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1. Introduction 

This work is motivated by the fact that the 
compressors are used in a wide variety of 
applications such as: power generation using 
industrial gas turbines, pressurization of gas in 
the process industry, transport of fluids in 
pipelines, and the fundamental instability 
problem known as surge limits the operation 
range for compressors at low mass flows. This 
instability problem has been studied and a 
surge avoidance solution is established. This 
solution is based on keeping the operating point 
at the right side of the surge line. There is a 
potential for increasing the efficiency of 
compressor by allowing the operation point 
closer to the surge line, which is the case in 
industrial current systems. The increase in 
efficiency range is possible with compressor 
designs where the design is done with such 
controllers. However, this raises the need for 
control techniques, which stabilize the 
compressor when disturbances occur or set 
point is changed, otherwise, the operating point 
may cause a crossing of the surge line. This 
approach is known as artificial intelligent 
active surge control. In recent years intelligent 
active surge control has been an active area of 
research as in [1,2,3,4] have been focused on 
modelling and control. Active surge control has 
showed the ability to extend the operating 
range significantly [3,4]. This study presents a 

solution to this problem based on intelligent 
neural network controller. 

2.  Description of the  
Surge Phenomena  

In compression systems, instabilities occur 
during operation close to their peak pressure-
rise capability [5,6,7].However, the peak 
efficiency of a compression system lies close to 
this region of instability. Surge is an unstable 
flow situation that appears when the flow is too 
low and the head too high per unit of 
compressor speed. Under normal conditions, 
the compressor operates to the right of the 
surge line. However, as fluctuations in flow 
rate occur, or under startup/shutdown, the 
operating point will move towards the surge 
line because of reduced flow. If conditions are 
such that the operating point approaches the 
surge line, the impeller and diffuser begin to 
operate in stall, and flow recirculation occurs. 
The flow separation will eventually cause a 
decrease in the pressure and flow from suction 
to discharge. When a centrifugal compressor 
reaches its surge limit, the flow pattern through 
the compressor collapses and a sudden 
backwards flow of gas occurs from the 
discharge to the suction side of the compressor 
through the forward spinning impeller (Figure 
1.c). This violent mode of instability causes a 
total breakdown of flow in the system and loss 
of the pressure-rise capability.  
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(a) Deep surge in centrifugal compressor 

 

(b) From D to A: stable operation of the compressor 
from the suction tank to the discharge tank 

 

(c) From A to B: rapid transition to the unstable 
region; From B to C: Vibration and unstable 

operating of the compressor from discharge tank to 
the suction tank; 

 

(d) From C to D: stable operation from discharge 
tank to suction tank; 

 

(e) At the point D: Vibration of the compressor and 
the cycle repeats again. 

Figure 1. The cycle of the surge phenomenon 

Generally, all compression systems operate 
with a surge margin. It is important to study the 
surge of the compression system to understand 
its dynamics in order to operate it close to the 
surge limit for achieving high efficiency. This 
surge phenomenon causes a reversal of the 
thrust loads and causes severe damage to the 
thrust bearings, seals, and the impeller. For 
these reasons, surge must be avoided during 
centrifugal compressor operation. 

The complete characteristic of a compressor is 
shown as the S-shaped curve; it represents the 
pressure ratio or pressure rise as a function of 
the flow through the compressor (Figure 1.a). 
For a constant speed the compressor develops a 
compression ratio increasing to the maximum 
compression which is limited by the surge line. 
Then to move to the region where the 
compressor is completely unstable and the 
surge appears. 

3. Operating Region of a 
Centrifugal Compressor and 
Protection Limits 

Protective devices against the surge are 
installed so that the compressor does not reach 
the surge line, even during transient operation. 
A margin is required between the operating 
point and surge line defined as surge control 
line (Figure 2). 

 

Figure 2. Representation of the surge line and surge 
control line 

Moreover, the characteristic curves of the 
pressure/volume also represent significant 
operating limitations. The most important is the 
surge line limit in which the compressor 
becomes unstable. This instability is manifested 
by pulsations in the flow and pressure that can 
cause serious damage to the compressor. For 
this reason, we use an anti-surge system to 
maintain constant flow nearest the limit of the 
surge. The surge zone and its limits are clearly 
indicated on the curves (Figure 2); the left end 
of the curves corresponds to the surge limit. In 
the right side, the curves are limited before 
reaching the stone-wall (or strangulation). To 
control the system manually with a great degree 
of protection, manufacturer visualizes for 
engineer in the control room two other lines of 
protection DSLL (Low Low Deviation to the 
Surge with color blue), DSL (Low Deviation to 
the Surge line, with color green), SCL (Surge 
Control Line with yellow) and DSH (High 
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Deviation between operating point and Surge 
control line with color red) shown by Figure 3. 

