
Studies in Informatics and Control, Vol. 23, No. 1, March 2014 http://www.sic.ici.ro 117

1. Introduction

Swarm intelligence algorithms became very
popular in the past 20 years for efficiently
finding suboptimal solutions to intractable
optimization problems. Swarm intelligence is
the collective behaviour of decentralized, self-
organized systems, natural or artificial. Swarm
is defined as any loosely structured collection
of agents that interact among each other.
Swarm intelligence algorithms are trying to
model social behaviour of real life agents such
as viruses, birds, fish, ants, honeybees etc.
Among the oldest swarm intelligence algorithm
is the Ant Colony Optimization (ACO) inspired
by behaviour of ants in the colony that was
proposed by Dorigo [1] and is still being
investigated and improved [2], [3], [4]. Also
very successful and very well researched
among older algorithms is Particle Swarm
Optimization (PSO) that simulates social
behaviour of flock of birds or school of fish.
PSO was a start-up point for honey bee based
optimization algorithms where Artificial Bee
Colony (ABC) introduced by Karaboga [5] is a
relatively new, but very successful [6], [7]
optimization metaheuristics. Many new
algorithms are introduced regularly like Firefly
Algorithm (FA) [8], [9], Seeker Optimization
Algorithm (SOA) [10], [11] etc. as the research
area continues to be active.

We are witnessing a dramatic change in
computer architecture due to the multicore
paradigm shift and every electronic device
from cell phones to supercomputers confronts
parallelism of unprecedented scale [12]. In
general, a system of n parallel processors, each

of speed k, is less efficient than one processor
of speed n * k. However, the parallel system is
usually much cheaper to build and its’ power
consumption is significantly smaller. Problems
caused by higher clock speeds are excessive
power consumption, heat dissipation and
current leakage. Power consumption and heat
dissipation problems are critical for mobile
devices, which are getting more important
every year. To that end research in
parallelization is of great importance. Seymour
Cray used to say: “Would you rather plough a
field with two strong oxen or 1024 chicken?”,
but today’s hardware looks more like chicken.
It has increasing number of low power cores.

Swarm intelligence algorithms have excessive
potential for parallelization, either in terms of
better results, faster convergence or shorter
time for completing the run of an algorithm.
Swarm intelligence algorithms always had long
execution times since complex functions with
large number of parameters are optimized.
Every swarm unit has to evaluate objective
function multiple times, so this makes them
very appropriate for parallelization. By
dividing the population into several processing
threads, parallel implementations of population
based algorithms produce quality results in a
reasonable computational time. Since bio-
inspired algorithms are not-deterministic, it is
advisable to run them multiple times in order to
get more accurate results. Any shortening of
execution time of an algorithm that usually
takes long to execute and that should be run
multiple times, is welcome.

Algorithm can be parallelized in different
manners. Pedemonte [13] provides the

Parallelized Multiple Swarm Artificial Bee Colony
Algorithm (MS-ABC) for Global Optimization

Milos SUBOTIC, Milan TUBA

Faculty of Computer Science, Megatrend University,
29, Bulevar Umetnosti, Belgrade, 11070, Serbia,
milos.subotic@gmail.com, tuba@ieee.org

Abstract: Swarm intelligence metaheuristics have been successfully used for hard optimization problems. After the initial
introduction phase such algorithms are further improved by modifications and hybridizations. Parallelization is usually
introduced for performance improvement and better resources utilization. In this paper we present an improved
parallelized artificial bee colony (ABC) algorithm with multiple swarm inter-communication and learning that not only
significantly improves computational time, but also improves the results. Proposed algorithm was tested on large set of
standard benchmark functions and it outperformed the state-of-art ABC algorithm.

Keywords: Artificial bee colony, Optimization metaheuristics, Swarm intelligence, Parallelized algorithms, Nature
inspired algorithms.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 1, March 2014 118

following taxonomy for parallel ant colony
optimization (Table 1).

Table 1. Parallelization approaches taxonomy

Parallel approach

no.
colonies

One Many

cooperation no yes no yes

model
master
slave

cellular
parallel

independent
runs

multi-
colony

Very similar taxonomy can be applied to all
population based heuristics. Speeding up the
search is not the only incentive for
parallelization of those algorithms;
parallelization also provides a new search form
often exceeding result quality of serial
implementation of the same algorithm.
Basically, approaches with built-in cooperation
are aiming at better quality of results, while
approaches without cooperation are aiming at
shorter execution time of an algorithm.

