
Studies in Informatics and Control, Vol. 23, No. 2, June 2014 http://www.sic.ici.ro 133

1. Introduction

At the beginning, the unique method to assess
the characteristics of any kind of parallel and
distributed software [1, 2, 3] was the direct
testing. Through the agency of this method,
only few characteristics used to be assessed.
Therefore, the benchmark must intervene.
Primarily, even the benchmarking process has
been mainly a manual process. In order to
allow this time-consuming and costly analysis
process to be automated, a lot of techniques
working on the performance indicators were
developed [4]. Moreover, general purpose
software were developed, the more prominent
are PARSEC and SPLASH 2. The Princeton
Application Repository for Shared-Memory
Computers (PARSEC) is a benchmark suite,
representative for next-generation shared-
memory programs for chip-multiprocessors,
meant to analyze emerging workloads in their
complexity (see http://parsec.cs.princeton.edu).
The SPLASH 2 benchmark belongs to the
Computer Architecture and Parallel System
Laboratory (CAPSL) from Delaware
University, (see http://www.capsl.udel.edu/splash)
and implements modern parallel computation
models to study the future generations of high-
performance computing systems. The

diversity of benchmarking techniques is
enriching every day [5, 6] but still indicators
which remain to be computed by real testing
or by expert assessment.

The paper proposes a method to globally assess
the parallel and distributed software by
computing a so called HPC merit. This is
computed starting from the elementary
characteristics of software evaluated by direct
testing, benchmarking and experts. The
elementary characteristics refer both to source
and executable formats. The HPC merit’s
computing procedure may be considered as an
integration of elementary characteristics to give
a synthetic characterization. This shows if the
respective program is well realized as parallel
and distributed software and well distributed on
hardware configuration. It is a number in the
[0, 1] interval. As close to 1 is the HPC merit,
the better realized is the software - hardware
implementation. In principle, every single
program of the parallel and distributed software
class may be globally assessed. But the main
goal is assessing a set of programs with the
same functionality. In this case, the merits can
stay at the base of comparison / ranking /
optimization problems.

Parallel and Distributed Software Assessment in

Multi-Attribute Decision Making Paradigm

Marin ANDREICA1, Cornel RESTEANU2, Romica TRANDAFIR3

1 Economic Studies Academy, Bucharest, Romania,
mandreica@yahoo.com

2 National Institute for R&D in Informatics, Bucharest, Romania,
resteanu@ici.ro

3 Technical University of Civil Engineering, Bucharest, Romania,
romica@utcb.ro

Abstract: Multi-Attribute Decision Making (MADM) theory is a way to obtain good quality assessment for parallel and
distributed software. It provides adequate tools to compute a synthetic characterization, named High Performance
Computing (HPC) merit, which may be used in operations like software comparisons / rankings / optimizations. The paper
presents the general assessment model with its associated assessment problems and a terse and telling case study. The
assessment model is described and solved by the Internet mathematical service named OPTCHOICE (MADM modeling
and optimal choice problem solving). It provides a multitude of normalization and solving methods generating diverse
assessments, but always a global assessment is delivered.

Keywords: Software Assessment, Parallel and Distributed Computing, Multiple Attribute Decision Making, Comparisons
/ Rankings / Optimizations through the agency of the High Performance Computing Merits.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 2, June 2014 134

In order to make a good assessment for the
parallel and distributed software, it is necessary:

 To consider a parallel and distributed
programs set and its characteristics. The
programs must belong to the same class,
meaning that they realize the same user
function but by different software solutions;

 To consider, for the programs set, all hardware
configurations capable to receive them in
running. It is possible to operate on a
collection of computing elements (scalar
machines, multiprocessors, or special-purpose
computers) interconnected in one or more
homogeneous / heterogeneous networks;

 To imply, in the assessment process,
several experts which are specialized in
computer science, mathematics and
programming languages.

Thus, the above specifications lead to the
conviction that the MADM [7] paradigm is
suitable to use in the construction of assessment
models and solving the pending problems.
Indeed, in this case, it is possible to define the
following entities: objects (software set subject
to the assessment process), attributes
(software's general and parallelism /
distributive elementary characteristics), states
of nature (running platforms taken in
consideration) [8, 9], experts / decision makers
[10] (specialists in algorithms, programming
and networking), objects - attributes
characteristics matrix with the dimensions
determined by the above entities dimensions,
and finally, decision makers / states of nature /
attributes weights (meaning that the elements in
this entities have different importance in the
assessment process). Obviously, in this manner,
it was considered neither more nor less than a
generalized MADM model.

