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1. Introduction

The type-1 (T1) fuzzy set (FS) can model a system 
based on a single expert’s knowledge. With the 
type-2 (T2) fuzzy set, introduced by Zadeh 
(1975) and pioneered by Mendel & John (2002), 
it is possible to accommodate the knowledge 
of several experts. In type-2 fuzzy systems, the 
membership functions (MFs) are themselves 
fuzzy instead of crisp as in type-1 fuzzy sets. 
Although T2 fuzzy sets possess better handling 
capabilities for uncertainties and imprecision, 
their real-world applications require complex 
practical considerations (Wu & Mendel, 2019). As 
an intermediate solution, the more practical model 
for handling uncertainties is the interval type-2 
(IT2) fuzzy set. In interval type-2 fuzzy sets, the 
membership is an interval instead of T1 fuzzy sets 
as in traditional generalized type-2 fuzzy sets. In 
the recent past, the modeling of control systems 
using IT2 FS has attracted increased interest from 
the research community.

Liang & Mendel (2000) described the theory and 
the design steps for an interval type-2 fuzzy logic 
system. Several researches and applications for 
the IT2 controller were followed thereafter. Wu 
& Tan (2004) proposed a singleton interval type-2 
fuzzy controller to design the liquid-level control. 
An interval type-2 fuzzy sliding mode controller 
(IT2FSMC) is proposed in (Hsiao et al., 2008). 
IT2FSMC is a combination of the interval type-
2 fuzzy logic control (IT2FLC) and the sliding-
mode control (SMC) which shares the benefits of 

these two methods.  IT2FSMC is used in many 
control applications, for example, to control a 
3-DOF helicopter (Zeghlache et al., 2017), to 
control a robot manipulator (Nafia et al., 2018) 
and so on. Using a genetic algorithm, an optimal 
type-2 fuzzy controller is implemented for the 
velocity regulation of a DC motor in (Maldonado 
& Castillo, 2012). Behera et al. (2017) have 
applied an interval type-2 controller in the 
automatic generation control of a restructured 
power system.  Control of a one-wheel vehicle 
in the real world has been developed using an 
adaptive interval type-2 fuzzy controller in (Chiu 
& Hung, 2020). Zakovorotniy & Kharchenko 
(2021) designed an optimal controller associated 
with speed control using the interval type-2 fuzzy 
set. The interval type-2 controller has also been 
designed based on the variations of the footprint 
of uncertainty. Zhou et al. (2021) have analyzed 
the variation trend of variable gains, in relation to 
the increase of footprint of uncertainty. Şahin & 
Ulu (2023) have proposed an IT2 controller with 
a dynamic footprint of uncertainty. The dynamic 
footprint of uncertainty has been defined as a 
function of system error. In (Şahin & Ulu, 2023), 
the IT2 controller with the dynamic footprint of 
uncertainty has been applied for controlling the 
altitude of a quadcopter.

One of the important tasks of an interval 
type-2 fuzzy set is to generate multiple type-
1 fuzzy sets and then generate the upper and 
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lower membership functions from these type-
1 membership functions by using some fuzzy 
operations. Similarly, an interval type-2 fuzzy 
logic controller should incorporate multiple type-
1 fuzzy control strategies for the construction 
of the upper and lower membership functions. 
However, most of the IT2 FLC modeling found 
in literature either uses standard symmetrical 
equally spaced membership functions or the 
parameters of upper and lower membership 
functions are obtained by applying some 
optimization techniques. Not much attention 
is given to generating the primary membership 
functions to formulate the upper and lower 
membership functions. This paper addresses 
the above issue, and proposes a systematic 
method for generating two sets of membership 
functions for the interval type-2 controller. 
First, two primary membership functions are 
generated by using the clustering techniques 
and the differential evolution (Storn, 2008; Das 
& Suganthan, 2011) algorithm. Then, the upper 
and lower membership functions are generated 
by taking the fuzzy union and the fuzzy 
intersection of these two primary membership 
functions. This work addresses another challenge 
for interval type-2 controller, i.e., the number of 
rules. The proposed controller vividly reduces 
the required number of rules, thereby easing 
the computation. An armature-controlled DC 
motor is used to check the performance of the 
proposed controller. Noise and disturbance are 
added during simulation to check the robustness 
of the proposed controller. The remainder of this 
paper is structured as follows. Section 2 outlines 
the interval type-2 fuzzy sets and interval type-2 
fuzzy logic controllers. Section 3 illustrates the 
proposed fuzzy controller.  Section 4 provides 
the description of the applied process. The 
simulation results are presented and discussed 
in section 5. Section 6 includes the conclusion of 
this paper and refers to its possible future scope.

