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1. Introduction

Economic dispatch (ED) is an optimization 
problem of power systems that aims to 
determine the output power of thermal power 
generating units in order to have a minimal fuel 
cost for the entire system and, in the mean time, 
to satisfy some technical restrictions while 
operating the units.  

The mathematical model of ED problem is non-
linear, where both objective function and 
restrictions system may be non-linear. Classical 
methods were used for solving the ED problem: 
linear programming [1], non-linear 
programming [2], quadratic programming [3], 
Lagrangian relaxation algorithm [4] and 
dynamic programming [5]. Usually, these 
methods have got difficulties in finding a 
global optimum, they being able to offer only a 
local optimum point. Moreover, classical 
methods need a calculation of derivatives and 
some checking on continuity and derivability 
conditions of functions belonging to 
optimization model. To cover these drawbacks 
several artificial intelligence-based 
optimization techniques were applied. One of 
the most frequently used methods is based on 
the particle swarm optimization (PSO) applied 
in classical, enhanced or hybrid versions: PSO, 
PSO with time varying acceleration coefficients 
(PSO-TVAC) [6-8], new PSO (NPSO, NPSO-
LSR) [9, 10], improved PSO [11], distributed 
Sobol PSO with tabu search algorithm 
(DSPSO-TSA) [12]. Other methods used for 
solving ED problems are: evolutionary 
programming (EPs) [13], biogeography-based 

optimization (BBO) [14], tabu search and 
multiple tabu search (TS, MTS) [15], 
differential evolution (DE) [16, 17], hybrid DE 
(DEPSO) [18], artificial bee colony algorithm 
(ABC) [19], incremental ABC with local search 
(IABC-LS) [20], harmony search (HS) [21], 
differential HS (DHS) [22]. 

Harmony search is a meta-heuristic algorithm 
inspired from a musical process of searching 
for a perfect state of harmony. The HS is an 
easy to implement algorithm, having good 
convergence characteristics and may be easily 
adapt to work with other algorithms [23, 24]. 
Thus, the HS algorithm or its versions were 
successfully used for solving mathematical [25-
27] and engineering problems with continuous
variables: reliability optimization [28], 
automatic parameter configuration [29], design 
of water distribution networks [30] etc. 

In this paper, the HS classical algorithm is 
enhanced with some features specific to 
artificial bee colony algorithm in order to solve 
the economic dispatch problem. The new 
algorithm is called modified harmony search 
(MHS) algorithm. Its results are compared with 
others obtained by applying different 
optimization techniques. 

2. ED Problem Formulation

Considering a power system where n thermal 
generating power units are operating, each unit 
having an output power Pi, i=1, 2,..., n. Output 
powers Pi define the solution vector 
P=[P1, P2,…, Pi,…, Pn]T. The fuel cost Fi(Pi), 
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for each generator i, may be represented by a 
quadratic polynomial function such as: 

iiiiiii aPbPcPF  2)( (1) 

where ai, bi and ci are fuel cost coefficients of 
generator i. 

To solve an ED problem means determining the 
Pi output powers of the generating units, so that 
the total fuel cost (objective function) is 
minimal, considering a set of equality and 
inequality technical constraints. The objective 
function is: 






n

i

ii PFF

1
)(min  (2) 

The equality and inequality constraints for the 
ED problem are given by (3)-(8) relations: 

i) Minimum and maximum real power
operating limits: 

Pi,min≤Pi≤Pi,max, i=1,2,…,n (3) 

where Pi,min and Pi,max represent the minimum 
and the maximum operating limits of a 
generator i. 

ii) Generator ramp-rate limits:

Pi≤Pi
Prev+URi, if output power increases (4) 

Pi≥Pi
Prev-DRi, if output power decreases (5) 

where Pi
Prev is the previous hour output power 

of unit i. DRi and URi are the down-ramp and 
up-ramp limits of the i unit. 