The parallel and distributed software's
assessment is made using a tool named
OPTCHOICE [11]. It may be characterized as a
pervasive Internet optimization service. An
Internet service is pervasive if it is available, in
conditions of performance and without delay,
to anyone, from any place, at any time and free
of charge. Being capable to treat generalized
MADM models and being pervasive, it was the
best solution for defining and solving parallel
and distributed software assessment problems.

In the following, the paper theoretically shows
how can define Assessment Models (AMs) in

MADM paradigm, how can generate associated
Assessment Problems (APs), and practically
shows how is possible to handle AMs and APs
in the context of a case study. The paper ends
with some conclusions.

2. AMs Defining and APs Solving

In the following one presents, in mathematical
notations, the general AM defining and, in
pseudo-code the AP solving. One supposes that
there exists one beneficiary which possesses a
number of programs with the same functionality,
written in the requirements of the parallel and
distributed computing, and susceptible to be
exploited on various hardware platform. He / she
wants to know the merit of every program and
consequently which of them is the optimum and
therefore will be chosen to be utilized. A
demand to accomplish this task is addressed to a
number of specialists in such problems. They
must have excellence in algorithms,
programming languages and networking.

2.1 AMs defining

By definition, a general AM, in OPTCHOICE
vision which implements the MADM, involves
the following elements:

  () | 1,D d l l  l , (l=card(D)), a set of
experts whose elements are the persons
with assignments in the process of building
and validating the AMs, as well as in
generating and solving the APs. Typically,
the experts discuss and agree on their
absolute weights (giving their relative
importance in the assessment process)

{ () | 1, }WD wd l l  l ,
1

() 1
l

wd l



l

;

  () | 1,S s k k  k , (k=card(S)) a set of

states of nature, each one of them
representing a hardware platform
susceptible to run the programs subject to
the assessment process. Like in the above
case, there are the absolute weights

 () | 1,WS ws k k  k ,
1

() 1
k

ws k



k

. In

order to assure the impartiality, in the
software assessment it is recommended that
equal absolute weights for the hardware
platforms be granted;

Studies in Informatics and Control, Vol. 23, No. 2, June 2014 http://www.sic.ici.ro 135

  () | 1,O o i i  i , (i=card(O)) the objects,
a discrete and finite set with at least one
element, representing the parallel and
distributed programs subject to the
assessment process;

  () | 1,A a j j  j , (j=card(A)) the
attributes, a discrete and finite set of mutual
independent elements with at least one
element, with its absolute weights

 () | 1,WA wa j j  j ,
1

() 1
j

wa j



j

. They

represent those parallelism and distribution
characteristics which can be established for
all objects in the same time. One may
defined a lot of software's parallelism and
distributive characteristics, over one
hundred of them, which can be considered
attributes in AMs. In the following, the
most important of them, taken into account
in this paper, are grouped in three sections:

 Fundamentals. The first section contains
the general characteristics of the software
to be assessed:
◦ a (1) = quality of the algorithm chosen

for solving the given problem (by
comparison with the best possible
solving algorithms) and of the chosen
programming language (of general use
and / or special use),

◦ a(2) = quality of the general
parallelization solution,

◦ a(3) = quality of the general
distribution solution,

◦ a(4) = developing cost;
 Parallelism and distribution. The second

section contains the characteristics
regarding the parallelism and the
distribution of the software [12, 13]:
◦ a(5) = complexity of the parallelization

and distributing process,
◦ a(6) = parallelization model,
◦ a(7) = quality of functional

decomposition,
◦ a(8) = on functions dependency

magnitude,
◦ a(9) = number of parallelism inhibitors

unsolved in the program,
◦ a(10) = number of intensive computing

places persisting in the program,
◦ a(11) = number of bottle neck persisting

in the program,
◦ a(12) = data decomposition model,
◦ a(13) = quality of data decomposition,
◦ a(14) = on data dependency magnitude,
◦ a(15) = synchronous communications

magnitude,
◦ a(16) = asynchronous communications

magnitude,
◦ a(17) = communications latency,
◦ a(18) = communications efficiency,
◦ a(19) = surplus time,
◦ a(20) = communications time,
◦ a(21) = I/O time,
◦ a(22) = dead time,
◦ a(23) = balanced loading,
◦ a(24) = granularity,
◦ a(25) = scalability,
◦ a(26) = quality of memory charring,
◦ a(27) = quality of buffer in/out

mechanism,
◦ a(28) = type of memory access,
◦ a(29) = memory-cpu bus bandwidth,
◦ a(30) = communications network

bandwidth,
◦ a(31) = massive parallelism;

 Efficiency. The third section contains the
characteristics that the user follows in the
current running:
◦ a(32) = running time,
◦ a(33) = speed increasing,
◦ a(34) = used memory,
◦ a(35) = exploitation cost,
◦ a(36) = reliability,
◦ a(37) = portability [14].

