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1. Introduction

A graph is claw-free if it has no induced 
subgraph isomorphic to the claw, i.e., the four-
vertex star    3213213,1 ,.,,,, babababaaaK  . 
A net is a graph obtained from a triangle by 
attaching to each vertex a new dangling edge.  

The interval graphs [24], permutation graphs 
[16] and co-comparability graphs [18] have a 
linear structure. Each of these classes is a 
subfamily of the asteroidal triple graphs (AT-
free graphs, for short). An independent set of 
three vertices is called an asteroidal triple if 
between any pair in the triple there exists a path 
that avoids the neighbourhood of the third. AT-
free graphs were introduced by Lekkerkerker 
and Boland [24]. Corneil, Olariu and Stewart 
showed a number of results on the linear 
structure of AT-free [8, 9, 10]. 

A maximal subclass of a class of net-free 
graphs is the class (claw,net)-free graphs (CN-
free graphs, for short). Also note that CN-free 
graphs are exactly the Hamiltonian-hereditary 
graphs[13] (was cited in [4]). CN-free graphs 
turn out to be closely related to AT-free graphs 
form their structure properties [4]. There are, 
however, few results about the structure of 
these graphs [4]. In [4] the authors give results 
on the linear and circular structure of CN-free 
graphs. AT-free graphs can be generalized in a 
manner obvious to admit circular structure [4]. 

CN-free graphs were introduced by Duffus 
[14]. Although CN-free graphs seems to be 
quite restrictive, it contains a couple of families 
of graphs that are interesting in their own right. 

In this paper we give an algorithm for the 
recognition of net-free graph of complexity 
O(n(n+ m1,63)). Also, we give an interesting 
property of claw-free graph that leads to a 
algorithm for the construction a maximum 
matching in claw-free graphs. 

The content of the paper is organized as 
follows. In Preliminaries, we give the usual 
terminology in graph theory. In Section 3 we 
give a characterization of net-free graphs and a 
recognition algorithm using the weakly 
decomposition. In Section 4 we determine a 
maximum matching in the claw-free graph. 
Ideas for future work conclude the paper. 

2. Preliminaries

Throughout this paper, G=(V,E) is a connected, 
finite and undirected  graph ([3]), without loops 
and multiple edges, having V=V(G) as the 
vertex set and E=E(G) as the set of edges. G  
is the complement of G. If U V, by G(U) we 
denote the subgraph of G induced by U.  By G-

X we mean the subgraph G(V-X), whenever 
X V, but we simply write G-v, when X={v}. If 
e=xy is an edge of a graph G, then x and y are 
adjacent, while x and e are incident, as are y 
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and e. If xyE, we also use x~y,  and xy 
whenever x,y are not adjacent in G.  If A,B V 
are disjoint and abE for every aA and 
bB, we say that A,B are totally adjacent and 
we denote by A~B, while by AB we mean that 
no edge of G joins some vertex of A  to a vertex 
from B and, in this case, we say A and B are 
totally non-adjacent. 

The neighborhood of the vertex vV is the set  
NG(v)={uV:uvE}, while 
NG[v]=NG(v) {v}; we denote N(v) and  N[v], 
when G appears clearly from the context. The 
degree of v in G is dG(v)=| NG(v)|. The 
neighborhood of the  vertex v in the 
complement of G will be denoted by N (v). 

The neighborhood of S V is the set 
N(S)= SvNSv   )(   and N[S]=SN(S). A 
graph is complete if every pair of distinct 
vertices is adjacent.  

By Pn, Cn, Kn we mean a chordless path on 
n 3 vertices, a chordless cycle on n 3 
vertices, and a complete graph on n 1 
vertices, respectively. 

Let F denote a family of graphs. A graph G is 
called  F-free if none of its subgraphs are in F. 

The Zykov sum of the graphs G1, G2 is the 
graph G=G1+G2 having: 

V(G) =V(G1)V(G2), 

E(G) =E(G1)E(G2) {uv:uV(G1),v  
V(G2)}. 