 

Figure 3. Compressor’s operating point of Algerian 
Company 

Figure 4 shows the operating region of the 
compressor, which is limited at  

- The left by the surge line; 

- The top by the maximum rotational speed; 

- The right by the stone wall (white); 

- The Bottom by the minimum        
rotational speed. 

4. Modeling of the Recycle 
Compression System 

The compression system is modelled as in 
Figure 5, with a compressor, a duct of length L, 
a plenum of volume pV , a throttle, and a drive 

unit imparting a torque on the compressor. 

 

Figure 4. The operating region of a 
centrifugal compressor 

According to Greitzer [7], Egeland and 
Gravdahl [8], the model of recycle compression 
system is: 
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Figure 5. The compression system model 
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Notations are defined in Table 1. 

Table 1. Table of parameters & acronyms 

Param. Meaning / Values [5,9] 
Q The mass flow (kg/s) 

Qf The feed flow (kg/s) 
Qr The recycle flow (kg/s) 
Qt The throttle flow (kg/s) 
ap The speed of sound=343 m/s 
cp Specific heat at constant pressure 1005(J/kg.K)
V1 Suction plenum volume 0.05 m3  
V2 Discharge plenum volume 0.1 m3 
P01 Ambient pressure 101.325 Pa  
P1 Section plenum pressure (Pa) 
P2 Discharge plenum pressure (Pa) 

T01 Ambient temperature 20 Celsius 
A Duct area 0.07m2 
L Duct length 2.85m 

),( NQc  The pressure rise 

m  Drive torque 

c  Compressor torque 
  Energy transfer coefficient 0.99 

r1 Inducer perimeter radius 0.0395m 
r2 Impeller perimeter radius 0.0565m 
  Constant of incidence loss  
kf Friction constant 
kt The area of the throttle opening valve. 

  1000 

cf The percentage feed opening valve 
cr The percentage recycle opening valve 
ct The percentage throttle opening valve 
N The speed (rad/s) 
J The impeller inertia 5e-4 kg m2 

  Constant of incidence loss 

C Flow coefficient 

The complete recycle compression system is 
modelled and simulated. The throttle and 
recycle valves are modelled by: 
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Where: Ct and Cr are constants which    
represent the percent of the area of the valve to 
be opened. 

P : is the pressure drop across the valve.  

In the case of compressor deep surge, we'll 
have a flow reversal [8,9]. Finally the torque 
acting on the impeller blades is: 

NrQc .2
2     (7) 

The model uses the pressure ratio of the 
compressor c . The compressor characteristic 
derived from enthalpy transfer in Egeland and 
Gravdahl [10] is: 
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This expression is also valid in the unstable 
area to the left of the surge line.  

5. Data Measurement of the 
Recycle Compression System  

The industrial compression system is shown by 
the Figure 6, with a compressor, a duct, Feed 
flow valves, a throttle valve, recycle valve, 
coolers, drive unit imparting a torque on the 
compressor, and plenums of volume. 

The compressor is protected against surge by 
an anti-surge valve connecting the 

 

Figure 6. Industrial recycle compression system 
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compressor’s discharge to the suction plenum, 
thus increasing the flow in the compressor to 
return it out of the surge area. The surge 
regulation is intended to open this valve as 
soon as the flow in the compressor is getting 
too close to the surge flow. Anti-surge control 
has the function of maintaining the compressor 
in a stable operating range assuring a higher 
suction capacity than the surging rate whatever 
the compression ratio may be [11,12]. 

When the compressor flow rate is below the 
specific flow for the protection margin at a given 
pressure ratio (Figure 2), the controller should 
send a control signal to the valve to open [12]. 
The rate of opening or closing should be based 
on the speed required to protect the compressor. 
The compression system is a complex industrial 
process and very dangerous due to the high 
pressure in petroleum companies. The neural 
network is used to simulate non-linear systems, 
therefore this technical approach can be 
implemented to identify and control the recycle 
compression system. 

The identification of the compression system is 
the determination of the model parameters of a 
dynamic system from inputs (Flow and 
Speed)/output (Pressure ratio) data. We 
measure the discharge pressure (compression 
ratio) for different flow rates and velocities. We 
plot in a coordinate system (flow, compression 
ratio) for different speeds. Some measurements 
are given by the characteristic map of the 
manufacturer and are shown by Figure 7. 

