis, developing fail-
safe mechanisms for the algorithms and
implementing delay-handling algorithms as
presented in [11]. Such mechanisms were not
yet developed for this system and this is why it
is intended for use only in low risk applications.

5. Use Case Example

To be able to execute an algorithm remotely
using the presented web system it must first be
adapted to a standard representation based on
IEC 61499. We chose for exemplification the
Particle Swarm Optimization (PSO) algorithm.

5.1 The PSO algorithm

Particle Swarm Optimization is a Swarm
Intelligence (SI) method that solves
optimization problems based on the analysis of
the social behaviour of swarms like bird
flocking or fish schooling [12]. It seems that
these animals share information inside the
swarm and the behaviour of each individual is
dictated by patterns of the group behaviour in
their search for food or in case of migration.
The same way humans use both personal
experience and other people’s experience in a
decision-making process. The PSO algorithm
uses these concepts in optimization problems
with D variables. Studies show that it is a fast,
robust and easy to implement method able to
find the global optima in continuous nonlinear
optimization problems [12 - 14]. In process
control applications it was often used for the
online and offline tuning of PID control loops
where studies shown increased performance
compared to other tuning methods [14].
Enhanced hybrid versions of this algorithm can
be used for solving problems of increased
complexity like the Probabilistic Travelling
Salesman Problem (PTSP) [15].

Let us consider we want to find the solution X*
for a minimization problem for a function f
with D variables. The PSO algorithm uses a
swarm of P particles that are placed with
random positions xi and random velocities vi in
a D-dimensional space. Each particle knows its
own best position so far, Pbest, and the best

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 302

position of the group, Gbest, in the
corresponding search space. The best position
refers to the position for which the minimum of
the function f was reached.

The velocity of each particle is modified
according to its personal experience, the distance
to the Pbest location, and also to the group
experience, measured in the distance to the
Gbest location. The modified velocity and
position for each particle can be calculated using
the following formulas (adapted from [13]):

][**

][**

22

11
1

t
ij

t
j

t
j

t
ij

t
ij

t
j

t
ij

t
ij

xGbestrc

xPbestrcvv





 (1)

t
ij

t
ij

t
ij vxx 1

 (2)

i = 1, 2 … P; j = 1, 2 … D; t = 1, 2 … N
where:

N is the number of iterations of the algorithm;
t
ijv and t

ijx are the velocity and position vectors
of particle i in dimension j at time t;
is the position vector of particle i in dimension j
at time t;

t
ijPbest is the personal best position of particle

i in dimension j found from initialization
through time t;

t
jGbest is the global best position of all

particles in dimension j found from
initialization through time t;

1c and 2c are acceleration constants;

𝑟1𝑗
𝑡 and t

jr2 are random numbers generated by
the algorithm between (0, 1) at time t.

The algorithm stops when the maximum
number of iterations N is reached. The solution
to the optimization problem is:

X* = Gbest = (Gbest1, … GbestD) (3)

A large swarm size P means an increased
search space, which may also lead to a smaller
number of iterations needed. Still, it will
increase the computational complexity per
iteration. Studies [9] have shown that a
common value for P is inside the interval [20,
60]. The number of iterations also affects the
algorithm efficiency. This is why a
recommended practice is to define the
maximum number of iterations N and to stop
the execution of the algorithm either when that

number is reached or when the algorithm stalls
for a fixed period. The constants c1 and c2
express the self-confidence and the swarm
confidence. These are often set to c1 = c2 = 2
according to past experiences [14].

5.2 Design of the PSO algorithm based

on IEC 61499 function blocks

The choice of the IEC 61499 for the algorithm
representation came from the need of creating a
reusable algorithm, in an open standard, that
can be used “as is” in different process control
applications independent of the application
development environment and of the platform
on which it will run. The possibility of creating
distributed applications further strengthened
our choice since it gives the process control
engineer the freedom to use advanced, complex
algorithms using controllers with lower
resources. This can be done by executing the
complex algorithms remotely and by adding
communication interfaces that link the
controller in the field to the remote execution
server [14].

Considering a minimization problem of the
function f, the flowchart in Figure 2 illustrates
the steps needed in the algorithm
implementation, also according to the IEC
61499 execution.

INIT and REQ are input events that launch the
execution of the corresponding sequences. All
variable in the *_ij format should be read for all
* variables where i goes from 0 to P, the number
of particles, and j goes from 0 to D, the number
of variables or dimensions of the problem.
Dmin_j and Dmax_j is the interval in which the
search should take place for each dimension. t
keeps track of the current iteration. RUNF is a
variable needed to separate the execution of the
algorithm from the function evaluation.

This allows writing a generic, reusable
algorithm that does not depend on the objective
function for which it is used. Fbest represents a
vector keeping the minimum values of the
objective function at moment t and Pbest has
the corresponding positions for which those
values were obtained. Fgbest stores the global
optimum and Gbest has the j values
corresponding to the positions for which that
optimum was reached. v_ij and x_ij are
evaluated according to the equations (1) and (2).
All other variables have the meaning specified
in the previous section. The algorithm stops
when the maximum number of iterations was

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 303

reached. The outputs of the algorithm are the
Gbest and Fgbest variables.