Relations (3)-(5) can also be expressed by: 

POi,min≤Pi≤POi,max (6) 

where POi,min= max(Pi,min, Pi
Prev -DRi) and 

POi,max= min(Pi,max, Pi
Prev +URi). 

iii) Prohibited operating zones of the generator.
Power generating units may have some 
prohibited operating zones, which, for a certain
i generator, are given by: 

PL
i,z<Pi<PU

i,z,   z=1,2,…, NZi (7) 

where NZi is the number of prohibited zones of 
unit i. PL

i,z and PU
i,z are the lower and upper 

boundary of the z prohibited operating zone for 
the unit i. 

iv) Real power balance constraint:

PG-PL-PD=0 (8) 

where PD is the load demand in the system, in 
MW. PL represents the transmission loss, in MW. 

The transmission losses PL at the entire system 
level are calculated using constant B coefficient 
formula (Kron’s relation): 
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where Bij is an element of the loss coefficient 
matrix of size n x n, B0i is i element of the loss 
coefficient vector of size n and B00 is the loss 
coefficient constant. 

The total generated power (PG) of the system 
by the n units is: 
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3. The Harmony Search Algorithm

Harmony search (HS) is a meta-heuristic 
population-based algorithm inspired from the 
musical process of searching for a perfect state 
of harmony. It was proposed by Geem et al. 
[23] and developed by Lee and Geem [24] for 
engineering optimization problems with 
continuous variables. 

Generally, HS algorithm is used to solve 
optimization problems with continuous 
parameter. Thus, the optimization problem 
consists of searching the minimum of an f(x) 
function considering the constraints 
xi

min≤xi≤xi
max, i=1, 2, ..., n, where n is the 

number of decision variables, and xi
min and xi

max 
are lower and upper limits for the variable xi. 
Function f(x) represents the objective function, 
x=(x1,x2,..,xn) is the n-dimensional solution 
vector, and xi is the ith component of x vector. 

The HS algorithm is defined by the following 
parameters [24]: the harmony memory size 
(HMS), harmony memory considering rate 
(HMCR), pitch adjusting rate (PAR), distance 
bandwidth (bw) and maximum number of 
iterations (improvisations) (Nmax). HMS is the 
number of vectors in harmony memory that 
satisfy the constraints of the problem, and 
HMCR and PAR are the parameters used for 
generating a new vector. 

During the optimization process, solution 
vectors are being stored as a harmony memory 
HM=[x1, x2,..,xHMS]. Each vector xj|j=1,2,..HMS, 
belonging to HM is a possible solution of the 
problem. The optimization procedure that uses 
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HS meta-heuristic algorithm consists of the 
following steps [23, 24]: 

Step 1. Initialize the optimization problem and

algorithm parameters. Here, the parameters of 
HS algorithm are initialized: HMS, HMCR, 
PAR, bw and Nmax. Also, lower (xi

min) and 
upper (xi

max) limits for the variable xi are set, as 
well as other specific parameters of the 
problem. 

Step 2. Initialize the harmony memory (HM). 
Initially, HM matrix consists of HMS 
harmonies (column solution vectors). The 
elements of each vector xj|j=1,2,..HMS, are 
randomly generated, inside [xi

min, xi
max]i=1,2,..n, 

interval having a uniform distribution: 

xi=xi
min+rand()×(xi

max-xi
min), i=1,2,..,n (11) 

rand() is a uniformly distributed number inside 
[0, 1] interval. 

Then, for each HM vector (xj|j=1,2,..HMS) the value 
of the objective function f(xj) is determined.  

Step 3. Improvise a new harmony. The new 
harmony vector, xnew=(x1

new, x2
new,.., xn

new) is 
generated from the HM by sequentially 
applying three rules: memory considerations, 
pitch adjustments, and random selection. Each 
element (xi

new|i=1,2,..n) belonging to vector xnew is 
generated using the following procedure [24, 27]: 

If rand()≤HMCR then begin /memory

consideration/ 

xi
new=xij, unde j~U[1, HMS] and i=1,2,..,n  (12) 

If rand()≤ PAR then /pitch adjustment/ 

xi
new= xi

new±r×bw, unde r~U[0,1] end     (13) 

else /random selection/ 

xi=xi
min+rand()×(xi

max-xi
min), i=1,2,..,n     (14) 

r and rand() are uniformly distributed random 
numbers in the range [0,1]. 

Step 4. Update the harmony memory. If the 
new harmony vector xnew is better than the 
worst harmony vector (xworst) of HM, then 
xworst=xnew. The objective function f(x) is used 
for comparing xnew and xworst vectors. 