 

Figure 7. Manufacturer measurements compressor 
data map  

Egeland and Gravdahl [8] uses a method where 
approximations of the measurements are based 
on polynomial curve fitting is done, to make 
the characteristic continuous in both mass flow 
and speed. Two stages are required. First, each 
speedline is approximated as [8,9]: 

3210 23)( CQCQCQCQc   (9)  

According to Gravdahl and Egeland [8], the 
negative flow points are chosen such that the 3rd 
order polynomial obtains the right form. Q is the 
mass flow and Ci, i = 0; 1; 2; 3 are the coefficients 
corresponding to a given rotational speed. 

Next, the coefficients are approximated as: 

3210 23)( iiiiC CNCNCNCNi   (10) 

Where: N is the rotational speed. The 
approximation can now be written as: 

)(3210 )(2)(3)(),( Nc CQNCQNCQNCNQ   (11) 

And by this interpolation we can determine a 
data base: pressure ration, speed, and flow; this 
can be used for the step of identification to train 
the neural network.  

6. Artificial Neural Network of the 
Recycle Compression System 

Artificial neural networks (ANN) have been 
successfully applied to many engineering and 
science fields [13,14]. It is a processing that is 
inspired by the biological nervous systems, 
such as the brain, process information.  

 

Figure 8. Estimation of the compression model by 
Neural Network  

A neural network is a system with inputs and 
outputs that consists of many simple and 
similar processing elements with a number of 
internal parameters called weights [13]. The 
principle of regulation is illustrated in the 
Figure 8. 

As shown in Figure 8, we have an unknown 
function that we wish to approximate. We want 
to adjust the parameters of the network so that it 
will produce the same response as the unknown 
function, if the same input is applied to both 
systems. For our compression system, the 
unknown function corresponds to a system we 
are trying to control. To identify the model of 
the compression system, we consider the mass 
flow and speed as inputs and the pressure ratio 
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as output of the system. The program written to 
create a feed forward network is as follows: 

 

After simulating the above program, the results 
are illustrated in the Figure 9 and Figure 10. 

 

Figure 9. Real and NN estimated curves 
characteristic of centrifugal compressor  

 

Figure 10. Zoom of curves characteristic of 
centrifugal compressor  

The rounded points show the estimated model 
and the star points show the real output of the 
centrifugal compressor. Until now, the neural 
networks have been used to identify our 
system by generating a functional block 
representing the input/output relationship. 
However, using this block will create troubles 
in controlling the system mainly in choosing 
the type of the controller that has to be used. 
For this purpose, we have chosen a controller 
that performs both tasks: the identification and 
the control at the same time. The NN 
predictive and NARMA L2 controllers 
respond to these needs because they use the 
learning algorithm based on neural networks 
inside the controllers themselves. The 
parameters of these controllers are set 
manually in such a way that the system 
operates as close as possible to its desired 
operating performance.  

As we have already said, there are typically  
two steps involved when using neural networks 
for control: 

1. System identification 

2. Control design. 

In the system identification stage, we develop a 
neural network model of the compression 
system that we want to control. In the control 
design stage, we use the neural network 
compression system model to design (or train) 
the controller. 

The most common technique for training neural 
networks is by studying the variations of the 
gradient descent [14]. And the control systems 
must have the capability to identify defects, to 
isolate the damaged elements and to 
reconfigure the architecture in real time [15]. 

In each of the two control architectures, the 
system identification stage is identical. The 
control design stage, however, is different from 
each other. The next part of the paper, we 
discuss the model predictive control and 
NARMA-L2 control. 

6.1 Neural network predictive control 

The first step in model predictive control consists 
to determine the neural network compression 
system model by identification. Next, the 
compression system model will be used by the 
controller to predict future performance.  

The prediction error between the compression 
system output and the neural network output is 
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% Neural Network using feed forward 
backpropagation network  

% We import the inupts (Qs,S) and the 
output Tc from the compression system. P 
is the matrix of inputs data 

P = [Qs';S']; 

% Creation of the network with one hidden 
layer of 10 neurons. 

net = newff(P,Tc',10); 

% The network is simulated and its output 
plotted against the targets. 

Y = sim(net,P); plot(P,Tc',P,Y,'o') 

% The network is trained for 1000 epochs. 
Again the network's output is plotted. 

net.trainParam.epochs = 1000; 
net = train(net,P,Tc'); Y = sim(net,P); 
plot(P,Tc','*',P,Y,'o'); gensim(net) 
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used as the neural network training signal. The 
process is represented by Figure 11. 