5.2.1 Algorithm implementation

The algorithm was implemented as a function
block with the structure illustrated in Figure 3.
The algorithm can be used for one dimension
optimization problems. Because FBDK does
not allow defining arrays with variable length,
the maximum recommended length of 60 was
considered for all arrays. This will not affect
the execution performance as the algorithm will
be evaluated according to the maximum
number of particles P defined as input.

Figure 3. Algorithm structure

X_F is the value of X sent for evaluation to the
objective function. F is the value received from
the objective function. k is an internal variable
that keeps track the current item in the position
vector X to send to function f. All other
variables have the same meaning as detailed in
the above section.

The INIT event is used to launch the INIT
function that initializes the algorithm variables
and then sends an INITO output event.

When receiving an REQ event, the algorithm
checks to see the value of the RUNF variable.
If it is false it will execute the STEP function
which is a step of the algorithm, meaning the
evaluation of the velocity and position vectors.
If the maximum number of iterations is reached,
variable DONE is set to TRUE which activate
the END_F output event.

The evaluation of f(X_F) is received at the
input of the function block as variable F and is
compared to Fbest[k]. If the new value is
smaller, than X_F and F are stored in Pbest[k]
and Fbest[k], respectively. When k reaches the
end of the position vector (k=P) the RUNF is
set to FALSE, allowing the function block to
execute a new step of the algorithm. After a
STEP function is executed, RUNF is set to

Figure 2. Flowchart of the PSO algorithm

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 304

TRUE, the t variable is incremented and the k
variable is reset. When the maximum number
of iterations is reached the END_F output event
is generated and the algorithm stalls until a new
INIT event.

The algorithm can be used for the optimization
of functions with more than one variable,
considering the variables are independent of
each other. Such an application is illustrated in
Figure 4. Because the PSO algorithm is generic,
different instances of it can be used for each
variable. In this case the operator chooses the
swarm size, the number of iterations and the
search space dimension that are used for all
algorithm instances. The Cyclic_sel block
counts from 0 to the total number of needed
input events and commands the Select block
which activates cyclically each algorithm. The
function f is executed according to the input
event that is activated. For example, by
activating the REQ 1 event, the block executes
the function f(x1) and sends the result to z1.

6. System Testing and Evaluation

The web system for the remote control and
execution of IEC 61499 applications was
evaluated related to achieving the desired
scalability and to how the system load in term
of concurrent connections and/or concurrent
algorithm executions affect the overall
performance. For this evaluation we used the

network configuration illustrated in Figure 5 of
three computers, each representing the different
system components. The user accessed the Web
interface from a computer where also the
Library Server resides. Two computers were
also used for simulating different remote
devices. Because the IEC 61499 standard is
platform independent, we were able to simulate
two plant applications on remote computers.
The functionality of the remote device does not
affect in any way the behavior of the system, as
their only connection is unidirectional from the
Algorithm Execution module to the plant. The
quality of the communication is only affected
by the network performance.

Figure 5. System evaluation configuration

To be able make this test our test harness had to
spawn multiple algorithm instances and
multiple plant modules. The communication
between the algorithm and the plant is
established though publish-subscribe blocks
and each instance of the algorithm must have
the publisher block communicate with the
subscriber block through a unique IP/TCP Port
tuple. The test harness is using the PSO

Figure 4. Optimization of a three variable function

Studies in Informatics and Control, Vol. 23, No. 3, September 2014 http://www.sic.ici.ro 305

algorithm as the Algorithm Execution module
and a system configuration simulating a simple
process for the plant module. Both the
algorithm and the plant module are represented
in FBDK as .sys files which are handled by the
System Manager library.

To have the same communication tuple
between the Algorithm Execution module and
the plant module, for these tests the Algorithm
Execution module and the plant module are
edited in the FDBK Editor and instead of
assigning an IP/TCP port like 225.0.0.1:1024
for the publisher/subscriber blocks between the
Algorithm Execution and the plant modules, we
have assigned a pattern string that will be
replaced by the Bibliodas Controller at runtime
with a generated IP:Port tuple.

Once the pattern strings are replaced with the
IP:Port tuples in both the plant module system
file (.sys) and the Algorithm Execution system
file, the Bibliodas Controller will first start the
plant module by calling the SystemManager
library with the specified system file. After a
two seconds delay, time in which the FBDK
runtime libraries will be able to open the
listening sockets for the subscriber blocks and
the plant module to bootstrap its configuration,
the Bibliodas Controller will start the
Algorithm Execution module.

Once the Algorithm Execution module is
running, the Bibliodas Controller needs to
send the algorithm parameters that the user
has entered in the Web Interface to the
Algorithm Execution module. The algorithm
parameters are sent over a custom made
publisher block from inside the Blibliodas
Controller to the subscriber block in the
Algorithm Execution module.