Level of granularity can vary from finer grained
parallelization such as the one where every agent
has its dedicated thread, up to a very course,
where whole population is divided into just few
threads. Too fine grained implementation has
one major disadvantage. There is a rather small
portion of work for each agent, so extensive use
of CPU time for creating threads and their
synchronizations exceeds the benefits of parallel
execution of the algorithm.

Master-slave models have one central process
(master) that controls and delegates tasks to
several other processes (slaves). Complexity of
the tasks depends on the granularity of an
approach, and can vary from evaluation of
objective function and constraints to applying
algorithm to the part of search space.

Historically, cellular models were initially
designed for massively parallel computers and
only latter, with popularization of multicore
devices, adapted for execution on those devices.
Cellular model has a very fine granularity;
usually one population unit is assigned to one
execution thread. In order to avoid high excess
in communications and synchronization, all
interaction between individual population units
happens between neighbours.

Parallel independent runs approach is trying to
speed up multiple execution of an algorithm. In
this approach, there is no collaboration or
communication between colonies. In
independent parallel run approach, every run of
an algorithm is independent thread, so in
multicore environment, algorithm is running
almost n times faster where n is the number of
cores. This approach has no influence on the
quality of results. There is no communication
between runs in this method of implementation.

Multi-colony approach is much different from
previous approaches. Execution time reduction
is not the aim of this approach, although it can
occur. Main goal is to improve quality of the
results. In this approach, every colony has
dedicated process. Multiple processes are
running same serial version of the algorithm at
the same time and at some point,
communication among colonies occurs.
Depending on the migration policy, colonies
exchange some of the results (best, worst,
random or combination), and then continue
with algorithm execution containing results
from other colonies. It has been shown that n
colonies with k agents, with different random
seeds for each colony, produce better results
than one population that has n x k agents. We
can observe synergetic effect in this way.

With growing popularity of multi-core
computers, many of the population-based
algorithm ware parallelized like Ant Colony
Optimization [14], [15], [16], Particle Swarm
Optimization [17], [18], [19], and Differential
Evolution. There are several papers on
parallelization of Artificial Bee Colony
algorithm, some of which aimed on shortening
execution times [20], [21] while others showed
application of parallelized ABC algorithm [22].
Researchers in [23], [24] used multi colony
model to obtain better quality of results. The
latest analysis of coarse-graded parallelized
ABC algorithm is [25].

2. Original ABC

Original Artificial Bee Colony algorithm is a
relatively new metaheuristic optimization
technique inspired by foraging behaviour of
honey bees. Possible solutions are represented
not by individual bees but by food sources and
that is one of the key features of the ABC
algorithm. Nectar amount of the food source
stands for quality of solution and it is

Studies in Informatics and Control, Vol. 23, No. 1, March 2014 http://www.sic.ici.ro 119

represented by fitness value of the objective
function. There are three kinds of bees in the
algorithm; employed bees, onlooker bees and
scout bees. Employed bees and onlookers are
in charge of exploitation process, while scout
bees conduct exploration phase. Colony
contains equal number of employed and
onlooker bees and that number is equal to the
number of food sources. One employed bee is
attached to every food source. Employed bees
search for food around their food source and
they share information about richness of their
food source with onlooker bees through wiggle
dance. Based on that information, onlooker
bees increase search around good food sources.
Occasionally, food source become depleted and
then employed bee abandons it and converts to
scout bee. Scout bees randomly search for new
food sources. Like other population inspired
algorithms, ABC is iteration based algorithm
and search process occurs through numerous
iterations. Phases of each iteration for
optimization of continuous unconstrained
functions are presented through short pseudo
code given below.

3. MS-ABC (Our Modification)

Population-based algorithms are fairly easy for
parallelization; Artificial Bee Colony is not an
exception. Considering this, the aim of the work
presented herein was to examine implementation
of parallelization on the ABC algorithm for
unconstrained optimization problems.

There are few issues like granularity of
parallelization, communication pattern and
exchange policy that must be resolved when
population-based algorithm is parallelized.