Step 5. Check the stopping criterion. The 
algorithm stops when then maximum number of 
iterations (Nmax) is reached. If k<Nmax then go to 
Step 3 (k current number of the iteration), 
otherwise Stop and return the best harmony 
(solution) din HM. 

4. The modified harmony search
(MHS) algorithm

The MHS algorithm is built on the same steps 
like HS algorithm, its purpose being the 
enhancement of classical HS algorithm 
performances. The difference between MHS 
algorithm and HS algorithm is made by the 
generating way of the new harmony described 
at step 3. The following changes have been 
done to MHS algorithm: 

 the rule regarding the “random selection” 
of a new harmony vector is eliminated; 

 equation (12) regarding “memory 
consideration” is replaced with equation 
(15) that borrows from artificial bee colony 
algorithm some features for generating the 
solution [31, 32]: 

nikjk
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 equation (13) regarding “pitch adjustment” 
is replaced with equation (16). This 
searching strategy is based on the 
advantages offered by the best global 
solution and is similar with the one in ABC 
algorithm [20]: 

HMS],,1[U~
and,...,2 ,1),xx()1,1(Uxx best

ikij
best
ii

j

ninew   (16) 

xi
best is the ith component corresponding to the best 

solution vector resulted until the current iteration. 
U(-1,1) is a uniform random real number inside [-
1, 1] interval. In must be pointed out that, 
according to the above-mentioned changes, MHS 
algorithm has got only three parameters (HMS, 
PAR and Nmax), while (HMCR and bw) 
parameters are eliminated. 

The MHS algorithm combines the HS 
algorithm with several features of ABC 
algorithm. Hybridizing HS algorithm with 
ABC algorithm has been done in other papers, 
too [26, 33], but this study has got some 
differences regarding the generating of a new 
harmony through memory consideration and 
pitch adjustment. 

5. Simulation Results and Comparison

To test the efficiency of MHS algorithm two 
different test systems were studied: a 6-unit 
system, with power losses considered (test 
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system 1), and a 38-unit system, without 
considering the power losses (test system 2). 
All case studies were implemented in 
MathCAD, on a personal computer having a 
1.79 GHz processor and 896 MB of RAM. The 
solution’s quality is evaluated through 100 or 
200 trials.  

For each trial the values of the following items 
are memorized: best total fuel cost F (B), average 
total fuel cost F (A), worst total fuel cost F (W) 
and standard deviation (SD). For each system, 
values of the parameters used for HS and MHS 
algorithm (HMS, HMCR, PAR, bw, Nmax) were 
determined by performing experimental trials. 

5.1 Test system 1: 6-unit with losses 
This case study contains a system of 6 units 
with transmission losses, ramp rate limits and 
prohibited operating zones of the units taken 
into consideration. The tested system data 
related to the cost coefficients (a, b, c), power 
operating limits, ramp-rate limits, prohibited 
operating zones of the units, and also the loss 
coefficient B are taken from [6, 34].  

The load demand is PD=1263 MW. The 
characteristics of thermal power generating 
units and values of loss coefficient B are 
described in Table 1 and Table 2.  

For the studied system, after a few 
experimental trials, the parameters were set to 
the following values: HMS=8, PAR=0.4 and 
Nmax=1000 (for the MHS algorithm) and 
HMS=8, HMCR=0.9, PAR=0.3, bw=0.01 and 
Nmax=1000 [27] (for the HS algorithm). 

Table 3 presents the output powers of thermal 
power generating units (Pi, i=1, 2,..., 6) after 
running the MHS and HS algorithms.  Values 
of B, A, W, SD items, generated power 
(PG), power losses (PL) and tolerance (TOL) are 
also shown. Both algorithms satisfy the 
equality constraint (8) with a very high 
precision (TOLMHS=-3.925∙10-13 MW and 
TOLHS=-9.315∙10-11 MW). 

T-test is applied for a comparison between the 
results obtained by MHS and HS algorithms.  

Considering the characteristics of the MHS and 
HS algorithms shown in Table 3 - average (A) 
and standard deviation (SD) - the value of 
tcalculated is computed (tcalculated=3.113). Then, 
from the table with critical values “T-test”, for 
a significance level of 1%, tcritical is returned 
(tcritical=2.601).Since, tcalculated=3.113>tcritical=2.601,
between the results obtained by MHS and HS 
algorithms there are significant statistical 
differences (AMHS<AHS). 