 

Figure 11. Identification of the 
recycle compression system 

One standard model that has been used for 
nonlinear identification is the Nonlinear 
Autoregressive-Moving Average (NARMA) 
model [13]: 
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Where u(k) is the system input, y(k) is the 
system output and “d” is the system delay of 
the predictive controller. For the identification 
phase, we train a neural network to 
approximate the nonlinear function “h”. The 
structure of the neural network plant model is 
given in Figure 11 and the equation for the 
plant model is given by: 
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Where “ĥ” is the function implemented by the 
neural network, (n, m) represent the order of 
the recycle compression system which is 
known, “x” is the vector containing all network 
weights and biases.  

The neural network model predicts the plant 
response over a specified time horizon [13]. 
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Where N1, N2 and Nu define the horizons over 
which the tracking error and the control 
increments are evaluated. The yr is the desired 
response and ym is the network model response. 
Figure 12 illustrates the model predictive 
control process.  

 

Figure 12. Neural Network 
Predictive Control Model 

Classification of data was performed using the 
MATLAB Neural Network Toolbox. A feed 
forward network with a pure line transfer 
function in last neuron was created (Figure 13) 
and used for the experiment [13].  

 

Figure 13. Architecture of artificial neural network 

The results of simulation of the recycle 
compression system by Predictive 
identification are shown by Figure 14 

 

Figure 14. Real output and neural network 
estimated output of the recycle compression system 

Now we will demonstrate the predictive 
controller by applying it to a compression 
system where the objective is to maintain the 
compressor working in the stable region. To 
keep the compression system in the stable 
region of the compressor map, initially, for 
simulation, the pressures in the two volumes 
are set to ambient pressure while the 
compressor speed and the mass flow are both 
set to zero. In the other hand, the throttle and 
the feed flows are taken at their initial states.  

 

‐

Compression 

System 

Estimated NN 

Error

ym

yp

+

Learning 

:

u

Predictive controller 

Plant  

Optimization 

u

u
ANN Model 

yp

ym yr



http://www.sic.ici.ro  Studies in Informatics and Control, Vol. 23, No. 1, March 2014 72
 

 

(a) Mass Flow (b) Zoom of the mass flow (c) Zoom of the undershoot 

(d) Feed & recycle flows  (e) Speed of the compressor 

(f) Discharge and suction Pressures (g) Zoom of suction pressure 

(h) Operating point  (i) Reference pressure ration & 
 identified pressure ratio 

Figure 15. The closed loop compression system with the predictive controller 
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Next, we close the feed flow valve at the time 
t=2sec to disturb the system (Figure 15d). At 
this moment the tuned predictive controller 
opens gradually the recycle valve (Figure 15d) 
to compensate the flow in the suction plenum 
(Figure 5 and Figure 6) in order to stabilize the 
system, as a result: 

 The mass flow decreases to 0.788 kg/s  
with an undershoot of less than 1.8% 
(Figure 15a) 

 The suction pressure decreases from 7.53 x 
104 Pa and stabilizes at 5.82 x 104 Pa 
(Figure 15f);  

 The discharge pressure decreases from 
11.78 x 104 Pa and stabilizes at 10.13 x 104 
Pa (Figure 15f); 

 The rotation speed increases from 863 rad/s 
and stabilizes at 1085 rad/s without 
overshoots (Figure 15e). 

 The pressure ratio of the compression 
system reaches the reference pressure ratio 
after 3 second (Figure 15i); 

We observe that the operating point never 
reaches the surge line (Figure 15h). The 
operating point is situated to the left of the 
surge line only during starting of the 
compression process, so it is better to start the 
compression system manually. 

6.2 Neural network NARMA L2 control 

The neuro-controller represents a feedback 
linearization control where the nonlinear 
system dynamics are transformed into linear 
dynamics by cancelling the nonlinearities.  

The first step in using NARMA-L2 control is to 
identify the system to be controlled. The 
NARMA-L2 approximate model is given by 
[9] (Eq. (15)): 

The model of NARMA-L2 is in companion 
form, where the next controller input u(k) is not 
contained inside the nonlinearity.  

Figure 16 represents the block diagram of the 
NARMA-L2 controller.  

The form of NARMA-L2 controller [9] is     
Eq. (16):  

 

Figure16. Structure of NARMA-L2 Controller 

The real data and estimated output of the recycle 
compression system obtained by NARMA 
identification are shown by Figure 17. 