These characteristics can have diverse
expression modes: cardinal, ordinal, Boolean,
fuzzy and random variables. In this case is
preferred to utilize a variant of cardinal mode
i.e. the grades from 1 to 10. The attributes have
also a double vector giving their variation
intervals and an optimization senses vector:

{((), ())| 1, }LUA la j wa j j  j , whose
elements are the variation intervals of
attributes. The intervals are generically denoted
by (L, U). In this case
1 () () 10, 1,la j ua j j    j ;

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 2, June 2014 136

{ ()| 1, }SA sa j j  j , whose elements are 0
(meaning minimum, denoted by m) when the
attributes are considered good for the smaller
possible values and 1 (meaning maximum,
denoted by M) when the attributes are
considered good for the larger possible values.
In this case, the characteristics’ evaluation
being made by grades, the sense of
optimization will be maximum, then M=1 for
all attributes;

 The characteristics matrix C : O  A  S 
D   , where the element c(o(i), a(j),
s(k), d(l)) = oasdijkl represents the value
of the attribute a(j) for the object o(i), in
the opinion of the expert d(k), in the state
of nature s(l), with 1,i  i , 1,j  j ,

1,k  k , 1,l  l .

Final remark: The weights, in user expression,
are given in percentages. All weights are
normalized by the OPTCHOICE software and
thus their mathematical expression becomes
transparent for users.

2.2 APs solving

An AP may be solved by a set of MADM methods,
{ ()| m 1, }SM sm m  m , m=card(SM), namely

the analyse of objects’ dominance (6 different
analysis), and the computing objects’ merits
(maximax, maximin, linear utility function,
scores, diameters, Onicescu, Pareto, TOPSIS,
TODIM methods belonging to the American
school) in conjunction with several
normalization methods, { ()| 1, }NM nm n n  n ,
n=card(NM) (for example: von Newman –
Morgenstern like methods). MADM domain
contains also methods belonging to the French
school. The latter can be seen in [15]. The APs,
which are generated over an AM, by varying
the input parameters, can be solved sequentially
by more than one couple sm(m) – nm (n). Since
each method reflects a different point of view
about assessment and optimality, it is obvious
that applying different methods to the same set
of data will often lead to different solutions.
Therefore, a decisional inconsistency may
appear. A procedure implemented in
OPTCHOICE addresses this problem; it
proposes a global solution by processing the
results stored in a so called evaluation vector.

In the following, one presents, in an adequate
pseudo-code, the AP solving:

PROGRAM implementing the
OPTCHOICE algorithm

SELECT from OPTCHOICE-DB an AP
UPLOAD from database to memory the AP data
MEMORY DATA
Nature and dimensions of parameters, variables, vectors
 and matrices.
TEXT OF 256 CHARACTERS o(i), a(j), d(k), s(l), sm(m), nm(n)
PROCEDURE NAME OF 8 CHARACTERS
CURRENT_METHOD, SOLVING
BOOLEAN sa(j), bsm(m)
INTEGER PARAMETERS i, j, k, l, m, n, ii, jkl=max(j, k, l)
INTEGER VARIABLES i, j, k, l, m, n, ii, jkl
REAL la(j), ua(j), wa(j), ws(k), wd(l), ww(jkl), oasd(i, j, k, l),
osd(i, k, l), od(i, l), c(i, jkl), method_merit(m, i), global_merit (i)
BEGIN PROGRAM

Transform the uploaded AP in so called “Work standard form of
the MADM problem” by executing:
- Verifying that the vectors and matrices are complete defined,
- The correctitude of data is assured at the filling-in process,
- The passing, if necessary, from minimum to maximum in the
EP;

- If the model in correct and complete, the normalization process
for attributes is started, see the following procedure One uses, for
example, nm(1) which corresponds to the first Von Neumann –
Morgenstern method.
DO l = 1, l
 DO k = 1, k

 DO j = 1, j
 DO i = 1, i

 IF sa(j) = 0 THEN
 oasd(i, j, k, l)=(oasd(i, j, k, l) - la(j)) / (ua(j) - la(j))

 ELSE
 oasd(i, j, k, l)=(ua(j) - oasd(i, j, k, l)) / (ua(j) - la(j))

 ENDIF
 ENDDO

 ENDDO
 ENDDO
ENDDO
Select from SM a number of solving methods; let be, for example
sm(5), sm(7) and sm(9), which correspond respectively to
SCORES, ONICESCU and TOPSIS methods.