Table 1. The characteristics of thermal power generating units and prohibited operating zones (6-units) 

Unit a 

($/h) 
b 

($/MWh) 
c 

($/MW2h) 
URi 

(MW) 
DRi

(MW) 
Pi

Prev 

(MW) 
Pi,min

(MW) 
Pi,max 

(MW) Prohibited zone (MW)

1 240 7.0 0.0070 80 120 440 100 500 [210 240],  [350 380] 
2 200 10.0 0.0095 50 90 170 50 200 [90 110],  [140 160] 
3 220 8.5 0.0090 65 100 200 80 300 [150 170],  [210 240] 
4 200 11.0 0.0090 50 90 150 50 150 [80 90],  [110 120] 
5 220 10.5 0.0080 50 90 190 50 200 [90 110],  [140 150] 
6 190 12 0.0075 50 90 110 50 120 [75 85],  [100 105] 

Table 2. B-loss coefficient values (6-units) 

Bij= 

17 12 7 -1 -5 -2 

∙10-4

12 14 9 1 -6 -1 
7 9 31 0 -10 -6 
-1 1 0 24 -6 -8 
-5 -6 -10 -6 129 -2 
-2 -1 -6 -8 -2 150 

B0i= -0.3908 -0.1297 0.7047 0.0591 0.2161 -0.6635 ∙10-3

B00= 0.0056 
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The convergence characteristics for MHS and 
HS algorithms are shown in Figure 1. It can be 
seen that both algorithms are able to reach the 
optimal solution, but MHS algorithm is faster; 
it needs a smaller number of iterations 
(approximately 130, while HS algorithm needs 
approx. 380 iterations).  

MHS and HS algorithms robustness was 
studied by performing 200 trials. For each trial 
the best cost F (item B) was stored, and it was 
represented in Figure 2. In Figure 2 and Table 3 
we note that MHS algorithm is very stable 

(SDMHS=1.7628∙10-7 < SDHS=1.0626∙10-4) and has 
the best items BMHS=15449.8995248$/h < 
BHS=15449.8995249$/h, AMHS < AHS and 
WMHS < WHS). 

Comparing MHS with other methods. When 
applying different optimization methods, 
results may be influenced by the level of 
satisfaction of the equality constraint (defined 
by (8) equation). Thus, all methods must be 
applied in similar conditions (tolerance value - 
equation (17) – must be approximately the same 
for all methods). 

TOLM=PG-PL-PD (17) 

In order to verify if MHS algorithm works in 
similar conditions like any other method M, the 

following relation is used: 

Dif_TOL=|TOLMHS-TOLM|< ε (18) 

Table 3. The best solution obtained using MHS and HS algorithms (6 units, PD=1263MW, 200 trials) 

Output MHS HS 
P1 (MW) 447.5038934324 447.5042986422 
P2 (MW) 173.3188266703 173.3204504696 
P3 (MW) 263.4628642464 263.462694264 
P4 (MW) 139.0649874081 139.0648289018 
P5 (MW) 165.4738752653 165.4731533959 
P6 (MW) 87.1338060426 87.1328232359 
PG (MW) 1275.9582530651 1275.9582489093 
PL (MW) 12.9582489093934 12.9582489093934 
PD (MW) 1263 1263 
TOLM (MW) -3.925∙10-13 -9.315∙10-11 
Best cost F (B) ($/h) 15449.8995248809 15449.8995249519 
Average cost F (A) ($/h) 15449.8995250435 15449.8995486667 
Worst cost F (W) ($/h) 15449.8995257499 15449.9007357696 
SD ($/h) 1.7628∙10-7 1.0626∙10-4 
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Figure 1. Convergence characteristics for 
MHS and HS algorithms, 6-units 

Figure 2. The best total cost F obtained with 
MHS and HS algorithms, for 200 trials, 6-units 
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where, TOLM, TOLMHS is the tolerance for a 
method M, respectively algorithm MHS. 

For the test system 1, it is assumed that ε=10-10 
MW can be neglected, meaning that all methods 
are being applied in similar conditions with 
respect to satisfaction of equality constraint (8). 

