
Studies in Informatics and Control, Vol. 23, No. 1, March 2014 http://www.sic.ici.ro 5

1. Introduction 

As a renewable and clean energy, wind energy 
which growths rapidly worldwide and attracts 
widespread attention by governments [1]. 
Recently, high efficiency and low cost power 
production control methods and technologies 
are always an eternal working goal for 
researchers and engineers. 

Doubly fed induction generators (DFIG) 
which are widely adopted for the wind turbine 
systems occupy most parts of the global 
market because of the lower-cost and smaller 
inverter capacity. However, the DFIG’s 
characteristics of non-linearties, strong 
coupling, and varying parameters as well as 
the wind randomness are intractable problems. 
It also reduces the efficiency of the wind 
energy. Moreover, the model of wind is 
complicated, and affected by many factors. 
Besides, dynamic and static characteristics of 
nature wind need to be reflected by the wind 
model. And wind turbine system also requires 
an appropriate wind model for different 
performances. The emitted power usually 
cannot catch up with capture wind energy 
because of both the transient wind and the lag 
inertia of the blades. Considering wind 
uncertainties and wind turbine systems 
nonlinearities, it is difficult to selecting 
appropriate classical PID coefficients to obtain 
good performances. In addition, these 

coefficients usually maintain constant once the 
PID controller is installed. Recently, artificial 
intelligent controls have been developed 
rapidly and applied gradually to wind turbine 
systems, such as neural network control and 
fuzzy control are discussed in [2-4]. However, 
to achieve good control performance needs 
complex computations in the neural network 
based control algorithms. A rule table for 
fuzzy control is also difficult to design [6]. 
For fuzzy controllers which select this rule 
table by self-adjusting needs to spend a longer 
time in calculations. 

In this paper, to improve the efficiency of 
capturing wind energy and simplify the referred 
control methods computations, a particular PID 
controller which is based on a single-neuron 
network is developed and called Neural Network 
PID (NNPID). Known that three layers of neural 
networks (NNs) can be used to approximate an 
arbitrary input-output mapping [7]. The weights 
of the proposed NNPID can be adjusted 
adaptively online with tracking errors. This used 
adaptive mechanism is useful to overcome both 
the wind turbine systems external disturbances 
and parameters uncertainties. 

The rest paper is organized as follows: a wind 
model is presented in 2nd section. And in 3rd 
section, a wind turbine model which includes 
an aerodynamic model of the wind turbine 
rotor, DFIG model and drive trains model is 

NNPID-based Stator Voltage Oriented Vector Control 
for DFIG based Wind Turbine Systems 

Shanzhi LI1, Haoping WANG1, Yang TIAN1, Nicolai CHRISTOV2, Abdel AITOUCHE2 

1 Sino-French International Joint Laboratory of Automatic Control and Signal Processing (LaFCAS), 
Nanjing University of Science & Technology (NUST),  
Nanjing 210094, China;  

2 LAGIS- CNRS UMR 8219, LaFCAS, University Lille Nord de France, 
Lille France, 59600 

Abstract: Doubly fed induction generators are widely adopted for the wind turbine systems since it is cheap and reliable.
Based on the traditional stator voltage oriented vector control method, the performance of the proposed vector control is
largely influenced by the variations of the DFIG parameters. And the classical PID algorithm cannot achieve the
maximum power point tracking (MPPT) in time (owing to the transient wind). Hence, in this paper, to eliminate
parameters variations on the power output and capture the MPPT rapidly, we propose a stator voltage oriented vector
control which is based on a Neural Network PID (NNPID) technology. The weights which are being similar to the PID
coefficients are adapted by Hebb rule to decrease the power error online according to the error gradient descent method,
while the classical PID coefficients will be a constant. The effectiveness of the proposed method is demonstrated by
corresponding simulation results: even in the case of wind mutation change, the proposed NNPID can track the variation
of the wind energy, and robust to the DFIG parameters variations. 

Keywords: wind turbine system; maximum power point tracking; DFIG; NNPID; 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 1, March 2014 6 

described. After that, for the considered 
system, a fundamental stator voltage oriented 
vector control method and a NNPID controller 
is developed in 4th section. Then to validate 
the proposed method, some numerical 
simulation results are illustrated in 5th section. 
Finally, some conclusion remarks are 
presented in 6th section. 

