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1. Introduction 

Swarm intelligence algorithms became very 
popular in the past 20 years for efficiently 
finding suboptimal solutions to intractable 
optimization problems. Swarm intelligence is 
the collective behaviour of decentralized, self-
organized systems, natural or artificial. Swarm 
is defined as any loosely structured collection 
of agents that interact among each other. 
Swarm intelligence algorithms are trying to 
model social behaviour of real life agents such 
as viruses, birds, fish, ants, honeybees etc. 
Among the oldest swarm intelligence algorithm 
is the Ant Colony Optimization (ACO) inspired 
by behaviour of ants in the colony that was 
proposed by Dorigo [1] and is still being 
investigated and improved [2], [3], [4]. Also 
very successful and very well researched 
among older algorithms is Particle Swarm 
Optimization (PSO) that simulates social 
behaviour of flock of birds or school of fish. 
PSO was a start-up point for honey bee based 
optimization algorithms where Artificial Bee 
Colony (ABC) introduced by Karaboga [5] is a 
relatively new, but very successful [6], [7] 
optimization metaheuristics. Many new 
algorithms are introduced regularly like Firefly 
Algorithm (FA) [8], [9], Seeker Optimization 
Algorithm (SOA) [10], [11] etc. as the research 
area continues to be active. 

We are witnessing a dramatic change in 
computer architecture due to the multicore 
paradigm shift and every electronic device 
from cell phones to supercomputers confronts 
parallelism of unprecedented scale [12]. In 
general, a system of n parallel processors, each 

of speed k, is less efficient than one processor 
of speed n * k. However, the parallel system is 
usually much cheaper to build and its’ power 
consumption is significantly smaller. Problems 
caused by higher clock speeds are excessive 
power consumption, heat dissipation and 
current leakage. Power consumption and heat 
dissipation problems are critical for mobile 
devices, which are getting more important 
every year. To that end research in 
parallelization is of great importance. Seymour 
Cray used to say: “Would you rather plough a 
field with two strong oxen or 1024 chicken?”, 
but today’s hardware looks more like chicken. 
It has increasing number of low power cores. 

Swarm intelligence algorithms have excessive 
potential for parallelization, either in terms of 
better results, faster convergence or shorter 
time for completing the run of an algorithm. 
Swarm intelligence algorithms always had long 
execution times since complex functions with 
large number of parameters are optimized. 
Every swarm unit has to evaluate objective 
function multiple times, so this makes them 
very appropriate for parallelization. By 
dividing the population into several processing 
threads, parallel implementations of population 
based algorithms produce quality results in a 
reasonable computational time. Since bio-
inspired algorithms are not-deterministic, it is 
advisable to run them multiple times in order to 
get more accurate results. Any shortening of 
execution time of an algorithm that usually 
takes long to execute and that should be run 
multiple times, is welcome. 

Algorithm can be parallelized in different 
manners. Pedemonte [13] provides the 
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following taxonomy for parallel ant colony 
optimization (Table 1).  

Table 1. Parallelization approaches taxonomy 

Parallel approach 

no. 
colonies 

One Many 

cooperation no yes no yes 

model 
master 
slave 

cellular 
parallel 

independent 
runs 

multi-
colony

Very similar taxonomy can be applied to all 
population based heuristics. Speeding up the 
search is not the only incentive for 
parallelization of those algorithms; 
parallelization also provides a new search form 
often exceeding result quality of serial 
implementation of the same algorithm. 
Basically, approaches with built-in cooperation 
are aiming at better quality of results, while 
approaches without cooperation are aiming at 
shorter execution time of an algorithm. 

Level of granularity can vary from finer grained 
parallelization such as the one where every agent 
has its dedicated thread, up to a very course, 
where whole population is divided into just few 
threads. Too fine grained implementation has 
one major disadvantage. There is a rather small 
portion of work for each agent, so extensive use 
of CPU time for creating threads and their 
synchronizations exceeds the benefits of parallel 
execution of the algorithm. 

Master-slave models have one central process 
(master) that controls and delegates tasks to 
several other processes (slaves). Complexity of 
the tasks depends on the granularity of an 
approach, and can vary from evaluation of 
objective function and constraints to applying 
algorithm to the part of search space. 

Historically, cellular models were initially 
designed for massively parallel computers and 
only latter, with popularization of multicore 
devices, adapted for execution on those devices. 
Cellular model has a very fine granularity; 
usually one population unit is assigned to one 
execution thread. In order to avoid high excess 
in communications and synchronization, all 
interaction between individual population units 
happens between neighbours. 