Table 4 shows a comparison between the results 
of MHS algorithm and three other optimization 
methods used for solving the same problem: 
particle swarm optimization (PSO) [6], 
multiple tabu search algorithm (MTS) [15] 
and differential evolution (DE) [16]. Thus, the 
set of methods M is: M={PSO, DE, MTS}. It 
must be said that MHS algorithm was applied 
for similar conditions as the indicated methods 
were (for all comparisons: MHS vs. PSO, MHS 

vs. DE and MHS vs. MTS, Table 4 indicates 
Dif_TOL< 10-10 MW). 

Table 4 shows that MHS algorithm has got the best 
Cost F (item B) for all the three analyzed situations: 
BMHS=15449.882220$/h<BPSO=15450$/h, 
BMHS=15449.7480804$/h<BDE=15449.766$/h, 
BMHS=15449.935075$/h<BMTS=15450.06$/h). 

Also, items AMHS, WMHS and SDMHS obtained 
from MHS algorithm have got better values 

then similar items obtained from PSO, DE and 
MTS algorithms.  

Moreover, the worst value obtained by MHS 
algorithm is lower than the best value obtained 
by the methods specified (in Table 4 
WMHS<BPSO (MHS vs. PSO), WMHS<BDE (MHS 
vs. DE) and WMHS<BMTS (MHS vs. MTS)). 

Values of items B, A, W and SD were 
calculated using a higher or, at least the same, 
number of trials like for the other methods (PSO, 
DE and MTS). The average computation time is 
of 5.4sec. 

From the items (B, A, W, SD) point of view, 
MHS algorithm proves to be superior comparing 
to HS, PSO, DE and MTS, as may be seen from 

the results presented in Table 3 and Table 4 and 
the characteristics from Figure 1 and Figure 2. 

5.2 Test system 2: 38-unit without losses 
A 38-unit test system is studied in solving the 
ED problem with the MHS algorithm. The 
tested system data related to the cost 
coefficients (a, b, c) and power operating limits 
are taken from [35]. The load demand is 
PD=6000 MW. 

Table 4. Comparative results after applying different optimization techniques (6 units, PD=1263 MW). 

Method PSO [6] MHS MTS [15] MHS DE [16] MHS 

1. Result described according to the indicated references

P1 (MW) 447.4970 447.5034920879 448.1277 447.5054236915 447.744 447.5016941993 

P2 (MW) 173.3221 173.3168873323 172.8082 173.3179702901 173.407 173.3176508104 

P3 (MW) 263.4745 263.462198913 262.5932 263.4634652066 263.411 263.4600979625 

P4 (MW) 139.0594 139.065688249 136.9605 139.0657881467 139.076 139.0634606943 

P5 (MW) 165.4761 165.4732611341 168.2031 165.4726437196 165.364 165.471156291 

P6 (MW) 87.1280 87.1354007626 87.3304 87.1356138354 86.944 87.1327806056 

Best cost FM (B) ($/h) 15450 15449.8822209778 15450.06 15449.9350750959 15449.766 15449.7480804051 

Average FM (A)($/h) 15454 15449.8822211603 15451.17 15449.9350752945 15449.777 15449.7480806214 

Worst cost FM 

(W)($/h) 15492 15449.8822220211 15453.64 15449.9350759751 15449.874 15449.7480816701 

SDM ($/h) - 1.9053∙10-7 0.9287 1.9534∙10-7 - 2.3538∙10-7 

Number of trials 50 100 100 100 100 100 

2. The computation of the power loss (PL), generated power(PG) and TOLM tolerance based on the best solution described in the 
indicated references 

PG (MW) 1275.9571 1275.9569284789 1276.0231 1275.9609048899 1275.9460 1275.9468405631 

PL (MW) 12.9583778743 12.95820635316 13.0204746591 12.95827954902 12.9571840155 12.95802457851 

TOLM (MW) -0.0012778743 -0.00127787426 0.0026253408 0.002625340879 -0.0111840155 -0.01118401541 

Dif_TOL* (MW) 0 3.999∙10-11 0 7.899∙10-11 0 9.000∙10-11 

* Dif_TOL=|TOLMHS - TOLM|;  TOLM, TOLMHS -  the tolerance for a method M, respectively algorithm MHS;  “-”data not available.
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For the system with 38-units, after a few 
experimental trials, the parameters used were 
set to the following values: HMS=15, PAR=0.4 
and Nmax=10000 (for the MHS algorithm) and 
HMS=15, HMCR=0.99, PAR=0.3, bw=10-6 

and Nmax=10000 (for the HS algorithm). 