Mark the choice in   | 1,BSM bsm m m  m , m = 16.

Do the solving process.
Display the solution.
DO m = 1, m

 DISPLAY sm(m)
 IF sm(m) IS SELECTED

 bsm(m) = 1
 ELSE

 bsm(m) = 0
 ENDIF
ENDDO
DO m = 1, m

 IF bsm(m) = 1
 CURRENT_METHOD = sm(m)
 PERFORM PROCEDURE SOLVING USING

CURRENT_METHOD
 ENDIF
ENDDO
DO i = 1, i

global_ merit(i) = 0
DO m = 1, m

 global_ merit(i) = global_ merit(i) + method_merit(m, i)
 ENDDO

 global_ merit(i) = global_ merit(i) / m
ENDDO
RANK DESCENDING o(i) IN ACCORDANCE WITH

global_merit(i)
DISPLAY “Problem’s solution”
DISPLAY FOR i = 1, i , m = 1, m o(i), methodt(mi),
method_merit(m, i)
DISPLAY FOR i = 1, i global_ merit(i)
STOP
END PROGRAM

Studies in Informatics and Control, Vol. 23, No. 2, June 2014 http://www.sic.ici.ro 137

PROCEDURE SOLVING USING
CURRENT_METHOD

SCORES method

ONICESCU method

TOPSIS method

PROCEDURE sm(9)
IN i, jkl, c(i, jkl), ww(jkl) OUT merit(i)
LOCAL i, jkl, merit -, merit+
DO i = 1, i
 merit(i) = 0
ENDDO
DO i = 1, i
 DO jkl = 1, jkl
 merit - = merit - + ww(jkl) * (0 - c(i, jkl))2
 merit+ = merit+ + ww(jkl) * (1 - c(i, jkl))2
 ENDDO
 merit - = sqrt (merit -)
 merit+ = sqrt (merit+)
 merit(i) = merit - / (merit+ - merit -)
ENDDO
ENDPROCEDURE

PROCEDURE sm(7)
IN i, jkl, c(i, jkl), ww(jkl) OUT merit(i)
LOCAL i, jkl, rank(i), smerit
DO i = 1, i
 merit(i) = 0
ENDDO
DO jkl = 1, jkl
 FIX jkl
 RANK DESCENDING c(i, jkl), i=1, i
 rank(1) = 1
 DO i = 2, i
 IF c(i, jkl) = c(i-1, jkl) THEN
 rank(i) = rank(i-1)
 ELSE
 rank(i) = rank(i-1)+1
 ENDIF
 ENDDO
 DO i = 1, i
 merit(i) = merit(i) + ww(jkl) / 2 ** rank(i)
 ENDDO
ENDDO
DO i = 1, i
 smerit = smerit + merit(i)
ENDDO
DO i = 1, i
 merit(i) = merit(i) / smerit
ENDDO
ENDPROCEDURE

 IF c(i, jkl) >= 0.2 THEN
 merit(i) = merit(i) + 3
 ELSE
 IF c(i, jkl) >= 0.1 THEN
 merit(i) = merit(i) + 2
 ELSE
 merit(i) = merit(i) + 1
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDDO
ENDDO
DO i = 1, i
 smerit = smerit + merit(i)
ENDDO
DO i = 1, i
 merit(i) = merit(i) / smerit
ENDDO
ENDPROCEDURE

PROCEDURE sm(5)
IN i, jkl, c(i, jkl), ww(jkl) OUT merit(i)
LOCAL i, jkl, smerit
DO i = 1, i
 merit(i) = 0
ENDDO
DO jkl = 1, jkl
 FIX jkl
 RANK DESCENDING c(i, jkl), i=1, i
 DO i = 1, i
 IF c(i, jkl) >= 0.9 THEN
 merit(i) = merit(i) + 10
 ELSE
 IF c(i, jkl) >= 0.8 THEN
 merit(i) = merit(i) + 9
 ELSE
 IF c(i, jkl) >= 0.7 THEN
 merit(i) = merit(i) + 8
 ELSE
 IF c(i, jkl) >= 0.6 THEN
 merit(i) = merit(i) + 7
 ELSE
 IF c(i, jkl) >= 0.5 THEN
 merit(i) = merit(i) + 6
 ELSE
 IF c(i, jkl) >= 0.4 THEN
 merit(i) = merit(i) + 5
 ELSE
 IF c(i, jkl) >= 0.3 THEN
 merit(i) = merit(i) + 4
 ELSE