Granularity of parallelization is the issue with
the most significant impact, both on quality of
the results and computational performance of
the parallelized algorithm. Granularity can
vary from very fine grained, where one unit is
attached to one execution process, up to very

coarse grained, where whole population is
divided into few sub colonies, and each is
bound to one execution process. Fine grained
parallelization is mostly used when objective
function is very complicated and/or when
algorithm is implemented on slow execution
cores like ones in GPU. There is significant
computational overhead if fine grained
parallelization model is implemented for
simpler objective functions and when modern
CPU cores are used. Since modern processors
are very fast, only small amount of
computational time is used for algorithm
calculations, and in the case of not so
complicated evaluation function, small
amount is also used for calculating evaluation
function. Hence more work is spent on
creating and synchronizing large number of
threads than on the algorithm and objective
function calculation. On the other hand,
modern GPUs have great number of slow
cores, which makes them very suitable for fine
grained parallelization.

In this study, very course-grained
parallelization is used and it is implemented on
the colony level. This parallelization model is
also known as island based model. Main
parallelization method used in this study was to
divide main population into N subpopulations
and to run serial version of the algorithm
simultaneously. In this paper the sub-colonies
(sub-populations) are called swarms. Hence
this modification is called the multiple swarm
artificial bee colony algorithm (MS-ABC).

There are two main communication types,
synchronous and asynchronous. Synchronous
parallelization is based on the number of
execution steps, which means that at certain
point of an algorithm each process is waiting
until all other processes finish previous tasks
and come to the same point in an algorithm and
then all processes can together continue with
execution. Asynchronous parallelization does
not need to wait until all processes synchronize.
In this study, synchronous communication
model is used.

Migration policy represents the way solutions
migrate among swarms. Quality of obtained
results can show significant fluctuation due to
chosen exchange (migration) policy. Migration
policy based on exchanging best solutions is
used in this study.

MS-ABC starts by dividing whole population
into swarms of equal size. All swarms execute

initialize the population of solutions
evaluate the population
while maxCycle is not reached:
 produce new solutions for the employed bees
 apply the greedy selection process
 calculate the probability values
 produce the new solutions for the onlookers
 apply the greedy selection process
 send scout bees
 memorize the best solution achieved so far
end while

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 1, March 2014 120

serial version of the original ABC algorithm.
Swarms start search process with different
random seeds in order to cover wider range of
search space, increasing a chance to find global
optimum and to avoid being trapped in local
minimum. These subpopulations exchange
solutions among themselves. There are
different techniques for solution exchange, but
the most common one is to exchange best
solutions so that every subpopulation has best
solution found in the whole population.

In MS-ABC the following migration policy
was used: solutions from all swarms were
collected, and then n best solutions from all
swarms were chosen; in the final phase, n
randomly chosen solutions in each swarm were
replaced with n best solutions from all swarms.
Our experiments showed that the best results
were obtained when n was equal to 5. In this
way, after every solution exchange, all swarms
have the best solutions in their solution
matrixes, and they could continue their search
from that point.

Beside parallelization, a well know concept
from Genetic Algorithms called elitism is
introduced. Original ABC uses limit, a
parameter that prevents replacing solution
which is still improving with random solution
in the scout bee phase. This means that if
some solution is not improved for certain
number of steps, and this number is called
limit, it will be replaced with a random one.
This prevents exploitation equation from
being performed on solution that cannot be
improved further because it is trapped in local
minimum or already is an optimum solution
for the problem. However, this also means that
currently best solution could be replaced if it
is not improved more than limit times, i.e. if
algorithm needs more cycles to try to improve
the solution in exploitation phase, currently
best solution will be destroyed by being
replaced with a random one.

In this study, elitism was used to prevent this
from happening. Elitism is a well-known
technique widely used in Genetic Algorithms.
It is used to preserve best genes and ensures
their presence in the next generation. In GA,
best individuals are copied to the next
generation and the rest of population is filled
by individuals created in process of mutation
and crossover. In MS-ABC elitism ensures the
presence of the best solutions in the next cycle
by preventing the best solution to reach limit

and to be replaced with random solutions. This
means that best solutions can be improved
more times than other solutions. At the end of
each cycle max_trial parameter for EF best
solutions is decreased by one, where EF is
elitism factor. This would be dangerous in the
original ABC, since there is a possibility for
colony to be stacked into local optimum, but in
MS-ABC, chances for this to happen are
smaller. Other swarms prevent colony to get
stacked into local optimum by exchanging
solutions among them. If one swarm is trapped
in local minimum, there is no need to further
improve best solutions from that swarm and
solutions from other swarms will replace them
next time when communication between
swarms occurs.