2. Preliminaries

2.1 Interval Type -2 Fuzzy Set 

Unlike type-1 fuzzy sets, in IT2 FS (Mendel & 
Wu, 2010), each membership function consists 
of two MFs, i.e., upper membership function 
(UMF) and lower membership function (LMF). 
The area in the interval between the upper MF 
and the lower MF is called footprint of uncertainty 

(FOU). The FOU enables IT2 FS to represent the 
uncertainty in decision making. An example of 
an IT2 FS is shown in Figure 1 to indicate the 
different components of an IT2 FS. 

Figure 1. A schematic of an interval type-2 fuzzy set

The following definitions related to interval type-2 
FS are used throughout the paper.

Definition 1[(IT2 FS)]

A T2 FS Ã is characterized by µÃ(x,m) and 
expressed by the following equation:

( , ) / ( , )
x

Ax X m J
A x m x mµ

∈ ∈
= ∫ ∫ 



                   
(1)

Here, X is the universe of discourse of the variable 
x, (0,1)xm J∈ ⊆  is the primary membership 
value of x, and µÃ(x,m) denotes the secondary 
membership grade that is 1 for IT2 FS.

Definition 2 [(FOU)]

The FOU of Ã is defined as the union of all of its 
primary MFs, and is expressed by equation (2): 

( ) ( , );
                   where [0,1].
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Definition 3 [(Upper and lower MF)]

The upper bound of FOU(Ã) is called the UMF 
and is denoted by ( )A xµ



. Similarly, the lower 
bound of FOU(Ã) is called LMF and is expressed 
by ( )A xµ



. That is, 

( )      for     ,UMF FOU A x X= ∀ ∈

             (3)

and

( )      for      .LMF FOU A x X= ∀ ∈

          
(4)

2.2 Interval Type-2 Fuzzy  
Logic Controller

An interval type-2 fuzzy controller comprises 
four major building blocks, i.e. a fuzzifier, an 
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inference engine, a type reducer, and a defuzzifier 
(Chakraborty et al., 2015). A block diagram of 
an IT2 fuzzy logic controller (FLC) is shown in 
Figure 2.

Figure 2. Block diagram of an interval type-2 FLC

3. The Proposed Interval  
Type-2 Controller

The proposed interval type-2 fuzzy controller is 
developed in the following three stages, namely 
generation of membership functions, formation 
of a fuzzy inference engine, and defuzzification.

3.1 Generation of Membership 
Functions

The common membership functions used in FLCs 
are the Gaussian, triangular, and trapezoidal one. 
For the proposed IT2 controller, the Gaussian 
membership functions are considered for 
two reasons. First, the Gaussian membership 
function requires a lower number of parameters 
in comparison with other membership functions. 
Secondly, the proposed controller generates 
membership functions based on traditional and 
an improved fuzzy c-means clustering, and the 
shape of the Gaussian function features a higher 
suitability or proximity to the FCM-like clustering 
algorithm. Two MFs are generated for each subset 
of antecedents and the consequence. A detailed 
step-by-step description of the membership 
functions` generation is provided below.

3.1.1 Generation of Control Surface

The control surface consists of error (e), change 
of error (∆e), and control action (u). The MFs of 
e, ∆e and u are defined in the common interval of 
[-1, 1] as it is shown in Figure 3. This is one of 
the unbiased & natural ways of MF distribution.

The input space (e, ∆e) is uniformly sampled in 
1,000 points in the interval of [-1, 1].

Figure 3. Membership functions of e, ∆e and u 
with NB: negative big, NM: negative medium, NS: 
negative small, ZE: zero, PS: positive small, PM: 

positive medium, and PB: positive big

Then the respective control actions for the 
sampled input space are calculated by the modified 
version of the original MacVicar-Whelan rule base 
(MacVicar-Whelan, 1976) with the 7 linguistic 
variables listed in Table 1.

Table 1. Rule base for generating the control action

∆e/e NB NM NS ZE PS PM PB
NB NB NB NB NM NS NS ZE
NM NB NM NM NM NS ZE PS
NS NB NM NS NS ZE PS PM
ZE NB NM NS ZE PS PM PB
PS NM NS ZE PS PS PM PB
PM NS ZE PS PM PM PM PB
PB ZE PS PS PM PB PB PB

By combining, [e, ∆e] with the control action u 
obtained in Table 1, a control surface is generated 
as it is illustrated in Figure 4.