Parallel independent runs approach is trying to 
speed up multiple execution of an algorithm. In 
this approach, there is no collaboration or 
communication between colonies. In 
independent parallel run approach, every run of 
an algorithm is independent thread, so in 
multicore environment, algorithm is running 
almost n times faster where n is the number of 
cores. This approach has no influence on the 
quality of results. There is no communication 
between runs in this method of implementation. 

Multi-colony approach is much different from 
previous approaches. Execution time reduction 
is not the aim of this approach, although it can 
occur. Main goal is to improve quality of the 
results. In this approach, every colony has 
dedicated process. Multiple processes are 
running same serial version of the algorithm at 
the same time and at some point, 
communication among colonies occurs. 
Depending on the migration policy, colonies 
exchange some of the results (best, worst, 
random or combination), and then continue 
with algorithm execution containing results 
from other colonies. It has been shown that n 
colonies with k agents, with different random 
seeds for each colony, produce better results 
than one population that has n x k agents. We 
can observe synergetic effect in this way.  

With growing popularity of multi-core 
computers, many of the population-based 
algorithm ware parallelized like Ant Colony 
Optimization [14], [15], [16], Particle Swarm 
Optimization [17], [18], [19], and Differential 
Evolution. There are several papers on 
parallelization of Artificial Bee Colony 
algorithm, some of which aimed on shortening 
execution times [20], [21] while others showed 
application of parallelized ABC algorithm [22]. 
Researchers in [23], [24] used multi colony 
model to obtain better quality of results. The 
latest analysis of coarse-graded parallelized 
ABC algorithm is [25]. 

2. Original ABC 

Original Artificial Bee Colony algorithm is a 
relatively new metaheuristic optimization 
technique inspired by foraging behaviour of 
honey bees. Possible solutions are represented 
not by individual bees but by food sources and 
that is one of the key features of the ABC 
algorithm. Nectar amount of the food source 
stands for quality of solution and it is 
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represented by fitness value of the objective 
function. There are three kinds of bees in the 
algorithm; employed bees, onlooker bees and 
scout bees.  Employed bees and onlookers are 
in charge of exploitation process, while scout 
bees conduct exploration phase. Colony 
contains equal number of employed and 
onlooker bees and that number is equal to the 
number of food sources. One employed bee is 
attached to every food source. Employed bees 
search for food around their food source and 
they share information about richness of their 
food source with onlooker bees through wiggle 
dance. Based on that information, onlooker 
bees increase search around good food sources. 
Occasionally, food source become depleted and 
then employed bee abandons it and converts to 
scout bee. Scout bees randomly search for new 
food sources. Like other population inspired 
algorithms, ABC is iteration based algorithm 
and search process occurs through numerous 
iterations. Phases of each iteration for 
optimization of continuous unconstrained 
functions are presented through short pseudo 
code given below.  

 

3. MS-ABC (Our Modification) 

Population-based algorithms are fairly easy for 
parallelization; Artificial Bee Colony is not an 
exception. Considering this, the aim of the work 
presented herein was to examine implementation 
of parallelization on the ABC algorithm for 
unconstrained optimization problems. 

There are few issues like granularity of 
parallelization, communication pattern and 
exchange policy that must be resolved when 
population-based algorithm is parallelized. 

Granularity of parallelization is the issue with 
the most significant impact, both on quality of 
the results and computational performance of 
the parallelized algorithm. Granularity can 
vary from very fine grained, where one unit is 
attached to one execution process, up to very 

coarse grained, where whole population is 
divided into few sub colonies, and each is 
bound to one execution process. Fine grained 
parallelization is mostly used when objective 
function is very complicated and/or when 
algorithm is implemented on slow execution 
cores like ones in GPU. There is significant 
computational overhead if fine grained 
parallelization model is implemented for 
simpler objective functions and when modern 
CPU cores are used. Since modern processors 
are very fast, only small amount of 
computational time is used for algorithm 
calculations, and in the case of not so 
complicated evaluation function, small 
amount is also used for calculating evaluation 
function. Hence more work is spent on 
creating and synchronizing large number of 
threads than on the algorithm and objective 
function calculation. On the other hand, 
modern GPUs have great number of slow 
cores, which makes them very suitable for fine 
grained parallelization. 