Original ABC algorithm has very few control
parameters: colony size, total number of
iterations and limit. MS-ABC keeps all these
parameters and adds few more. MS-ABC has
two important parameters regarding swarm
communication. The first one is the First
Exchange Cycle (FEC). FEC denotes how
many cycles of the algorithm will pass until the
first communication among swarms occurs.
Another important parameter is the Exchange
Cycle Rate (ECR) which determines how many
cycles are completed between two
communications among swarms.

If FEC is too small, swarms do not have time to
find useful solutions, and computational time
will be used for exchanging poor quality
solutions. If ECR is too small, i.e. if swarms
communicate too often, the risk of premature
convergence increases. On the other hand, if
these two parameters are too big, the algorithm
loses the power of searching multiple spaces
and becomes similar to multiple independent
runs approach. Consequently, there should be a
good balance between those two demands.

Pseudo code for MS-ABC algorithm is:

initialize two swarms with different random seeds
for every swarm:
 evaluate population
 while MFEC not reached:
 send employers
 calculate probabilities
 send onlookers
 send scouts
 reset trial for best bees
 if (cn > FEC and cn mod ECR = 0) exchange ();
 memorize Best
 end while
end for
Choose the best solution from swarms

Studies in Informatics and Control, Vol. 23, No. 1, March 2014 http://www.sic.ici.ro 121

4. Benchmark Functions

Original ABC algorithm [16] was tested on
extensive set of 50 benchmark functions. We
tested our proposed MS-ABC algorithm on the
same set, but we report here the results for 12

benchmark functions where there is some
difference. For other functions both algorithms
reached known global optimum. Selected
benchmark functions with parameter range,
dimensionality, characteristics and formulation
are given in the Table 2 below.

Table 2. Benchmark functions

No Range D C Function Formulation

5 [-1.28, 1.28] 30 US Quartic




n

i
i randomixxf

1

4)1,0[)(

9 [-10, 10] 4 UN Colville        
      118.19421.10

4
2
3

90312
2
1

100)(

42

22

2222

11

11






 






xxxx

xxxxxxxf

12 [-5, 10] 10 UN Zakharov





 





 









n

i
i

n

i
ixf ixixx

n

i
i

11
)(5.05.0

4

1

2

2

13 [-4, 5] 24 UN Powell    
   xxxx

xxxx

iiii

iiiixf
k

n

i

434101424

41452434)(

44

1

22

10



 






16 [-30, 30] 30 UN Rosenbrock   







 

1

1

22

1)(2
1

100)(
n

i
xxx iii

xf

33 [-5, 5] 4 MN Kowalik  
 














11

1

2

43
2

2
2

1)(
i xxbb

xbbx
a

ii

ii
ixf

37 [-D, D] 4 MN Perm
 

































n

k

n

i

i
k

kxf
i

xi
1

2

1
)(1

38 [0, D] 4 MN PowerSum
 



 












n

k
bx k

n

i

k
ixf

1

2

1
)(

46 [0, 10] 5 MN Langerman5       
  

























m

i

n

j

n

j
i axaxc ijjijjxf

1 1

2

1

2

cos
1

exp)(


47 [0, 10] 10 MN Langerman10       
 
























m

i

n

j

n

j
i axaxc ijjijjxf

1 1

2

1

2

cos
1

exp)(


49 [-π, π] 5 MN FletcherPowell5   



n

i
BA iixf

1

2
)(

 



n

j
jijjiji baA

1
cossin 

 



n

j
jijjiji xbxaB

1
cossin

50 [-π, π] 10 MN FletcherPowell10   



n

i
BA iixf

1

2
)(

 



n

j
jijjiji baA

1
cossin 

 