Optimization at “Attributes” level.
DO l = 1, l
 DO k = 1, k
 DO j = 1, j
 ww(j) = wa(j) / 100
 ENDDO
 DO i = 1, i
 DO j = 1, j
 c(i, j) = oasd(i, j, k, l)
 ENDDO
 ENDDO
 PERFORM PROCEDURE CURRENT_METHOD
 IN i, j, c(i, j), ww(j) OUT merit(i)
 DO i = 1, i
 osd(i, k, l) = merit(i)
 ENDDO
 ENDDO
ENDDO

Optimization at “States of nature” level
DO l = 1, l
 DO k = 1, k
 ww(k) = ws(k) / 100
 ENDDO
 DO i = 1, i
 DO k = 1, k
 c(i, k) = osd(i, k, l)
 ENDDO
 ENDDO
 PERFORM PROCEDURE CURRENT_METHOD
 IN i, k, c(i, k), ww(k) OUT merit(i)
 DO i = 1, i
 od(i, l) = merit(i)
 ENDDO
ENDDO

Optimization at “Experts” level
DO l = 1, l
 ww(l) = wd(l) / 100
ENDDO
DO i = 1, i
 DO l = 1, l
 c(i, l) = od(i, l)
 ENDDO
ENDDO
PERFORM PROCEDURE CURRENT_METHOD
 IN i. l, c(i, l), ww(l) OUT merit(i)
ENDPROCEDURE

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 2, June 2014 138

3. Case Study

For this small scale case study, one chooses an
easy but telling assessment problem. For the
beginning the AM will be defined and then the
associated APs will be solved.

3.1 Experts

The experts set D = {d(1), d(2), d(3)} contains
three Information Technology specialists with a
good experience in parallel and distributed
computing, the authors of this paper: d(1) =
Marin Andreica, d(2) = Cornel Resteanu and
d(3) = Romica Trandafir. Their weights,
established by mutual consensus at the level of
experts, are WD = {40, 30, 30}. In most cases,
the experts must be more than one because that
manner the accuracy of assessing increases.

3.2 States of nature

One considers as states of nature S = {s(1),
s(2)} with WS = {50, 50}, where:

 s(1) = an ad hoc net consisting of one
server (MB Intel Brandon2 -
SE7520BD2VD2, dual processor Intel
XEON 800FSB) and ten multiprocessors
(MB D975XBX2KR - CPU CORE2
EXTREME, QUADCORE), both
computers types configured at medium
level and linked into a star net
configuration, see [16];

 s(2) = the well-known EGEE GRID, the net
dedicated to European specialists in High
Performance Computing, see [17, 18].

3.3 Objects

The objects set is O{o(1), o(2)} containing
two software to assess and compare.
Obviously they accomplish the same function,
the computing of π number (the ratio of the
circumference to the diameter of a circle), but
with different computing algorithms based on
these different formulas:

Wallis:
    
    

1 3 3 5 5 7 7 2 1 2 1
2 2 4 4 6 2 1 2

2
6 8 1 2

n n
n n n

         

          
 (1)

Leibnitz:
1 1 11

4 3 5 7

     (2)

There is, in each case, a master program that
distributes, to the slave programs (in fact one
program with many launching in execution):
their id, the computing formula (in an adequate
format), and the number of terms / factors to be
computed. That, every iteration, the slave
programs known what they have to compute.
The master program waits for the slave
programs’ results, collects them and computes
the partial solution. If the stopping condition,
the default running time or the default number
of correct decimals, is not accomplished, then a
new iteration is launched. The programs are
written in FORTRAN and MPI. One works
with very large numbers, larger than 264, which
need computing on special representations. The
tool used is GNU Multiple Precision
Arithmetic Library (GMP). It is a free general-
purpose library for arithmetic on large
numbers. The last version of GMP appeared on
2013, May 20.

3.4 Attributes

As said in the previous section, to express the
attributes, the experts will utilize grades from 1
to 10. The vector of the j limits will be: LUA =
{(1, 10), (1, 10), … ,(1,10)}.

The experts’ evaluation being by grades, the
sense vector will be: SA = {1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

To correctly fill-in the assessment matrix, one
considers of great importance to correctly
interpret the significance of SA elements. For
example, the objects’ attribute a (1),
representing the quality of the algorithms
chosen for solving the given problem and the
quality of their programming, will receive good
grades if this characteristic has large values. On
the other hand, the objects’ attribute a(4),
representing the developing costs of the
programs, will receive good grades if this
characteristic has small values.