In this study, very course-grained 
parallelization is used and it is implemented on 
the colony level. This parallelization model is 
also known as island based model. Main 
parallelization method used in this study was to 
divide main population into N subpopulations 
and to run serial version of the algorithm 
simultaneously. In this paper the sub-colonies 
(sub-populations) are called swarms. Hence 
this modification is called the multiple swarm 
artificial bee colony algorithm (MS-ABC). 

There are two main communication types, 
synchronous and asynchronous. Synchronous 
parallelization is based on the number of 
execution steps, which means that at certain 
point of an algorithm each process is waiting 
until all other processes finish previous tasks 
and come to the same point in an algorithm and 
then all processes can together continue with 
execution.  Asynchronous parallelization does 
not need to wait until all processes synchronize. 
In this study, synchronous communication 
model is used. 

Migration policy represents the way solutions 
migrate among swarms. Quality of obtained 
results can show significant fluctuation due to 
chosen exchange (migration) policy. Migration 
policy based on exchanging best solutions is 
used in this study. 

MS-ABC starts by dividing whole population 
into swarms of equal size. All swarms execute 

initialize the population of solutions  
evaluate the population 
while maxCycle is not reached: 
     produce new solutions for the employed bees  
     apply the greedy selection process  
     calculate the probability values  
     produce the new solutions for the onlookers  
     apply the greedy selection process  
     send scout bees  
     memorize the best solution achieved so far 
end while 
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serial version of the original ABC algorithm. 
Swarms start search process with different 
random seeds in order to cover wider range of 
search space, increasing a chance to find global 
optimum and to avoid being trapped in local 
minimum. These subpopulations exchange 
solutions among themselves. There are 
different techniques for solution exchange, but 
the most common one is to exchange best 
solutions so that every subpopulation has best 
solution found in the whole population. 

In MS-ABC the following migration policy 
was used: solutions from all swarms were 
collected, and then n best solutions from all 
swarms were chosen; in the final phase, n 
randomly chosen solutions in each swarm were 
replaced with n best solutions from all swarms. 
Our experiments showed that the best results 
were obtained when n was equal to 5. In this 
way, after every solution exchange, all swarms 
have the best solutions in their solution 
matrixes, and they could continue their search 
from that point. 

Beside parallelization, a well know concept 
from Genetic Algorithms called elitism is 
introduced. Original ABC uses limit, a 
parameter that prevents replacing solution 
which is still improving with random solution 
in the scout bee phase. This means that if 
some solution is not improved for certain 
number of steps, and this number is called 
limit, it will be replaced with a random one. 
This prevents exploitation equation from 
being performed on solution that cannot be 
improved further because it is trapped in local 
minimum or already is an optimum solution 
for the problem. However, this also means that 
currently best solution could be replaced if it 
is not improved more than limit times, i.e. if 
algorithm needs more cycles to try to improve 
the solution in exploitation phase, currently 
best solution will be destroyed by being 
replaced with a random one. 

In this study, elitism was used to prevent this 
from happening. Elitism is a well-known 
technique widely used in Genetic Algorithms. 
It is used to preserve best genes and ensures 
their presence in the next generation. In GA, 
best individuals are copied to the next 
generation and the rest of population is filled 
by individuals created in process of mutation 
and crossover. In MS-ABC elitism ensures the 
presence of the best solutions in the next cycle 
by preventing the best solution to reach limit 

and to be replaced with random solutions. This 
means that best solutions can be improved 
more times than other solutions. At the end of 
each cycle max_trial parameter for EF best 
solutions is decreased by one, where EF is 
elitism factor. This would be dangerous in the 
original ABC, since there is a possibility for 
colony to be stacked into local optimum, but in 
MS-ABC, chances for this to happen are 
smaller. Other swarms prevent colony to get 
stacked into local optimum by exchanging 
solutions among them. If one swarm is trapped 
in local minimum, there is no need to further 
improve best solutions from that swarm and 
solutions from other swarms will replace them 
next time when communication between 
swarms occurs. 

Original ABC algorithm has very few control 
parameters: colony size, total number of 
iterations and limit. MS-ABC keeps all these 
parameters and adds few more. MS-ABC has 
two important parameters regarding swarm 
communication. The first one is the First 
Exchange Cycle (FEC). FEC denotes how 
many cycles of the algorithm will pass until the 
first communication among swarms occurs. 
Another important parameter is the Exchange 
Cycle Rate (ECR) which determines how many 
cycles are completed between two 
communications among swarms. 