n

j
jijjiji xbxaB

1
cossin

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 1, March 2014 122

5. Settings

In this paper our proposed Multiple Swarm
Artificial Bee Colony Algorithm was compared
against the original Artificial Bee Colony
Algorithm presented by Karaboga and Akay
[16]. Control parameters used in original ABC
algorithm are the colony size, maximum
number of cycles and limit. In Karaboga’s
paper, maximum number of objective function
evaluations was set to 500,000. In order to
make clear comparison between ABC and MS-
ABC, control parameters that are specific for
MS-ABC, like number of swarms and swarm
size had to be set within this limitation. In [16]
colony size was set to 50, and since there is an
equal number of employed and onlooker bees
in the colony, colony size has to be even
number. In Karaboga’s paper 10,000 cycles
was used. If we used the same colony size as
Karaboga, by dividing colony into two swarms,
each swarm should have 25 bees, and since it
has to be even number, size of 24 bees could be
used. When colony is divided into three
swarms, colony size of 16 could be used. For
four swarms, population of each swarm should
be 12, but this number is too small for finding
any meaningful results. Our experimental
studies showed that within these limitations,
best results are obtained with four swarms
when each of them has a population of 16 bees.
In order to use the same number evaluations,
we decreased the number of cycles to 7,812. In
this way Karaboga had 50 bees times 10,000
cycles, which is equal to 500,000 evaluations,
and we have 4 swarms x 16 bees x 7,812
cycles, which is equal to 499,968 evaluation
calls and very close to 500,000 function
evaluation calls used by Karaboga.

MS-ABC and the original ABC have one more
parameter used in both algorithms. It is called
limit. Limit denotes maximum number of
cycles used for improving food source. After
the limit is reached, food source is abandoned.
Then scout bee is sent to replace that food
source. Both algorithm use Eq. (1) for
calculating the limit.

limit = SN * D (1)

where D is the dimension of the problem and
SN is the number of food sources. There are
three additional parameters that have to be set
for MS-ABC. First and the most important one
is FEC and it is calculated according to Eq. (2).

FEC = MCN * FF (2)

where MCN is maximum cycle number and FF
is FEC factor. Our experiments showed that
best results were obtained when FF is around
0.4, so FEC is around 40% of the total number
of cycles. In this study FEC is set to 3,000.
Another important parameter is ECR, exchange
cycle rate, which shows how many cycles pass
between two communications among swarms.
According to our experiments for best results
ECR should be 150. When elitism is used, there
is a question for how many solutions trial
numbers should be decreased. Our experiments
show that quality of results is the highest when
EF is 1. This means that in every cycle for one
best solution of each swarm, trial number
instead to be increased for one, is actually
decreased by one. In this way, good solutions
are saved from being abandoned in the scout
bee phase. By using elitism, we are increasing
the number of tries for good solutions.

6. Results

30 independent runs with different pseudo
random seeds were performed for each of the
12 test problems. Table 3 shows optimization
results for all test functions. Better results are
printed bold. Mean value, standard deviation
and standard error for mean values (SEM) were
compared. Mean values were used to illustrate
the ability of an algorithm to reach quality
results while standard deviation and standard
error of mean values showed consistency and
robustness of an algorithm.

Quality of the obtained results will be analysed
first. For 12 test functions MS-ABC always
obtained better solution. Out of these 12
functions, MS-ABC reaches optimum for 2
functions; Langerman5 function and Zakharov
function. For 10 functions neither of algorithms
managed to reach optimum solution, but MS-
ABC showed better results than ABC. This
illustrates the ability of MS-ABC to outperform
ABC regardless of the type of objective
function. Functions 9, 12, 37, 46 and 49
especially showed the supremacy compared to
the ABC.

If standard deviation and standard error of
means are analysed, we can see that MS-ABC
is more consistent and robust than the original
ABC. MS-ABC reaches better values for 10
functions, while ABC got better results for
Rosenbrock and Langerman10 functions.

Studies in Informatics and Control, Vol. 23, No. 1, March 2014 http://www.sic.ici.ro 123

Rosenbrock function is very specific with lots
of local minima and it is easy to be trapped in
one of them. MS-ABC shows greater ability to
find optimum solution, but not every time. For
Langerman10 function, MS-ABC shows much
better performance regarding the quality of
results, and a poorer performance regarding
standard deviation and standard error of means.

The last column of the Table 3 presents results
of an additional experiment. Instead of
comparing ABC and MS-ABC algorithms by
the number of function evaluation calls, they
were compared by the time needed for
algorithm completion. We wanted to test what
quality of results MS-ABC can obtain with the
same amount of time that ABC needed for