Table 5 shows the best solutions (Pi, i=1, 2, ..., 38) 
obtained from MHS and HS algorithms, as well as 
other solutions obtained from the following 
optimization technique PSO_TVAC [7], 

Table 5. Best solution obtained using MHS and HS algorithms and comparison with other optimization 
techniques (38-units, PD=6000 MW, 100 trials) 

Output MHS HS PSO_TVAC [7] DE/BBO [36] BBO [36] 
P1 (MW) 426.6055451709 426.600231683 443.659 426.606060 422.230586 
P2 (MW) 426.6047089764 426.5937015757 342.956 426.606054 422.117933 
P3 (MW) 429.6635302444 429.650913618 433.117 429.663164 435.779411 
P4 (MW) 429.6647862209 429.675753655 500.000 429.663181 445.481950 
P5 (MW) 429.6667821468 429.6545940263 410.539 429.663193 428.475752 
P6 (MW) 429.6628268036 429.6702425681 482.864 429.663164 428.649254 
P7 (MW) 429.6609836262 429.6691319879 409.483 429.663185 428.119288 
P8 (MW) 429.6631083527 429.6689470513 446.079 429.663168 429.900663 
P9 (MW) 114.0000000000 114.000001626 119.566 114.000000 115.904947 
P10 (MW) 114.0000000000 114.0000000000 137.274 114.000000 114.115368 
P11 (MW) 119.7673921028 119.7662422478 138.933 119.768032 115.418662 
P12 (MW) 127.0724320711 127.076361834 155.401 127.072817 127.511404 
P13 (MW) 110.0000000000 110.0000000000 121.719 110.000000 110.000948 
P14 (MW) 90.0000000000 90.0000000000 90.924 90.0000000 90.0217671 
P15 (MW) 82.0000000003 82.0000000000 97.941 82.0000000 82.0000000 
P16 (MW) 120.0000000000 120.0000000000 128.106 120.000000 120.038496 
P17 (MW) 159.5982110232 159.599299215 189.108 159.598036 160.303835 
P18 (MW) 65.0000000000 65.0000000000 65.000 65.0000000 65.0001141 
P19 (MW) 65.0000000000 65.0000000000 65.000 65.0000000 65.0001370 
P20 (MW) 272.0000000000 272.0000000000 267.422 272.000000 271.999591 
P21 (MW) 272.0000000000 272.0000000000 221.383 272.000000 271.872680 
P22 (MW) 260.0000000000 259.9999997967 130.804 260.000000 259.732054 
P23 (MW) 130.6483891957 130.6460481007 124.269 130.648618 125.993076 
P24 (MW) 10.0000000000 10.0000006793 11.535 10.0000000 10.4134771 
P25 (MW) 113.3051024999 113.3130828089 77.103 113.305034 109.417723 
P26 (MW) 88.0671008506 88.0692392482 55.018 88.0669159 89.3772664 
P27 (MW) 37.5056685997 37.5059577346 75.000 37.5051018 36.4110655 
P28 (MW) 20.0000000000 20.0000000000 21.682 20.0000000 20.0098880 
P29 (MW) 20.0000000000 20.0000000000 29.829 20.0000000 20.0089554 
P30 (MW) 20.0000000000 20.0000000000 20.326 20.0000000 20.0000000 
P31 (MW) 20.0000000000 20.0000000000 20.000 20.0000000 20.0000000 
P32 (MW) 20.0000000000 20.0000000000 21.840 20.0000000 20.0033959 
P33 (MW) 25.0000000000 25.0000000000 25.620 25.0000000 25.0066586 
P34 (MW) 18.0000000000 18.0000000000 24.261 18.0000000 18.0222107 
P35 (MW) 8.0000000000 8.0000000000 9.667 8.00000000 8.00004260 
P36 (MW) 25.0000000000 25.0000000000 25.000 25.0000000 25.0060660 
P37 (MW) 21.7817319076 21.7811436951 31.642 21.7820891 22.0005641 
P38 (MW) 21.0616992228 21.0591058638 29.935 21.0621792 20.6076309 
PG (MW) 5999.9999990156 5999.9999990154 6000.005 5999.999992 5999.95286 
PD (MW) 6000 6000 6000 6000 6000 
TOLM(MW) -9.844∙10-7 -9.846∙10-7 5.000∙10-3 -8.000∙10-6 -4.713∙10-2 
Best cost FM ($/h) 9417235.78535618 9417235.78581085 9500448.307 9417235.786391673 9417633.63764437 
Average FM ($/h) 9417235.78606311 9417235.78707343 - - - 
Worst cost FM($/h) 9417235.78641317 9417235.79132093 - - - 
SDM ($/h) 3.852∙10-4 8.196∙10-4 - - - 