The weights vector, given by the user, is: WA =
{5, 5, 4, 2, 3, 3, 3, 2, 2, 2, 3, 3, 2, 2, 3, 1, 2, 1, 1,
2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 3, 2, 2, 5, 2}.

Studies in Informatics and Control, Vol. 23, No. 2, June 2014 http://www.sic.ici.ro 139

3.5 Characteristics matrix

The above announced specialists must
independently fill-up the characteristics matrix.
For a good filling-up of this matrix, initially,
the objects and the attributes which give the
dimensions of the matrix must be filled-up.
Once these dimensions have been established,
the information associated to the attributes, i.e.
the weights, optimization sense (minimum /
maximum), lower and upper values must be
filled-up. They help to the validation process.
The very elements of the matrix, c(o(i), a(j),

s(k), d(l)) with 1,2i  , 1,37j  , 1,2k  ,
1,3l  , will be the last filled-up. They are in

the decision makers’ possession by direct
testing, benchmarking and expert evaluation.

Every model element will be validated at its
entry. Proceeding like described above, the
model will be contained in Table 1. One notices
that in this table there are lines with equal
elements on all columns. These lines do not
discriminate the objects but contribute to their
merits’ computing.

Table 1. The characteristics matrix

Decision makers  Marin Andreica Cornel Resteanu Romica Trandafir
States of Nature  Ad-hoc net EGEE grid Ad-hoc net EGEE grid Ad-hoc net EGEE grid
Objects  o1 o2 o1 o2 o1 o2 o1 o2 o1 o2 o1 o2

Attributes ↓ Weights L U m/M

a1 5 1 10 1 8.50 9 8.50 9 8 9 8 9 8 9 8 9
a2 5 1 10 1 8.50 8.50 8 8 9 9 8 8 9.50 9.50 9 9
a3 4 1 10 1 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75
a4 2 1 10 1 9 9 9.50 9.50 9 9 9.25 9.25 8.75 8.75 9.50 9.50
a5 3 1 10 1 7 7 7 7 6 6 6 6 6.50 6.50 6.50 6.50
a6 3 1 10 1 8.50 8.50 8.50 8.50 9 9 9 9 9 9 9 9
a7 3 1 10 1 9.50 9.50 9.50 9.50 9.75 9.75 9.75 9.75 9.50 9.50 9.50 9.50
a8 2 1 10 1 8.50 8.50 8.50 8.50 9 9 9 9 9 9 9 9
a9 2 1 10 1 10 10 10 10 10 10 10 10 10 10 10 10

a10 2 1 10 1 10 10 10 10 10 10 10 10 10 10 10 10
a11 3 1 10 1 10 10 10 10 10 10 10 10 10 10 10 10
a12 3 1 10 1 8.50 8.50 8.50 8.50 9.25 9.25 9.25 9.25 9 9 9 9
a13 2 1 10 1 9.50 9.50 9.50 9.50 9.75 9.75 9.75 9.75 9.50 9.50 9.50 9.50
a14 2 1 10 1 9 9 9 9 9.25 9.25 9.25 9.25 9 9 9 9
a15 3 1 10 1 9.75 9.75 9.75 9.75 10 10 10 10 9.90 9.90 9.90 9.90
a16 1 1 10 1 9.75 9.75 9.75 9.75 10 10 10 10 9.90 9.90 9.90 9.90
a17 2 1 10 1 9.50 9.50 9.75 9.75 9.25 9.25 9.50 9.50 8 8 9 9
a18 1 1 10 1 9.50 9.50 9.75 9.75 9.25 9.25 9.50 9.50 8 8 9 9
a19 1 1 10 1 8 8 9 9 8.50 8.50 9 9 9 9 9.25 9.25
a20 2 1 10 1 9.50 9.25 9.75 9.50 9 8.50 9.50 9 9.25 9 9.50 9.25
a21 2 1 10 1 9 8.75 9.25 9 8.50 8 9 8.50 8.75 8.50 9 8.75
a22 3 1 10 1 9.50 9.50 9.75 9.75 9.75 9.75 9.90 9.90 9.25 9.25 9.50 9.50
a23 3 1 10 1 9.75 9.75 9.75 9.75 9.80 9.80 9.80 9.80 9.85 9.85 9.85 9.85
a24 3 1 10 1 8.50 8.50 9.50 9.50 8 8 9 9 8.50 8.50 9 9
a25 2 1 10 1 7 7 9.75 9.75 7.50 7.50 9.50 9.50 7.50 7.50 9.90 9.90
a26 2 1 10 1 7 7 9.75 9.75 7.50 7.50 9.50 9.50 7.50 7.50 9.50 9.50
a27 3 1 10 1 9 9 9.75 9.75 9 9 9.50 9.50 8.75 8.75 9.50 9.50
a28 3 1 10 1 9 9 9.50 9.50 9 9 9.75 9.75 9.25 9.25 9.75 9.75
a29 3 1 10 1 9.50 9.50 9.75 9.75 9.50 9.50 9.90 9.90 9.25 9.25 9.75 9.75
a30 3 1 10 1 9 9 9.75 9.75 9.25 9.25 9.50 9.50 9 9 9.50 9.50
a31 4 1 10 1 6 6 9.50 9.50 7 7 9 9 6 6 9.25 9.25
a32 4 1 10 1 7 8 9 9.25 7.50 8 9.25 9.50 7.75 8 9.50 9.75
a33 3 1 10 1 7.50 8.5 9.25 9.50 7.75 8.20 9.50 9.75 8 8.50 9.50 9.75
a34 2 1 10 1 9 9 8 8 9.50 9.50 8 8 9 9 7.50 7.50
a35 2 1 10 1 9 9 9.15 9.15 9 9 9.25 9.25 8.50 8.50 9 9
a36 5 1 10 1 9.50 9.50 9.25 9.25 9.50 9.50 9 9 9.75 9.75 9.50 9.50
a37 2 1 10 1 8.50 8.50 7.50 7.50 8 8 7 7 8.25 8.25 6.75 6.75