If FEC is too small, swarms do not have time to 
find useful solutions, and computational time 
will be used for exchanging poor quality 
solutions. If ECR is too small, i.e. if swarms 
communicate too often, the risk of premature 
convergence increases. On the other hand, if 
these two parameters are too big, the algorithm 
loses the power of searching multiple spaces 
and becomes similar to multiple independent 
runs approach. Consequently, there should be a 
good balance between those two demands. 

Pseudo code for MS-ABC algorithm is: 

 

initialize two swarms with different random seeds 
for every swarm: 
     evaluate population 
     while MFEC not reached: 
          send employers 
          calculate probabilities 
          send onlookers 
          send scouts 
          reset trial for best bees 
          if (cn > FEC and cn mod ECR = 0) exchange (); 
          memorize Best 
     end while 
end for 
Choose the best solution from swarms 
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4. Benchmark Functions 

Original ABC algorithm [16] was tested on 
extensive set of 50 benchmark functions. We 
tested our proposed MS-ABC algorithm on the 
same set, but we report here the results for 12 

benchmark functions where there is some 
difference. For other functions both algorithms 
reached known global optimum. Selected 
benchmark functions with parameter range, 
dimensionality, characteristics and formulation 
are given in the Table 2 below.  

Table 2. Benchmark functions 

No Range D C Function Formulation 
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5. Settings 

In this paper our proposed Multiple Swarm 
Artificial Bee Colony Algorithm was compared 
against the original Artificial Bee Colony 
Algorithm presented by Karaboga and Akay 
[16]. Control parameters used in original ABC 
algorithm are the colony size, maximum 
number of cycles and limit. In Karaboga’s 
paper, maximum number of objective function 
evaluations was set to 500,000. In order to 
make clear comparison between ABC and MS-
ABC, control parameters that are specific for 
MS-ABC, like number of swarms and swarm 
size had to be set within this limitation. In [16] 
colony size was set to 50, and since there is an 
equal number of employed and onlooker bees 
in the colony, colony size has to be even 
number. In Karaboga’s paper 10,000 cycles 
was used. If we used the same colony size as 
Karaboga, by dividing colony into two swarms, 
each swarm should have 25 bees, and since it 
has to be even number, size of 24 bees could be 
used. When colony is divided into three 
swarms, colony size of 16 could be used. For 
four swarms, population of each swarm should 
be 12, but this number is too small for finding 
any meaningful results. Our experimental 
studies showed that within these limitations, 
best results are obtained with four swarms 
when each of them has a population of 16 bees. 
In order to use the same number evaluations, 
we decreased the number of cycles to 7,812. In 
this way Karaboga had 50 bees times 10,000 
cycles, which is equal to 500,000 evaluations, 
and we have 4 swarms x 16 bees x 7,812 
cycles, which is equal to 499,968 evaluation 
calls and very close to 500,000 function 
evaluation calls used by Karaboga. 

MS-ABC and the original ABC have one more 
parameter used in both algorithms. It is called 
limit. Limit denotes maximum number of 
cycles used for improving food source. After 
the limit is reached, food source is abandoned. 
Then scout bee is sent to replace that food 
source. Both algorithm use Eq. (1) for 
calculating the limit.  

limit  =  SN * D (1) 

where D is the dimension of the problem and 
SN is the number of food sources. There are 
three additional parameters that have to be set 
for MS-ABC. First and the most important one 
is FEC and it is calculated according to Eq. (2).  

FEC = MCN * FF  (2) 

where MCN is maximum cycle number and FF 
is FEC factor. Our experiments showed that 
best results were obtained when FF is around 
0.4, so FEC is around 40% of the total number 
of cycles. In this study FEC is set to 3,000. 
Another important parameter is ECR, exchange 
cycle rate, which shows how many cycles pass 
between two communications among swarms. 
According to our experiments for best results 
ECR should be 150. When elitism is used, there 
is a question for how many solutions trial 
numbers should be decreased. Our experiments 
show that quality of results is the highest when 
EF is 1. This means that in every cycle for one 
best solution of each swarm, trial number 
instead to be increased for one, is actually 
decreased by one. In this way, good solutions 
are saved from being abandoned in the scout 
bee phase. By using elitism, we are increasing 
the number of tries for good solutions.  

6. Results 

30 independent runs with different pseudo 
random seeds were performed for each of the 
12 test problems. Table 3 shows optimization 
results for all test functions. Better results are 
printed bold. Mean value, standard deviation 
and standard error for mean values (SEM) were 
compared. Mean values were used to illustrate 
the ability of an algorithm to reach quality 
results while standard deviation and standard 
error of mean values showed consistency and 
robustness of an algorithm. 