3. A New Characterization of 

Net-free Graphs using the 

Weakly Decomposition 

Formation control is an important issue of 
motion coordination of Multi-agent Robots 
Systems, it is based on the properties of the 
formation graphs ([20]). 

We recall a characterization of the weakly 
decomposition of a graph.    

Definition 1. ([32], [33]) A set A V(G) is 

called a weakly set of the graph G if 

NG(A) V(G)-A and G(A) is connected. If A is 

a weakly set, maximal with respect to set 

inclusion, then G(A) is called a weakly 

component. For simplicity, the weakly 

component G(A) will be denoted with A. 

Definition 2. ([32], [33]) Let G=(V,E) be a 

connected and non-complete graph. If A is a 

weakly set,  then the partition {A,N(A),V-

AN(A)} is called a weakly decomposition of 

G with respect toA. 

The name of weakly component is justified by 
the following result. 

Theorem 1.([32], [33]) Every connected and 

non-complete graph G=(V,E) admits a weakly 

component A such that G(V-

A)=G(N(A))+G( N (A)). 

Theorem 2.([11], [12]) Let G=(V,E) be a 
connected and non-complete graph and AV. 
Then A is a weakly component of G if and only 

if G(A) is connected and N(A) ~ N (A). 

The next result, that follows from Theorem 2, 
ensures the existence of a weakly 
decomposition in a connected and non-
complete graph. 

Corollary 1. If G=(V,E) is a connected and 

non-complete graph, then V admits a weakly 

decomposition (A,B,C), such that G(A) is a 

weakly component and G(V-A)=G(B)+G(C). 

Theorem 2 provides an O(n+m) algorithm for 
building a weakly decomposition for a non-
complete and connected graph. 

Algorithm for the weakly decomposition of a 

graph ([32]) 

Input: A connected graph with at least two 
nonadjacent vertices, G=(V,E).  

Output: A partition V=(A,N,R) such that G(A) 
is connected, N=N(A), AR= N (A). 

 
A new characterization of net-free graphs, 
using weakly decomposition, is given below. 

Begin 

A:= any set of vertices such that AN(A) V 
N:= N(A) 
R := V-AN(A) 
While ( nN,  rR such that nrE) do 

Begin 

A:= A {n} 
N:= (N-{n}) (N(n)R) 
R:=R-(N(n) R) 

end 
end  
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Theorem 3. Let G=(V,E) be a connected and 
non-complete graph. Let (A,N,R) be a weakly 
decomposition with G(A) a weakly component. 
G=(V,E) is net-free if and only if: 

i) does not exist P4 in G(A) and n in N such that 
n is adjacent with the middle vertices of the    
P4 specified;  

ii) (does not exist P4, with extremities in A and 
the middle vertices in N) or (does not exist t in 
N such that his neighbours t are not in              
P4 specified); 

iii) G(V-R), G(V-A) are net-free. 

Proof.} Let G be net-free. Since the property of 
being net-free is hereditary as follows G(V-A) 
and G(V-R) net-free graphs, so iii) holds. If 
 nN,  P4   G(A) such that n is adjacent to 
the middle vertices in P4, so  P4: a, b, c, d with 
a, b, c, d   A, ab, bc, cd E, ac, ad, bd E 
and n b, n c E, then, because N~R, it follows 
that  rR: G({ a,b,c,d,n,r}) is net, a 
contradiction. So i) holds. If   P4: ab, bc, cd 
with a,d A, b, c N and  tN with ta,tb, tc, 
td E then G({a,b,c,d,r,t}) is net  r R, a 
contradiction. So ii) holds. 

Conversely, we suppose that i), ii), iii) hold and 
to show that G is net-free. From iii) it follows 
that G(A), G(N), G(R), G(AN) and G(N 
R) are net-free. Because G(AR) is not 
connected it follows that G(AR) is net-free. 
Suppose, however, that there is 
H=G({a,b,c,1,2,3}) an subgraph net, with the 
vertices a, b, c of the degree 1, the vertices 1, 2, 
3 of degree 3, and a 1, b 2, c 3   E. 