Table 3. Results

No Objective function Stat Opt ABC MSABC
MSABC same

execution times

5 Quatric Mean 0.000 0.0300166 0.0179069 0.0049854

St dev 0.0048660 0.0042061 0.0013943

SEM 0.0008880 0.0007679 0.0002546

9 Colville Mean 0.000 0.0929674 0.0105299 0.0048765

St dev 0.0662770 0.0143852 0.0054948

SEM 0.0121000 0.0026264 0.0010032

12 Zakharov Mean 0.000 0.0002476 0.0000000 0.0000000

St dev 0.0001830 0.0000000 0.0000000

SEM 0.0000334 0.0000000 0.0000000

13 Powell Mean 0.000 0.0031344 0.0020674 0.0007320

St dev 0.0005030 0.0003912 0.0000862

SEM 0.0000918 0.0000714 0.0000157

16 Rosenbrock Mean 0.000 0.0887707 0.0678281 0.0079711

St dev 0.0773900 0.1134585 0.0137600

SEM 0.0141290 0.0207146 0.0025122

33 Kowalik Mean 0.000 0.0004266 0.0003728 0.0003099

St dev 0.0000604 0.0000589 0.0000065

SEM 0.0000110 0.0000108 0.0000012

37 Perm Mean 0.000 0.0411052 0.0059271 0.0030572

St dev 0.0230560 0.0059858 0.0024867

SEM 0.0042090 0.0010928 0.0004540

38 PowerSum Mean 0.000 0.0029468 0.0013247 0.0003943

St dev 0.0022890 0.0013684 0.0004682

SEM 0.0004180 0.0002498 0.0000855

46 Langerman5 Mean -1.500 -0.9381500 -1.4999438 -1.4999438

St dev 0.0002080 0.0000000 0.0000000

SEM 0.0000380 0.0000000 0.0000000

47 Langerman10 Mean NA -0.4460925 -0.8568220 -0.9424212

St dev 0.1339580 0.1768402 0.2537003

SEM 0.0244570 0.0322865 0.0463191

49 FletcherPowell5 Mean 0.000 0.1735495 0.0013390 0.0000151

St dev 0.0681750 0.0042765 0.0000439

SEM 0.0124470 0.0007808 0.0000080

50 FletcherPowell10 Mean 0.000 8.2334401 3.4628974 0.1297846

St dev 8.0927420 4.0805144 0.4503950

SEM 1.4775260 0.7449966 0.0822305

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 1, March 2014 124

finishing algorithm execution. Number of
swarms was set to 4, FEC to 4,000, ECR to 200
and elitism factor to 1. Algorithm was
performing function optimization until time for
serial version of the algorithm was reached.
Results are presented in the last column of the
Table 3. Quality of the results was further
increased by running MS-ABC for as long as
ABC needed for finishing and the difference
between quality of results reached by MS-ABC
and ABC is even more obvious.
FletcherPowell5 and FletcherPowell10 show
the most significant improvement of results.
Consistency and robustness increase even
more. In terms of standard deviation and
standard error of means, MS-ABC outperforms
the original ABC significantly in every case
except Langerman10 function.

7. Parallel Performance Evaluation

Parallelization of an algorithm is usually
judged not only by the quality of results but by
terms like speedup and parallel efficiency.
Speedup shows ratio between serial and
parallel implementations of an algorithm:

Speedup = t1 / tp (3)

where t1 is the execution time of the serial
version of an algorithm and tp is the execution
time of parallel algorithm using p processors/
cores. Since performance of non-deterministic
algorithms was analysed here, it was not
enough to run algorithm just once and to
measure execution time. Instead, we measured
execution time for finishing 30 runs of the
algorithm. Parallel efficiency shows the usage
of available cores/processors. Eq. (4) shows the
expression for calculating parallel efficiency:

Parallel Efficiency = Speedup / p (4)

where p is the number of processors/cores. The
CPU we used for testing had 4 physical and 8
logical cores, but since four swarms were used,
we disabled HyperThreading, and we consider
that p is equal to 4. Results presented in Tables
4 and 5 show that MS-ABC has a very good
parallel efficiency, and significant speedup can
be reached, although it is a sub-linear speed up.

We can see that speedup is 3.36 on average and
it varies from 2.62 to 3.90. Parallel efficiency
has a range from 0.65 to 0.97, and average
parallel efficiency is 0.84. Although the goal of
this paper was not to decrease execution times
of the algorithm, MS-ABC shows very good

speedup and parallel efficiency. Speedups and
parallel efficiencies for functions which are
simpler for calculation and/or functions with
fewer numbers of parameters have lower
values. This is due to the fact that greatest
speed improvements lie with parallelization of
function evaluation.