Quality of the obtained results will be analysed 
first. For 12 test functions MS-ABC always 
obtained better solution. Out of these 12 
functions, MS-ABC reaches optimum for 2 
functions; Langerman5 function and Zakharov 
function. For 10 functions neither of algorithms 
managed to reach optimum solution, but MS-
ABC showed better results than ABC. This 
illustrates the ability of MS-ABC to outperform 
ABC regardless of the type of objective 
function. Functions 9, 12, 37, 46 and 49 
especially showed the supremacy compared to 
the ABC. 

If standard deviation and standard error of 
means are analysed, we can see that MS-ABC 
is more consistent and robust than the original 
ABC. MS-ABC reaches better values for 10 
functions, while ABC got better results for 
Rosenbrock and Langerman10 functions. 
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Rosenbrock function is very specific with lots 
of local minima and it is easy to be trapped in 
one of them. MS-ABC shows greater ability to 
find optimum solution, but not every time. For 
Langerman10 function, MS-ABC shows much 
better performance regarding the quality of 
results, and a poorer performance regarding 
standard deviation and standard error of means.  

The last column of the Table 3 presents results 
of an additional experiment. Instead of 
comparing ABC and MS-ABC algorithms by 
the number of function evaluation calls, they 
were compared by the time needed for 
algorithm completion. We wanted to test what 
quality of results MS-ABC can obtain with the 
same amount of time that ABC needed for 

Table 3. Results 

No Objective function Stat Opt ABC MSABC 
MSABC same 

execution times 

5 Quatric Mean 0.000 0.0300166 0.0179069 0.0049854 

St dev 0.0048660 0.0042061 0.0013943 

SEM 0.0008880 0.0007679 0.0002546 

9 Colville Mean 0.000 0.0929674 0.0105299 0.0048765 

St dev 0.0662770 0.0143852 0.0054948 

SEM 0.0121000 0.0026264 0.0010032 

12 Zakharov Mean 0.000 0.0002476 0.0000000 0.0000000 

St dev 0.0001830 0.0000000 0.0000000 

SEM 0.0000334 0.0000000 0.0000000 

13 Powell Mean 0.000 0.0031344 0.0020674 0.0007320 

St dev 0.0005030 0.0003912 0.0000862 

SEM 0.0000918 0.0000714 0.0000157 

16 Rosenbrock Mean 0.000 0.0887707 0.0678281 0.0079711 

St dev 0.0773900 0.1134585 0.0137600 

SEM 0.0141290 0.0207146 0.0025122 

33 Kowalik Mean 0.000 0.0004266 0.0003728 0.0003099 

St dev 0.0000604 0.0000589 0.0000065 

SEM 0.0000110 0.0000108 0.0000012 

37 Perm Mean 0.000 0.0411052 0.0059271 0.0030572 

St dev 0.0230560 0.0059858 0.0024867 

SEM 0.0042090 0.0010928 0.0004540 

38 PowerSum Mean 0.000 0.0029468 0.0013247 0.0003943 

St dev 0.0022890 0.0013684 0.0004682 

SEM 0.0004180 0.0002498 0.0000855 

46 Langerman5 Mean -1.500 -0.9381500 -1.4999438 -1.4999438 

St dev 0.0002080 0.0000000 0.0000000 

SEM 0.0000380 0.0000000 0.0000000 

47 Langerman10 Mean NA -0.4460925 -0.8568220 -0.9424212 

St dev 0.1339580 0.1768402 0.2537003 

SEM 0.0244570 0.0322865 0.0463191 

49 FletcherPowell5 Mean 0.000 0.1735495 0.0013390 0.0000151 

St dev 0.0681750 0.0042765 0.0000439 

SEM 0.0124470 0.0007808 0.0000080 

50 FletcherPowell10 Mean 0.000 8.2334401 3.4628974 0.1297846 

St dev 8.0927420 4.0805144 0.4503950 

SEM 1.4775260 0.7449966 0.0822305 
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finishing algorithm execution. Number of 
swarms was set to 4, FEC to 4,000, ECR to 200 
and elitism factor to 1. Algorithm was 
performing function optimization until time for 
serial version of the algorithm was reached. 
Results are presented in the last column of the 
Table 3. Quality of the results was further 
increased by running MS-ABC for as long as 
ABC needed for finishing and the difference 
between quality of results reached by MS-ABC 
and ABC is even more obvious. 
FletcherPowell5 and FletcherPowell10 show 
the most significant improvement of results. 
Consistency and robustness increase even 
more. In terms of standard deviation and 
standard error of means, MS-ABC outperforms 
the original ABC significantly in every case 
except Langerman10 function. 