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 2, June 2014 140

3.6 Solving

In solving, OPTCHOICE is very versatile. It is
possible to specify a lot of input parameters, the
most important being the entities’ elements
taken in a current model and the normalization
- solving methods couples. Thus, in accordance
with the goals of the case study, one generates
and solves three associated APs:

 Assessment when only the ad-hoc platform
is used,

 Assessment when only the EGEE grid
platform is used,

 Assessment when both above platform
are used.

All three APs will be solved in conformity with
three MADM methods: SCORES, ONICESCU
and TOPSIS, using the first von Newman –
Morgenstern method.

Correspondingly, the OPTCHOICE software
will give the results presented in Tables 2, 3, 4.
These tables contain the objects’ merits given
by the chosen solving methods. Obviously,
there are, as well, the merits after the GLOBAL
method, which are the main results of the
assessment problems. Working upon these
results, it is possible to edit another two tables,
containing the objects merits when o(1) is
executed on Ad-hoc platform and o(2) on
EGEE grid platform, see Table 5, and when
o(1) is executed on EGEE grid platform and
o(2) on Ad-hoc platform, see Table 6.

Table 2. Ad-hoc platform – problem’s solutions

Objects SCORES ONICESCU TOPSIS GLOBAL

o(2) 0.72 0.85 0.88 0.82

o(1) 0.67 0.82 0.86 0.78

Table 3. EGEE grid platform – problem’s solutions

Objects SCORES ONICESCU TOPSIS GLOBAL

o(2) 0.73 0.86 0.89 0.83

o(1) 0.68 0.83 0.88 0.80

Table 4. Both platforms - problem’s solutions

Objects SCORES ONICESCU TOPSIS GLOBAL

o(2) 0.78 0.88 0.91 0.86

o(1) 0.69 0.85 0.89 0.81

Table 5. Ad-hoc platform for o(1) and EGEE
platform for o(2) – problem’s solutions

Objects SCORES ONICESCU TOPSIS GLOBAL

o(2) 0.73 0.86 0.89 0.83

o(1) 0.67 0.82 0.86 0.78

Table 6. EGEE grid platform for o(1) and Ad-hoc
platform for o(2) – problem’s solutions

Objects SCORES ONICESCU TOPSIS GLOBAL

o(2) 0.72 0.85 0.88 0.82

o(1) 0.68 0.83 0.88 0.80

Analyzing the results, it is obvious that o(2) has
better merits than o(1) in all five cases (it is
true after every method separately, including
the globalization procedure, and also in every
running platform circumstances). In
consequence, o(2), as optimum object, will be
preferred instead o(1) and, independently of
reference platform, it will be chosen for using.

4. Conclusions

It is visible that the method presented in this
paper is very good for the assessment of the
parallel and distributed software. The fact that
the elementary evaluation process must be
made by persons with high qualification is a
guaranty for the final assessment. The
computing is made by using a very good
theory, named MADM, belonging to the
Operation Research field. The MADM theory
gives the possibility to develop an assessment
model containing all parallel and distributed
software to be assessed through all
characteristics associated to the notions of
parallelism and distribution. In the same time,
the MADM theory provides tools for solving
the assessment problems generated from the
assessment models.