 

Figure 17. Real output, and NARMA estimated 
output of the recycle compression system. 
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(a) Mass Flow (b) Zoom of the mass flow (c) Zoom of the undershoot 

(d) Feed & recycle flows  (e) Speed of the compressor 

(f) Discharge and suction Pressures (g) Zoom of suction pressure 

(h) Operating point  (i) Reference pressure ration & 
 identified pressure ratio 

Figure 18. The closed loop compression system with the NARMA L2 controller 
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Now, we will explore the NARMA L2 
Controller that is based on the use of neural 
networks to identify and control our 
compression system. Therefore, the objective is 
to maintain the compressor working in the 
stable region too.  

Initially, for simulation, the pressures in the 
two volumes are set to ambient pressure while 
the compressor speed and the mass flow are set 
to zero. The throttle and the feed flows are 
taken at their initial states.  

Next, we close the feed flow valve at the time t 
= 2 sec to disturb the system (Figure 18.d). At 
this moment the tuned NARMA L2 Controller 
opens the recycle valve to compensate the flow 
in the suction plenum (Figure 4) in order to 
stabilize the system, as a result: 

 The mass flow decreases from 0.992 kg/s 
to stabilize at 0.788 kg/s with an 
undershoot of 1.3% (Figure 18a); 

  The suction pressure decreases from 7.52 x 
104 Pa to stabilize at 5.82 x 104 Pa    
(Figure 18f);  

 The discharge pressure decreases from 
10.78 x 104 Pa to stabilize at 10.13 x 104 Pa 
(Figure 18f); 

 The rotation speed increases from        
862.8 rad/s to stabilize at 1085 rad/s 
(Figure 18e); 

 The pressure ratio of the compression 
system reaches the reference pressure ratio 
after 3 second (Figure 18i); 

 The operating point never reaches the surge 
line (Figure 18h). Indeed, the operating 
point is far away from the surge line.  

7. Discussion 

NN Predictive control and NARMA-L2 
algorithm are implemented using back-
propagation networks. The number of neurons 
in the hidden layer represents the degree of 
complexity of the system, and the ability of 
input layer to store information. 

Comparing now between the results got by the 
predictive controller and those of the NARMA 
L2 controller, we conclude the following: 

 In the case of the predictive controller, the 
mass flow oscillates with a big undershoot 
after the automatic opening of the recycle 
valve (Figure 15b and Figure 15c);  

 In the predictive controller, the 
compression system pressure ratio follows 
the reference pressure ratio after 3.6 sec, 
the time of closing the feed forward    
valve, with an error of 2%. While the 
NARMA L2 controller follows the 
reference pressure ratio after 2.6 sec with 
an error of 0%. Therefore, the NARMA L2 
controller gives more accurate results than 
the predictive controller; 

 The compressor speed: for the predictive 
and NARMA L2 controllers, notice that the 
high speed value that our compressor 
reaches is 1085 rad/s;  

 The discharge pressure has the same 
behaviour in the predictive or NARMA 
controllers. But the suction pressure in the 
predictive controller starts with big 
oscillation comparing to the NARMA 
controller (Figure 15b and 18b); 

 The operating point of the compressor: to 
ensure a safe operation of our compressor, 
this latter should not operate in a region of 
higher flows. In fact, it is to operate just in 
the safe region because operating in the 
surge region lead to compressor’s damage; 

 By comparing the performance of           
NN predictive controller, Fuzzy logic     
and PID controllers developed in   
reference [11], it is observed that NARMA-
L2 controller is faster and has good set 
point tracking capability. 

Thus, for identification based on neural 
networks, the NARMA-L2 controller is the 
best, more accurate and suited controller for 
our compression system. 

Until now, we dealt with the NN predictive and 
L2 NARMA controllers in which the 
identification algorithm using neural networks 
is integrated with the control part. 

8. Conclusion 

The aim of all compression systems that exist 
in industry is to stabilize the operation of the 
compressor with maximum pressure ratio and 
performances. In this paper we have presented 
a brief introduction to identify and control the 
system by neural networks. Two different 
methods of identification by neural networks 
integrated with two controllers are presented in 
this paper. The first is using the predictive 
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controller, and the second is using the NARMA 
L2 controller. 

The NARMA L2 controller gives optimal 
results in terms of mass flow oscillations which 
are undesirable and lead to chocks waves of 
gases in recycle compression systems. So the 
implementation of artificial neural network in 
recycles compression system in petroleum 
companies is better than the actual control 
using PID controllers (developed in [11]). 

Finally the neural network is successfully used 
to model and solve the problem of surge in 
centrifugal compressors by keeping the   
system at its stable region with optimum 
recycled gases. 
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