Figure 4. The generated control surface
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3.1.2 Clustering of the Control Surface

Next, the control surface is clustered into c number 
of clusters. As each process input e and ∆e can be 
divided into 3 major groups, i.e. negative, zero, 
& positive, c is selected as 3*3=9 to cover the 
control surface significantly. The control surface 
is first clustered into 9 groups by traditional fuzzy 
c-means clustering. It provides one set of means 
for the Gaussian membership functions. A second 
set of cluster centers is obtained by using a newly 
developed supervised clustering algorithm. The 
details on supervised clustering can be found in 
(Bandyopadhyay et al., 2007; Mukhopadhyay & 
Maulik, 2009). The two major steps of supervised 
clustering are to first segregate the core and 
boundary data points, and then to apply supervised 
learning in clustering. From the membership 
matrix of FCM, the membership values of the 
data points for all the clusters are found. Among 
the membership values of a data point for all the 
clusters, let us assume that the highest membership 
of a data point (xi) is represented by µhi and the 
second highest membership is denoted by µnhi, 
and the difference between these two membership 
values is represented by ∆µi. Data points with a 
higher ∆µi are assumed to be near a cluster center 
and are designated as core data points. On the 
other hand, the data points with a lower ∆µi are 
considered to be at the overlap of at least two 
clusters and are defined as boundary data points. 
The membership-related threshold for deciding if 
a data point belongs either to the core data set or to 
the boundary data set plays a significant role in the 
final cluster solution. Mallick & Mukhopadhyay 
(2018) proposed a scheme, namely Clusterwise 
mean to separate the core data points and boundary 
data points.  In Clusterwise mean, the core data 
set is formed by taking core data points from each 
cluster. Hence, the membership-related threshold is 
selected cluster-wise. In this method, the threshold 
of a cluster is the mean value of membership 
differences ∆µi for all the data points belonging to 
that cluster only, and is determined by equation (5).

1( )
j

threshold p
p Cj

j
n

µ µ
∈

∆ = ∆∑
                         

(5)

Here, Cj denotes the jth cluster, nj is the number 
of data points in jth cluster, p is the index of data 
points belonging to jth cluster, i is a set given 
by {1,2,3,…,n}, and n is the number of all data 
points. The data points with ∆µi ≥ ∆µthreshold of 
that cluster are regarded as core data. The overall 
core data set is formed by amalgamating the core 

data points coming from each cluster. After the 
segregation of core and boundary data points, 
the class labels of the boundary data points are 
predicted by a k-nn classifier based on the class 
labels of the core data points. In this paper, the 
value of k in the k-nn classifier is set to 5. The final 
cluster centers are found by averaging the data 
points belonging to that cluster. The cluster centers 
obtained by traditional FCM and by Clusterwise 
mean provide two sets of means for the primary 
Gaussian membership functions. 

3.1.3 Selection of the Standard Deviations 
of the Primary MFs

The standard deviations of the Gaussian 
membership functions are optimally selected 
by differential evolution (DE). Here, each 
chromosome consists of 27 genes (9 genes for the 
standard deviation of the e component, the next 9 
genes for the ∆e component, and the last 9 genes 
for the u component). In each run, DE optimizes 
the value of standard deviations by minimizing the 
sum of squared errors (SSE) of the data points of 
the control surface.

1
2

1
( ( ) ( ))

k

i i
i

SSE act u est u
=

= −∑
                          

(6)

Here, k1 is the number of data points, est(u) is the 
estimated control action for a population with a 
certain set of standard deviations, and act(u)is the 
output found from the control surface. The best 
solution found at the last iteration of DE is translated 
as the standard deviations of the respective Gaussian 
MFs. The pseudo-code of the differential evolution 
algorithm used here is given in Algorithm 1.

3.1.4 Formation of UMF and LMF

As the control surface is clustered into 9 groups, 
each antecedent (e, ∆e), and consequence (u) 
consist of 9 membership functions. Two sets 
of primary Gaussian MFs for the antecedents 
and the consequence are formed by considering 
cluster centers as the means, and the solution of 
differential evolution as the standard deviations. 
These two Gaussian membership functions shall 
be defined as GMF1 and GMF2. Then the upper 
membership functions (UMFs) are generated by 
using the fuzzy MAX operation over GMF1 and 
GMF2 as it is given in equation (7).