Studies in Informatics and Control, Vol. 23, No. 2, June 2014 http://www.sic.ici.ro 141

Because the MADM models and problems are
difficult enough, a special software tool is
necessary to address them. In this case the
OPTCHOICE software was utilized.

The authors, working together or separately,
have a significant experience in parallel and
distributed software assessment. In many cases
their comments, after the assessment, have led
to operations like corrections / redesigning /
reprogramming of assessed software.

REFERENCES

1. GRAMA, G., G. KARPIS, V. KUMAR, A.
GUPTA, Introduction to Parallel

Computing: Design and Analysis of

Parallel Algorithms, Addison
Wesley, 2003.

2. ALAGHBAND, G., H. F. JORDAN,
Fundamentals of Parallel Processing,
Prentice Hall, 2002.

3. DONGARRA, J., K. MADSEN, J.
WASNIEWSKI (Eds), Applied Parallel

Computing: State of the Art in Scientific

Computing. In: Lecture Notes in
Computer Science, Springer; Volume 3732,
1 edition, April 11, 2006.

4. BOGETOFT, P., Performance

Benchmarking, Springer, Series:
Management for Professionals, ISBN 978-
1-4614-6042-8, 2012.

5. KAELI, D. (Ed.), Computer Performance

Evaluation and Benchmarking, Series:
Lecture Notes in Computer Science, Vol.
5419, Subseries: Programming and
Software Engineering, ISBN 978-3-540-
93798-2, 2009.

6. MAHANTI, R., J. R. EVANS, Critical

Success Factors for Implementing

Statistical Process Control in the

Software Industry, Benchmarking: An
International Journal, vol. 19, issue 3,
2012, pp. 374-394.

7. YOON, K., C.-L. HWANG, Multiple

Attribute Decision Making: An

Introduction, SAGE Publications,
Thousand Oaks, London, New Delhi, 1995.

8. EL-REWINI, H., T. G. LEWIS,
Scheduling Parallel Program Tasks onto

Arbitrary Target Machines, Journal of
Parallel and Distributed Computing, vol. 9,
June 1990, pp. 138-153.

9. KRAUTER, K., R. BUYYA, M.
MAHESWARAN, A Taxonomy and

Survey of Grid Resource Management

Systems for Distributed Computing, in
Software: Practice and Experience, vol. 32,
issue 2, 2002, pp. 135-164.

10. HWANG, C.-L., M. J. LIN, Group

Decision Making under Multiple

Criteria, Springer-Verlag, Berlin
Heidelberg New York, 1997.

11. RESTEANU, C., M. ANDREICA,
Distributed and Parallel Computing in

MADM Domain Using the

OPTCHOICE Software, International
Journal of Mathematical Models and
Methods in Applied Sciences, NAUN
(North Atlantic University Union), ISSN:
1998-0140, Issue 3, Volume 1, 2007,
pp. 159-167.

12. LEOPOLD, C., Parallel and Distributed

Computing: A Survey of Models,

Paradigms and Approaches,
LAVOISIER S.A.S., 2001.

13. ROS, A. (Ed.), Parallel and Distributed

Computing, Publisher: InTech, ISBN 978-
953-307-057-5, January 01, 2010.

14. HUGHES, C., T. HUGHES, Parallel

and Distributed Programming Using

C++, Published by Addison-Wesley
Professional, ISBN-10: 0-13-101376-9,
ISBN-13: 978-0-13-101376-6, August
25, 2003.

15. ZAVADSKAS, E. K., Z. TURSKIS, R.
VOLVAČIOVAS, S. KILDIENE, Multi-

criteria Assessment Model of

Technologies, in: Studies in Informatics
and Control, ISSN 1220-1766, vol. 22(4),
2013, pp. 249-258.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 2, June 2014 142

16. BOKHARI, S. H. Assignment Problems

in Parallel and Distributed Computing,
Kluwer Academic Publishers, 1987.

17. BAKER, M., R. BUYYA, D.
LAFORENZA, Grids and Grid

Technologies for Wide-area Distributed

Computing, In Software: Practice and
Experience, Volume 32, Issue 15, 2002,
pp. 1437-1466.

18. BUYYA, R., K. BUBENDORFER (Eds),
Market-Oriented Grid and Utility

Computing, Wiley, ISBN: 978-0-470-
28768-2, November 2009.