2. Wind Model  

A natural wind which is a dynamic stochastic 
process can be mainly divided into two 
categories. The first one which builds by the 
meteorological data such as location 
information and altitude is applied for large-
scale wind farm and forecasting wind speed. 
The second one which is developed on 
probability and statistics methods is called as a 
statistical model [8]. In this paper, the statistical 
model is used and can be defined as follow 

rs vvv   (1) 

where, sv  is the average component, which 

reflects the wind speed long-term characteristic 
and maintains constant, rv  is the turbulence 

component, and it is related to the turbulence 
intensity which depends upon the roughness of 
a wind farm surface. The von Karman’s or Van 
der Hoven’s models are used to express the 
dynamic turbulence characteristics [9]. Because 
of the major drawback, that the turbulence 
component is regarded as a stationary random 
process which cannot reflect the complete wind 
information by using the Van der Hoven’s 
model. As a result, the von Karman’s model is 
chosen. In this model, the non-stationary 
turbulence component can be simulated by the 
following shaping filter which is defined as: 
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where parameters of KF and TF are decided by 
the average component. And the input of the 
shaping filter is a white noise. Hence the 
turbulence component vr can be deduced as: 
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where ( )s  represents a zero mean white -
noise signal. 

Generally, the above wind model can be used 
to simulate approximately a real wind. 
However, in order to demonstrate the following 
proposed control methods performances, some 
extreme wind cases are also tested, such as 
signals of step or ramp type.  

3. Wind Turbine and Driver   
Train Models  

3.1 Wind turbine rotor model 

The wind turbine will absorb part of energy 
when the airflow runs through it [10]. And the 
available captured power can be represented as 
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where R is the radius of wind turbine, ρ is the 
air density, ),( PC is the power coefficient, 

vRT /   is the tip speed ratio, T  is the 
angular speed for the wind wheel, and   is the 
pitch angle. Cp is affected by both   and  . 
When the wind overrides the rated wind, the 
capture power will exceed its capacity. So in 
the field, the pitch angle will be adapted to 
maintain a constant rated power. The output 
torque on the wind turbine is represented as  

TL PT /  (7) 

3.2 The drive train model  

To simplify wind drive train model and fulfil 
the control requirements, we choose a one-mass 
model [11]. When the stiffness and the 
damping factor are neglected, its corresponding 
motion equation is described as:  

2

2

dt

d

n

J

dt

d

n

J
TT

P

r

p
eL


   (8) 

where eT  is the generator torque, LT  is the wind 
turbine torque which equals to the torque of 
generator side, J  is the equivalent moment 
inertia, pn  is the number of pole pairs, r  is 

the rotor electrical angular speed, and   is the 
rotor position angle of DFIG.  
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3.3 DFIG model  

In the motor reference frame as in [12-13], the 
dynamic equations of DFIG can be developed 
by vector transformation dq-axis voltage and 
flux equations as follows 
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where mL  is the mutual inductance, sL  is the 
stator self-inductance, rL  the rotor self-
inductance, sR and rR  are the stator and rotor 
resistances, s  is the angular frequency of the 
grid, rssl    is the slip angular frequency, 

and squ , sdu , rqu  and rdu  are stator and rotor 

voltages in the dq reference frame. And  
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4. Design of NNPID Controller  

In this section for the considered DFIG model, 
we propose a stator voltage oriented vector 
control which is based on a Neural Network 
PID (NNPID) technology to track the available 
maximum power. Its control architecture is 
illustrated in Figure 1.  

Under this scheme, firstly the rotor dq axis 
current references which are used for optimal 
power tracking are calculated from the active 
and reactive power. They are decoupled by the 
following referred stator voltage oriented 
vector control. Then, with the application of the 
proposed NNPID, one ensures the maximum 
output power tracking. 

4.1 Stator voltage oriented vector  
control method 

According to the magnetic flux conservation 
principle, the DFIG three-phase dynamic model 
can be simplified into a two-phase dp dynamic 
model. Without the proposed stator voltage 
oriented vector control [14], the calculated flux 
are easily affected by generator parameters, 
such as inductance cannot be accurately 
obtained.    

Thus under stator voltage reference frame,    
one obtains 
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Figure 1. Structure of stator voltage oriented vector control based on NNPID 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 1, March 2014 8 

where sdu  and squ  are voltages under  dq-axis. 

In wind turbine systems, the wind energy is 
mainly transferred to power through the stator 
side to grid. When the DFIG runs on the state 
of super-synchronous condition, a part of 
power will flow across the rotor-side converter. 
In steady-state working condition, the stator 
resistance can be ignored which means 

sss LR  . And according to power equation, 
the following active and reactive power can be 
calculated as follows 
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Thus from the above equations, the following 

current references of 
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The reactive power reference 
*Q  which can be 

adapted with variation values of grid is selected 
to be ‘zero’ here. And it is important to note 
that the active power reference *P which is 
calculated from the wind turbine optimal power 
curve (illustrated in Figure 2) can be easily 

obtained with measurements of rotor      
angular speed.  