     “-” data not available 
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Biogeography-Based Optimization (BBO) [36], 
Hybrid Differential Evolution with Biogeography-
Based Optimization (DE/BBO) [36]. Therefore, the 
set of methods M consists of: M={PSO_TVAC, 
BBO, DE/BBO}. At the end of Table 5 items B, A, 
W and SD are shown for all methods. 

The values tcalculed and tcritical, for a significance 
level of 1%, were determined by applying "T-
test". Since, tcalculated=11.44>tcritical=2.626,
between the results obtained by MHS and HS 
algorithms there are significant statistical 
differences (AMHS<AHS). Convergence 
characteristics for MHS and HS algorithms (for 
38-units) are shown in Figure 3. 

It is observed that MHS has a better 
convergence than HS algorithm. In Fig. 4 the 
best values of Cost F (B) function for MHS and 
HS algorithms are depicted (considering 100 
trials). The data from Table 5 and Figure 4 
show that MHS algorithm has a better stability 
than the HS algorithm (SDMHS=3.852∙10-4 

<SDHS=8.196∙10-4). Also, the values of items B, 
A, W and SD are better in case of MHS 
algorithm, comparing to the values of similar 
items obtained by HS algorithm (Table 5). The 
average computation time is of 47.2 sec. 

Comparing MHS with other methods. 

Analyzing Table 5 and focusing on item B, it 
can be seen that MHS algorithm is superior 
comparing to other optimization methods: 
PSO_TVAC, BBO. The worst value obtained 
by MHS algorithm is better than the best value 
obtained by PSO_TVAC (WMHS<BPSO_TVAC) 
and BBO (WMHS<BBBO). Also, MHS algorithm 
has better results than HS algorithm 
(BMHS<BDE/BBO), when equality constraint (8) 
is satisfied with a higher precision: 

(|TOLMHS|=9.844∙10-7<|TOLDE/BBO|=8.000∙10-6). 

6. CONCLUSION

In this paper, the MHS algorithm has been 
tested to solve the economic dispatch problem. 
The MHS algorithm is based on harmony 
search algorithm. Some features of HS 
algorithm were replaced with others belonging 
to artificial bee colony algorithm, in order to 
enhance its capacity to avoid premature 
convergence and to get high-quality solutions.  

To solve a 6-units test system, several 
operational characteristics of thermal power 
generating units were considered (ramp-rate 
limits, prohibited operating zones, minimum 
and maximum power operating limits) that 
define a range of non-continuous values for the 
output powers of thermal power generating 
units. Transmission losses in electric line were 
also considered. 

The MHS algorithm was successfully applied 
on two test systems consisting of 6 units and 38 
units. Results show that MHS algorithm is 
better than HS algorithm for both case studied, 
if considering items B, A, W and SD. Also, 
MHS algorithm is better than other 
optimization techniques used for solving this 
problem (PSO, DE and MTS for 6-units), 
respective (PSO_TVAC, DE/BBO and BBO 
for 38-units). Considering these good results, it 
may be said that MHS algorithm has the ability to 
obtain high-quality solutions, guarantees stability 
and a good calculation time, both for the 6-units 
test system, and for the large-scale test system 
with 38-units. 
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Figure 3. Convergence characteristics for MHS 
and HS algorithms, 38-units 

Figure 4. The best total cost F obtained with 
MHS and HS algorithms, for 100 trials, 38-units 
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