1 2max ( ( )), ( ( )) 
                         for     

i GMF GMFUMF x i x i
x X

µ µ∀=
∀ ∈      

(7)
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Algorithm 1: Pseudocode to generate standard 
deviations of the Gaussian MFs
Require: Control surface data, popsize, Maxiter, means 
of the Gaussian MFs
Ensure: Standard deviations of the Gaussian MFs

1 Randomly generate initial population  
xi,G; i =1, 2, ..., popsize

2 Evaluate cost f (xi,G) using procedure SSE
3 Find the best population pbest of the population xi,G 

4 G ← 0
5 while G < Maxiter do
6 G ← G + 1
7 for i = 1 to popsize do

8 Select randomly r1 and r2 such that 
i ≠ r1 ≠ r2

9 Generate F from normal distribution

10 ( )
, 1 ,

,  1, 2,

   

                   
i G i G

i G r G r G

v x

F pbest x x x
+ =

+ ∗ − + −

11     Calculate cost f(vi,G+1)
12    if f (vi,G+1) < f (xi,G) then
13 xi,G+1 = vi,G+1

14 else xi,G+1 = xi,G

15 end
16 end
17 Find the pbest of the population xi,G+1

18 end
19 Procedure SSE(f)

20
Formulate UMF&LMF using Means and 
translating  genes of the chromosome as the 
standard deviations

21 Evaluate the estimated outputs (u) for all the 
input data points (e, ∆e) of the control surface

22
Calculate

 
( ) ( )( )2

1

1

   ;
k

i i
i

f act u est u
=

= −∑
k1: no. of data points on the control surface

23 Return    f
24 End

Figure 5. Membership functions (MFs) of the proposed IT2 FLC: UMFs of (a) error (e); (b) change of error 
(∆e) and (c) control action (u); LMFs of (d) error (e); (e) change of error (∆e) and (f) control action (u)
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Similarly, lower membership functions (LMFs) 
are obtained by taking the minimum of  GMF1 
and GMF2 as in equation (8). 

1 2min ( ( )), ( ( )) 
                         for      

i GMF GMFLMF x i x i
x X

µ µ∀=
∀ ∈       

(8)

The upper and lower MFs obtained for the 
antecedents and the consequence of the proposed 
IT2 FLC are shown in Figure 5. 

3.2. Fuzzy Inference System

Let us assume that the process input at an instant 
be denoted by ein and ∆ein. The membership 
intervals of ein are computed by means of 
projection of ein to the e component of all the 
9 rules. Similarly, the membership intervals of 

ine∆ are also calculated. Then the firing interval 
[ , ]k kf f  at kth rule is estimated by minimum 
t-norm. In Example 1, the procedure of the fuzzy 
inference system is illustrated.

Example 1. Let the projections of ine  on the kth 
LMF and kth UMF be expressed by 1fL  and 1fU ,  
respectively, and the positions of ine∆  on the kth 
LMF and kth UMF be expressed by 2fL  and 2fU , 
respectively. Then, the firing strength of LMF  of 
kth rule denoted by kf  is calculated as it is given 
in equation (9).

min( 1, 2)kf fL fL=                                    (9)

Similarly, the firing strength of UMF of kth rule 
expressed by kf  is estimated by equation (10).

min( 1, 2)kf fU fU=                                   (10)

Next, the inferences due to firing of kth rule 
are obtained from the intersection of kf  with

( )kLMF u , and from the intersection of kf  with 
( )kUMF u . Let the consequence fuzzy output of 

LMF and UMF of kth rule be denoted by LMFk and 
UMFk, respectively. Thus,

min( , ( )),k k
kLMF f LMF u=                         (11)

and
 min( , ( )).k k

kUMF f UMF u=                              (12)

3.3. Defuzzification

The total output of LMF (and UMF) for a discrete 
output point is obtained by MAX aggression of all 
the rules. Let the output LMF and UMF at nth data 
point be denoted by nr  and nr , respectively. 

Then,
1max( ,..., ..., ),,n k Nr LMF LMF LMF=      (13)

and
1max( ,..., ,..., ),n k Nr UMF UMF UMF=    (14)

where N is the total number of rules. Next, the 
fuzzy output is defuzzified. In this paper, the 
Nie-Tan method of defuzzification (Nie & Tan, 
2008; Wu, 2012) was used. In this method, the 
crisp output y of an IT2 FLC is estimated by the 
following in equation (15). 

1

1

( )

( )

P
n n

n
n

P
n n

n

y r r
y

r r

=

=

+
=

+

∑

∑
,

                                 

(15)

where P is the number of output discrete points.

4. The Applied Process

The armature-controlled DC motor is widely 
used in many industrial applications. Hence, 
researchers still use DC motors as a process for 
validating their proposed controller (Sankeshwari 
& Chillé, 2019; Li et al., 2021). The block diagram 
of the armature-controlled DC motor is shown in 
Figure 6 and the transfer function of the armature-
controlled DC motor is given by equation (16). 