Substituting (10) and (11) in (9), the dp-axis 
compensated voltages can be calculated as 
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with the leakage factor
 rsm LLL /1 2 .  

Hence the input of SVPWM convertor can be 
presented as  

*
rd rd rdu u u       (18) 

*
rq rq rqu u u         (19) 

where 
*
rdu  and *

rqu are reference voltages  

which are calculated by the NNPID and 
described in the next subsection. 

4.2 Neural Network PID  

Traditionally, a classic PID controller 
performances whose three coefficient values 
are difficult to select are normally affected by 
systems nonlinearities and external 
disturbances [15]. Thus in this subsection, a 
Neural Network PID (NNPID) which presents 
self-learning and adjusting abilities on 
coefficient weights online is developed[16]. 
Here the detailed of designing d-axis NNPID is 

1 2 3

1a

2a

3a

1P

2P

3P

 

Figure 2. Optimal wind turbine power curve 
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only presented because the q-axis one is 
similarly to d-axis. 

The input of NNPID in d-axis is the current 

error 
*( ) ( ) ( )rd rd rde k i k i k  . The output of 

NNPID is the d-axis voltage urd(k) ,which is 
illustrated in Figure 3. 

The output of NNPID can be written as follow 

3
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where   is the proportion coefficient which 
relates to the stability of the closed-loop 
system, and the coefficients of w1, w2 and w3 
are represents the proportional, integral and 
differential constants for a classical incremental 
discrete PID controller. ( )ix k is the error 

polynomials and written as follows 
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In this paper, the error function is defined as  

2 * 21 1
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According to the Hebb learning rule [17] and 
avoiding local minima[18], an improved 
algorithm for adjusting the weights is proposed 
and deduced as follows 
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where i  is the learning factor, e(k) is equal to 

the error between the reference and 

measurements, and i is the inertia coefficient.  

In the summary, the NNPID algorithm can be 
shown in Figure 4. 

 

Figure 4. NNPID process algorithm 
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Figure 3. Structure of NNPID 
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5. Numerical Simulation 

In this section, we validate the proposed 
NNPID based control strategy for the 
considered wind turbine system on 
Matlab/Simulink. The controlled system 
parameters are shown in Table 1. 

Table 1. Parameters of the wind turbine system 

Parameter Value 

Blade radius 40m 

Rated Power 1.5MW 

air density 1.25kg/m3 

Rated Voltage 690V 

Frequency 50Hz 

Number of poles pair 2 

Stator resistance 1.1mΩ 

Rotor resistance 2.3mΩ 

Stator leakage inductance 0.007mH 

Rotor leakage inductance 0.0075mH 

Stator-rotor mutual inductance 2.9936mH 

Wind turbine moment of inertia 
4.95M 
kg.m2 

Generator moment of inertia 90 kg.m2 

Gearbox ratio 83.53 

To demonstrate the proposed controller 
performance, we consider an external wind 
input signal which contains mainly three 
different types of step, ramp and stochastic 
signal and illustrated in Figure. 5. In addition, 
to validate the robustness of NNPID, the stator 
resistance is selected for changing at 7.5th 
second from the value of Rs to 1.2*Rs. Because 
its value is easily changed with the variation 
of temperature. Under these testing conditions 
and without considering the wind turbine 
system linked to the grid, their corresponding  
control results which includes the power 
coefficient, rotor speed, reference and actual 
power, and tracking error are illustrated 
respectively in Figure 5 to Figure 9. 

 

 

 

Figure 5. Evolution of the wind speed parameter 

 

 

Figure 6. Power coefficient  

 

Figure 7. Rotor speed 

It is important to note that, from Figure. 8 and 
Figure. 9, with the proposed NNPID 
technology, the actual power output tracks very 
well the available maximal power point, even 
under the variation of wind speed and system 
parameter variations.  
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Figure 9. Power error between reference 
 and actual power 

6. Conclusion 

In this paper, a NNPID based stator voltage 
oriented vector control is designed and 
implemented to a DFIG based wind turbine 
system. The advantages of the proposed control 
are that its corresponding control weights can 
be adapted online by Hebb rule by according to 
power error. And the effectiveness of the 
proposed method is demonstrated by 
corresponding numerical simulation results, 
even in cases of wind mutation changes. 
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