In our tests, we have monitored the CPU and
Memory usage when simulating 1, 10, 20, 30,
40 and 50 concurrent algorithm sessions of the
same algorithm. Each command is having the
same algorithm parameters entered in the Web
page and a unique session id, simulating
different user sessions. The delay between
each command was set to one second, so that
the Bilibodas Controller will not be flooded
with commands.

Test results are summarized in Figure 6. In all
of the cases, the CPU usage was of about 30%
and the Memory consumption was increased by
20MB for 10 simulated sessions and of
maximum 40MB when simulating 50

concurrent sessions. The system responsiveness
was slow at some point during the test, when
multiple windows were opened and the taskbar
in Windows XP was resizing to accommodate
the new windows.

Figure 6. Performance test results

7. Conclusions

This paper presents the design and
implementation of a web-based system for the
remote control and execution of IEC 61499
function blocks. The system represents a new
area of application for the IEC 61499 standard
and uses different open technologies that allow
system portability and easy components
integration. The modular approach allows easy
adaptability to different algorithms and
applications while keeping the generic and easy
reconfigurable characteristics. The paper details
a possible solution for implementing such a
system that uses different tools and
programming languages specific for each
component so that a flawless integration in
achieved. The system extends the programming
capabilities of IEC 61499 and gives process
control engineers a starting point in designing
other web-based or remote execution
applications like cloud-computing for high
complexity plants, increased availability using
web-based HMI, integration of power system
into Smart GRID networks etc. As the FBDK
application used does not require great
resources, the system scalability showed little
influence on the server CPU and Memory load.

Future work is related to implementing system
and communication security mechanisms,
developing more advanced communication
protocols that will allow integrating process
feedback in the web interface and designing a
more complex application that will be tested on
a real application.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 3, September 2014 306

REFERENCES

1. SOROURI, M., S. PATIL, V. VYATKIN,
Distributed Control Patterns for

Intelligent Mechatronic Systems,
International Conference on Industrial
Informatics - INDIN, 2012.

2. ANDREN, F., T. STRASSER, A. ZOITL, I.
HEGNY, A Reconfigurable

Communication Gateway for

Distributed Embedded Control Systems,
Proc. of 38th Annual Conference of the
IEEE Industrial Electronics Society 2012,
October 25-28, 2012, Montreal, Canada.

3. LEWIS, R. W., Modelling control

systems using IEC 61499: applying

function blocks to distributed systems,
Control Engineering Series 59, IEE, U.K.,
2001.

4. STRASSER, T., J. H. CHRISTENSEN, A.
VALENTE, F. CHOUINARD, E.
CARPANZANO, A. VALENTINI, H.
MAYER, V. VYATKIN, A. ZOITL, The

IEC 61499 Function Block Standard:

Launch and Takeoff, ISA Automation
Week 2012.

5. VYATKIN, V., IEC 61499 Function

Blocks for Embedded and Distributed

Control Systems Design, ISA Publishing,
USA, 2012.

6. YANG, C., V. VYATKIN, Design and

Validation of Distributed Control with

Decentralized Intelligence in Process

Industries: A Survey, Industrial
Informatics, 2008.

7. ANDREN, F., T. STRASSER, A. ZOITL, I.
HEGNY, A Reconfigurable

Communication Gateway for

Distributed Embedded Control Systems,
Proc. of 38th Annual Conference of the
IEEE Industrial Electronics Society 2012,
October 25-28, 2012, Montreal, Canada.

8. JUNIPER Networks, Architecture for

Secure Scada and Distributed Control

System Networks, White paper, 2010.

9. JADHAV, M., G. GIDVEER, Internet

based Remote Monitoring and Control

System, International Journal of Advances
in Engineering & Technology, March 2012.

10. KIRUBASHANKAR, R., K.
KRISHNAMURTHY, J. INDRA, B.
VIGNESH, Design and Implementation

of Web Based Remote Supervisory

Control and Information System,
International Journal of Soft Computing
and Engineering (IJSCE), Volume-1, Issue-
4, September 2011.

11. TIPSUWAN, Y., M. Y. CHOW, Control

Methodologies in Networked Control

Systems, Control Engineering Practice,
vol. 11, 2003.

12. KENNEDY, J., R. EBERHART, Particle

Swarm Optimization, Proc. of the IEEE
International Conference on. Neural
Networks, vol. IV, Perth, Australia, 1995,
pp. 1942-1948.

13. BAY, Q., Analysis of Particle Swarm

Optimization Algorithm, Computer and
Information Science, Vol. 3, No.1, 2010.

14. AGGARWAL, V., M. MAO, U. M.
O’REILLY, A Self-Tuning Analog

Proportional-Integral-Derivative (PID)

Controller, First NASA/ESA Conference
on Adaptive Hardware and Systems, 2006.

15. CABRERA, G. G., D. S. RONCAGLIOLO,
J. P. RIQUELME, C. CUBILLOS, R.
SOTO, A Hybrid Particle Swarm

Optimization - Simulated Annealing

Algorithm for the Probabilistic

Travelling Salesman Problem, Studies in
Informatics and Control, ISSN 1220-1766,
vol. 21 (1), 2012, pp. 49-58.