Table 4. Execution times

ABC

Exe. time
(s)

MSABC
Exe. time

(s)
Speedup

Parallel
efficiency

5 71.19 18.50 3.85 0.96

9 3.45 1.14 3.03 0.76

12 4.81 1.29 3.74 0.93

13 31.55 8.20 3.85 0.96

16 15.63 4.39 3.56 0.89

33 4.44 1.41 3.15 0.79

37 37.06 9.74 3.80 0.95

38 22.29 5.98 3.73 0.93

46 86.79 22.36 3.88 0.97

47 114.10 31.67 3.60 0.90

49 53.71 15.18 3.54 0.88

50 183.85 49.14 3.74 0.94

Table 5. Speedup and parallel efficiency

Value Speedup Parallel efficiency

Average 3.36 0.84

Min 2.62 0.65

Max 3.90 0.97

8. Conclusion

In this study we presented modification and
parallelization of the ABC algorithm and
application to unconstrained numerical
functions. We used multiple population based
model where whole colony is divided into four
sub-colonies that were running serial version
of the ABC with different random seeds.
Those sub-colonies were called swarms.
Results were exchanged between swarms
periodically. We also introduced elitism, a
well-known concept from genetic algorithms.
By using elitism, the loss of good solutions
was prevented. In our approach the count of
unsuccessful modifications for the best
solution in each sub-colony was decreased by
one at the end of each cycle. The best

Studies in Informatics and Control, Vol. 23, No. 1, March 2014 http://www.sic.ici.ro 125

solutions were never replaced by randomly
chosen ones in the scout bee phase.

The proposed model was compared against
Karaboga and Akay’s original ABC algorithm
[16] and tested on extensive set of 50
benchmark functions, but results for only 12
functions where there are differences are
reported. 30 independent runs were conducted
with different random seeds. We compared
mean values, standard deviation and standard
error of means. Our proposed MS-ABC always
reached better results for means, while original
ABC twice obtained better results for standard
deviation and standard error of means. MS-
ABC reached two more know optimums than
the original ABC. With average speedup of
3.36 and average parallel efficiency of 0.84,
MS-ABC reduced execution times
significantly. Karaboga and Akay in [16]
favourably compared the original ABC
algorithm to genetic algorithm, particle swarm
optimization algorithm, differential evolution
algorithm and evolution strategies. Since our
proposed MS-ABC algorithm improves results
of the original ABC it is also indirectly
favourably compared to the mentioned state-of-
the-art nondeterministic optimization
metaheuristics. Future work will extend
parallelization method to constrained functions
and try different parallelization strategies
adjusted for CUDA implementation on GPU.

Acknowledgement

This research is supported by Ministry of
Education and Science of Republic of Serbia,
Grant No. III-44006

REFERENCES

1. DORIGO, M., V. MANIEZZO, A.
COLORNI, Ant System: Optimization by
a Colony of Cooperating Agents, IEEE
Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 26,
no. 1, 1996, pp. 29-41.

2. JOVANOVIC, R., M. TUBA, An Ant
Colony Optimization Algorithm with
Improved Pheromone Correction
Strategy for the Minimum Weight
Vertex Cover Problem, Applied Soft
Computing, vol. 11, no. 8, 2011,
pp. 5360-5366.

3. JOVANOVIC, R., M. TUBA, Ant Colony
Optimization Algorithm with
Pheromone Correction Strategy for the
Minimum Connected Dominating Set
Problem, Computer Science and
Information Systems, vol. 10, no. 1, 2013,
pp. 133-149.

4. TUBA, M., R. JOVANOVIC, Improved
Ant Colony Optimization Algorithm
with Pheromone Correction Strategy for
the Traveling Salesman Problem,
International Journal of Computers,
Communications and Control, vol. 8, no. 3,
2013, pp. 477-485.

5. KARABOGA, D., An Idea Based on Honey
Bee Swarm for Numerical Optimization,
Erciyes University, Kayseri, Turkey,
Technical Report-TR06, 2005, p. 10.

6. BRAJEVIC, I., M. TUBA, An Upgraded
Artificial Bee Colony (ABC) Algorithm
for Constrained Optimization Problems,
Journal of Intelligent Manufacturing, vol.
24, no. 4, 2013, pp. 729-740.

7. BACANIN, N., M. TUBA, Artificial Bee
Colony (ABC) Algorithm for
Constrained Optimization Improved
with Genetic Operators, Studies in
Informatics and Control, vol. 21, no. 2,
2012, pp. 137-146.

8. YANG, X.-S., Firefly Algorithms for
Multimodal Optimization, Proceedings of
the 5th international conference on
Stochastic algorithms: foundations and
applications, 2009, pp. 169-178.