Case 1. Let |V(H)R| = 1. We assume 1.1. 
V(H)   R = {a}. 1.2. V(H)R ={1}. 1.1. 
From R~N it follows V(H) N={1}. So V(H) 
A={c,3,2,b}. But G({ c,3,2,b}) is P4 and 1 is 
adjacent with the middle vertices in P4, thereby 
contradicting with i). 1.2. From R~N it follows 
V(H) N={a,2,3}. So V(H) A= {b,c}. 
P=G({b,c,2,3}) is an P4, with extremities b, c 
A and the middle vertices 2,3N. For t=a we 
have N(t) V(P)= , thereby contradicting 
with ii). So, Case 1 holds not. 

Case 2. Let |V(H) R|=2. There are subcases 
2.1. V(H) R={a,1}; 2.2. V(H) R={1,2}; 
2.3. V(H)   R={a,2}; 2.4. V(H) R={a,b}. 

2.1.cannot hold because the vertices a and 1  
have no common neighbors. 2.2. cannot hold 
because the vertices 1 and 2 not have only 
common neighbors. 2.3. cannot hold because 

the vertices a and 2 not have only common 
neighbors. 2.4. cannot hold because the vertices 
a and b have no common neighbours. 

Case 3. |V(H) R|=3 cannot hold because the 
vertices in {a,1,2} and in {a,1,b} not have only 
common neighbours. 

Case 4. Let |V(H) R|=4. Any subset 
XV(H) with |X|=4  has the property that its 
vertices are not only common neighbours, that 
is  v V-X such that v is adjacent some of 
the vertices of X, and with the rest of them, v it 
is not adjacent. 

|V(H) R|{5,6} it is not possible, because 
V(H) A   si V(H) N  . 

Theorem 3 provides the following recognition 
algorithm for net-free graphs. 

Algorithm Recognition 

Input: A connected, non-complete graph 
G=(V,E). 

Output: An answer to the question: "Is G net-free"? 

 
As Theorem 2 provides an O(n+m) algorithm 
for building a weakly decomposition for a non-
complete and connected graph and as for the 
recognition P4-free in O(n+m) ([17]) time 
(Finding small cycles in undirected graphs in 
O(m1,63) ([1]) time), so step 5 and step 6 run in 
O(n+ m1,63) time, it follows that, in total, the 
algorithm is run in O(n(n+ m1,63)). 

Begin 

1. LG {G} 

2. while LG    do 

3. extract an element H in L 
4. determine the weakly decomposition 

(A,N,R) with [A]H weakly component 
5. if ( P4 in G(A) and  nN such that n 

is adjacent with the middle vertices in P4) 
then 

G is not net-free else 
6. if (( P4, with the extremities in A and 

the middle vertices in N) and (there 
are t in N whose neighbourhood there 
crosses the vertices of P4 specified)) 
then 

G is not net-free else 
7.  enter in L subgraphs [V-R], [V-A] 
8. Return: G is net-free 
9. end 
EndRecognition 
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4. Determining a Maximum Matching 

within a Claw-free Graph 

Software testing is an important process that 
helps to develop high quality software. Test 
data generation can be done using 
combinatorial optimizing techniques. ([28]). 

Some interesting properties of claw-free graphs 
have been established in ([2], [6], [17], [22], 
[25], [30]). In [21] the authors present new 
algorithms for the recognition of claw-free 
graphs ( )( 69,1eO ). In [7] the authors mention 
the structure theory of claw-free graphs. 

In [5] the authors consider the algorithmic 
problem of finding a Hamiltonian path or a 
Hamiltonian cycle efficiently. 

In what follows we characterize the claw-free 
graphs and we give an algorithm for 
constructing a cardinal maximum matching in a 
claw-free graph. 

A similar result is found in ([32]) 

Theorem 4. Let G=(V,E) be a connected and 

non-complete graph. Let (A,N,R) a weakly 

decomposition with   G(A) a weakly 

component. G=(V,E) is claw-free if and only if: 

i)   R and N(n)A are cliques,  n  N 

ii) G(V-R), G(V-A) are claw-free. 