7. Parallel Performance Evaluation 

Parallelization of an algorithm is usually 
judged not only by the quality of results but by 
terms like speedup and parallel efficiency. 
Speedup shows ratio between serial and 
parallel implementations of an algorithm: 

Speedup = t1  / tp (3) 

where t1 is the execution time of the serial 
version of an algorithm and tp is the execution 
time of parallel algorithm using p processors/ 
cores. Since performance of non-deterministic 
algorithms was analysed here, it was not 
enough to run algorithm just once and to 
measure execution time. Instead, we measured 
execution time for finishing 30 runs of the 
algorithm. Parallel efficiency shows the usage 
of available cores/processors. Eq. (4) shows the 
expression for calculating parallel efficiency: 

Parallel Efficiency = Speedup / p  (4) 

where p is the number of processors/cores. The 
CPU we used for testing had 4 physical and 8 
logical cores, but since four swarms were used, 
we disabled HyperThreading, and we consider 
that p is equal to 4. Results presented in Tables 
4 and 5 show that MS-ABC has a very good 
parallel efficiency, and significant speedup can 
be reached, although it is a sub-linear speed up. 

We can see that speedup is 3.36 on average and 
it varies from 2.62 to 3.90. Parallel efficiency 
has a range from 0.65 to 0.97, and average 
parallel efficiency is 0.84. Although the goal of 
this paper was not to decrease execution times 
of the algorithm, MS-ABC shows very good 

speedup and parallel efficiency. Speedups and 
parallel efficiencies for functions which are 
simpler for calculation and/or functions with 
fewer numbers of parameters have lower 
values. This is due to the fact that greatest 
speed improvements lie with parallelization of 
function evaluation.  

Table 4. Execution times 

 
ABC 

Exe. time 
(s) 

MSABC 
Exe. time 

(s) 
Speedup 

Parallel 
efficiency 

5 71.19 18.50 3.85 0.96 

9 3.45 1.14 3.03 0.76 

12 4.81 1.29 3.74 0.93 

13 31.55 8.20 3.85 0.96 

16 15.63 4.39 3.56 0.89 

33 4.44 1.41 3.15 0.79 

37 37.06 9.74 3.80 0.95 

38 22.29 5.98 3.73 0.93 

46 86.79 22.36 3.88 0.97 

47 114.10 31.67 3.60 0.90 

49 53.71 15.18 3.54 0.88 

50 183.85 49.14 3.74 0.94 

Table 5. Speedup and parallel efficiency 

Value Speedup Parallel efficiency 

Average 3.36 0.84 

Min 2.62 0.65 

Max 3.90 0.97 

8. Conclusion 

In this study we presented modification and 
parallelization of the ABC algorithm and 
application to unconstrained numerical 
functions. We used multiple population based 
model where whole colony is divided into four 
sub-colonies that were running serial version 
of the ABC with different random seeds. 
Those sub-colonies were called swarms. 
Results were exchanged between swarms 
periodically. We also introduced elitism, a 
well-known concept from genetic algorithms. 
By using elitism, the loss of good solutions 
was prevented. In our approach the count of 
unsuccessful modifications for the best 
solution in each sub-colony was decreased by 
one at the end of each cycle. The best 
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solutions were never replaced by randomly 
chosen ones in the scout bee phase.  

The proposed model was compared against 
Karaboga and Akay’s original ABC algorithm 
[16] and tested on extensive set of 50 
benchmark functions, but results for only 12 
functions where there are differences are 
reported. 30 independent runs were conducted 
with different random seeds. We compared 
mean values, standard deviation and standard 
error of means. Our proposed MS-ABC always 
reached better results for means, while original 
ABC twice obtained better results for standard 
deviation and standard error of means. MS-
ABC reached two more know optimums than 
the original ABC. With average speedup of 
3.36 and average parallel efficiency of 0.84, 
MS-ABC reduced execution times 
significantly. Karaboga and Akay in [16] 
favourably compared the original ABC 
algorithm to genetic algorithm, particle swarm 
optimization algorithm, differential evolution 
algorithm and evolution strategies. Since our 
proposed MS-ABC algorithm improves results 
of the original ABC it is also indirectly 
favourably compared to the mentioned state-of-
the-art nondeterministic optimization 
metaheuristics. Future work will extend 
parallelization method to constrained functions 
and try different parallelization strategies 
adjusted for CUDA implementation on GPU. 
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