9. TUBA, M., N. BACANIN, B. PELEVIC,
Framework for Constrained Portfolio
Selection by the Firefly Algorithm,
International Journal of Mathematical
Models and Methods in Applied Sciences,
vol. 7, no. 10, 2013, pp. 888-896.

10. DAI, C., W. CHEN, Y. SONG, Y. ZHU,
Seeker Optimization Algorithm: A Novel
Stochastic Search Algorithm for Global
Numerical Optimization, Journal of
Systems Engineering and Electronics, vol.
21, no. 2, 2010, pp. 300-311.

11. TUBA, M., I. BRAJEVIC, R.
JOVANOVIC, Hybrid Seeker
Optimization Algorithm for Global
Optimization, Applied Mathematics and
Information Sciences, vol. 7, no. 3, 2013,
pp. 867-875.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 23, No. 1, March 2014 126

12. DEMMEL, J., Optimization of sparse
matrix–vector multiplication on
emerging multicore platforms, Parallel
Computing, vol. 35, no. 3, 2009, pp. 178-
194.

13. PEDEMONTE, M., S. NESMACHNOW,
H. CANCELA, A Survey on Parallel Ant
Colony Optimization, Applied Soft
Comp., vol. 11(8), 2011, pp. 5181-5197.

14. NICOARA, E. S., F. G. FILIP, N.
PARASCHIV, Simulation-based
Optimization using Genetic Algorithms
for Multi-objective Flexible JSSP,
Studies in Informatics and Control, vol. 20,
no. 4, 2011, pp. 333-344.

15. SECUI, C. D., S. DZITAC, G. V.
BENDEA, I. DZITAC, An ACO
Algorithm for Optimal Capacitor Banks
Placement in Power Distribution
Networks, Studies in Informatics and
Control, vol. 18, no. 4, 2009, pp. 305-314.

16. KARABOGA, D., B. AKAY, A
Comparative Study of Artificial Bee
Colony Algorithm, Applied Mathematics
and Computation, vol. 214, no. 1, 2009,
pp. 108-132.

17. KALIVARAPU, V., E. WINER,
Asynchronous Parallelization of Particle
Swarm Optimization through Digital
Pheromone Sharing, Structural and
Multidisciplinary Optimization, vol. 39, no.
3, 2009, pp. 263-281.

18. FARMAHINI-FARAHANI, A., S.
VAKILI, S. M. FAKHRAIE, S. SAFARI,
C. LUCAS, Parallel Scalable Hardware
Implementation of Asynchronous
Discrete Particle Swarm Optimization,
Eng. Applications of Artificial Intelligence,
vol. 23, no. 2, 2010, pp. 177-187.

19. TU, K.-Y., LIANG Z.-C., Parallel
Computation Models of Particle Swarm
Optimization Implemented by Multiple
Threads, Expert Systems with
Applications, vol. 38, no. 5, 2011,
pp. 5858-5866.

20. PARPINELLI, R., C. BENITEZ, H.
LOPES, Parallel Approaches for the
Artificial Bee Colony Algorithm,
Handbook of Swarm Intelligence, Springer
series Adaptation, Learning, and
Optimization, vol. 8, 2010, pp. 329-345.

21. BASTURK, A., R. AKAY, Parallel
Implementation of Synchronous Type
Artificial Bee Colony Algorithm for
Global Optimization, Journal of
Optimization Theory and Applications, vol.
155, no. 3, 2012, pp. 1095-1104.

22. VARGAS BENÍTEZ, C., H. LOPES,
Parallel Artificial Bee Colony Algorithm
Approaches for Protein Structure
Prediction Using the 3DHP-SC Model,
Intelligent Distributed Computing IV, vol.
315, 2010, pp. 255-264.

23. RUHAI, L., Parallelized Artificial Bee
Colony with Ripple-communication
Strategy, International Conference on
Genetic and Evolutionary Computing,
2010, pp. 350-353.

24. CHRISTOPHER COLUMBUS, C.,
SIMON S. P., Profit based Unit
Commitment: A Parallel ABC Approach
using a Workstation Cluster, Computers
and Electrical Engineering, vol. 38, no. 3,
2012, pp. 724-745.

25. BASTURK, A., AKAY, R., Performance
Analysis of the Coarse-Grained Parallel
Model of the Artificial Bee Colony
Algorithm, Information Sciences, vol. 253,
2013, pp. 34-55.