Proof.} Let G be a claw-free graph. From he 
heredity of the claw-free graphs it follows that 
G(V-A) and G(V-R) are claw-free graphs. If 
there would be r1, r2R such that r1 r2E, 
because R~N, n N and a N(n) A  
(N(n) A  ,   n N according to his N), 
G({a, n, r_1, r_2}) is isomorphic to claw. 

Show of the reverse implication. We assume 
that there are { x,a,b,c} a claw with center in x. 
From ii) results that G(AN) and G(NR) 
are claw-free graphs. So xAR, that is 
xN. From i), two of the vertices a, b, c are 
necessarily in N, that is {x, a,b,c} are in AN 
or in NR, thereby contradicting with ii). 

Theorem 4 leads to a recognition algorithm for 
a claw-free graph that shows the combinatorial 
structure of the graph the decomposition mode 
used. Because the complexity, of this 
algorithm is not better than the most efficient 
known, not present. 

Sumner ([31]) and, independently, Las Vergnas 
([23]) proved that every claw-free connected 

graph with an even number of vertices has a 
perfect matching. 

It is known that if G is a connected graph there 
is a vertex vV(G) such that G-v is connected. 

In [29], Sumner shows that in any connected 
claw-free graphs one can find a pair of adjacent 
vertices the removal of which leaves the 
remaining graphs connected. 

An interesting question would be to determine 
the connected graphs with the QV(G), Q 
the maximum clique in relation to inclusion so 
that G-Q is connected. This property is related 
to the existence of induced subgraphs claw. 
The following result. 

Theorem 5. Let G=(V,E) be a connected and 

non-complete graph. Let (A,N,R) be a weakly 

decomposition with  G(A) a weakly 

component. G is claw-free if and only if for 

any induced subgraph H of G, H connected, 

there is a maximal clique Q in H such that H-

Q is connected. 

Proof. Let G be a connected and claw-free 
graph. Because the property of being claw-free 
is hereditary, H, induced subgraph of G, H 
connected, H is claw-free. From Theorem 7 it 
follows that R is clique. Let QN be a maximal 
clique in [N]H. Then Q1=QR is a maximal 
clique in H (in N~R it follows that Q1 is clique; 
Q1 is maximal because xV(H)-Q1, we have 
or xA and xrE(H),  rQ1 R or xN-Q 
and because Q is maximal,  yQ1 N such 
that x y E(H)). Because [A]H is connected and 
xN-Q1,  aA such that axE(H), it 
follows that H-Q1 is connected. 

Show of the reverse implication. We assume 
that there is H isomorphic a induced claw in G, 
H= G({x,a,b,c}), x being the center of H. Then 
the maximum cliques of H are {x, a}, {x, b}, 
{x,c} and every one of them disconnects H. 

As Edmonds ([15]) showed, a maximum 
matching in any graph may be found in 
polynomial time. Sbihi ([27]) extended this 
algorithm to one that computes a maximum 
independent set in any claw-free graph.Minty 
([26]) (corrected by Nakamura, Tamura [27]) 
independently provided an alternative extension 
of Edmonds' algorithms to claw-free graphs. 

Theorem 5 provides an algorithm for 
constructing a cardinal maximum matching in a 
claw-free graph. 

Input: A connected, non-complete, claw-free graph  
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G=(V,E). 

Output: A cardinal maximum matching in G 

 
Step 7 is run in O(n(n+m))} 

 
As Theorem 2 provides an O(n+m) algorithm 
for building a weakly decomposition for a non-
complete and connected graph, in total, the 
algorithm is run in O(n(n(n+m))). 

5. Conclusions and Future Work 

In this paper we have given a recognition 
algorithm for net-free graphs and an algorithm 

for determining a maximum matching in claw-
free graphs. Our future work is going to put 
forward some applications of {net,claw}-free. 
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