3 2
( )
( ) ( ) ( )

m T

a a a a a b T

s K
E s JL s R J L B s R B K K s
θ

=
+ + + +    

(16)

Figure 6. Block diagram of an armature- controlled 
DC motor

Here, θm: angular position of the motor shaft, ea: 
applied voltage, KT: torque constant of motor, 
J: the moment of inertia, Kb: voltage constant 
of the motor, B: viscous friction coefficient, La: 
armature inductance, and Ra: armature resistance. 
In an armature-controlled DC motor, the armature 
inductance is negligibly small compared to 
armature resistance (Mandal, 2014). Thus, 
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the transfer function in equation (16) can be 
approximated as equation (17).

2

( ) /
( ) ( / / )

m T a

a b T a

s K R J
E s s B J K K R J s
θ

=
+ +         (17)

5. Results and Discussion

For uniformity purposes, all the simulations 
were carried out by a fourth-order Runge-Kutta 
solver with a fixed interval of 0.01 seconds. In 
order to illustrate the performance of the proposed 
model,  a conventional IT2 FLC is considered for 
comparison purposes. The membership functions 
of the conventional IT2 FLC are considered to 
be symmetrical triangles (except for the two MFs 
at the extreme ends) as it is shown in Figure 7. 
The simulation is done in Matlab R2016a for the 
block diagram shown in Figure 8. For an unbiased 
comparison, the values of all the gain parameters, 
namely Ge, G∆e, and GPD in Figure 8, were 
optimized using differential evolution (DE) for 
both the proposed model and for the conventional 
fuzzy logic controller. In DE, Integral square error 
(ISE) is considered as the objective function given 
in equation (18).

2

1

( ),
nL

i

ISE e i
=

=∑
                                           

(18)

where e(i) is the error, i.e. the difference between 
the desired step response and the actual step 
response at the ith discrete point for a set of [Ge, 
G∆e, GPD]; n is the number of discrete data points, 
and L is the sampling time, i.e. 0.01 seconds in this 
paper. Here, n is considered to be 3000, as after 
3 seconds the fluctuation in the response reduces 
sufficiently. The algorithm of differential evolution 
used here for the optimized selections of the gain 
parameters is similar to Algorithm 1, except that 
the cost function is calculated using equation (18).

Figure 7. MFs of conventional IT2 controller; solid 
lines: UMFs, dashed lines: LMF of e/ ∆e/ u

Figure 8. Matlab simulation block diagram

The value of Ra is set at 0.4 ohm, that of J at 0.5 
kg-m2, that of Kb  at 1.25 V-s/rad, the value of KT at 
1 N-m/A, and that of B at 0.01N-m/rad (Rahman, 
2017). The simulation results for the step response 
with the conventional IT2 controller and with the 
proposed controller are shown in Figure 9(a) and 
in Figure 9(b), respectively. From Figure 9, it can 
be seen that the proposed IT2 controller has a 
faster response with a lower overshoot, and also 
settles earlier in comparison with the conventional 
IT2 controller. The robustness of the proposed 
controller is checked in two ways; by applying 
a random noise, and by adding a sudden impulse 
disturbance. The mean and the variance of the 
random noise are 0 and 0.1, respectively, and the 
applied disturbance is of 30-unit impulse. 

Figure 9. Step responses of  the DC motor in the 
no noise and no disturbance conditions for (a) the 

conventional IT2 controller; (b) the proposed  
IT2 controller
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The simulation results for the step response in the 
presence of the noise and disturbance are shown 
in Figure 10 and in Figure 11, respectively. 

Figure 10. Step responses of the DC motor in the 
presence of random noise with a variance of 0.1 for 
(a) the conventional IT2 controller; (b) the proposed 

IT2 controller

Figure 11. Step responses of the DC motor with 30-
unit impulse disturbance applied at 2.5 seconds for 

(a) the conventional IT2 controller; (b) the proposed 
IT2 controller

From Figure 10, it appears that the fluctuation in 
response due to the random noise for the proposed 
controller is much lower than for the conventional 
controller. Figure 11 indicates that the proposed 
controller is more aggressive than the conventional 
controller at the event of disturbance. During the 
simulation, it was found that the conventional 
controller required 0.54 seconds, whereas the 
proposed controller takes only 0.06 seconds 
to settle after applying the disturbance. It was 
also seen that the proposed controller features a 
lower overshoot (2.81%) in comparison with an 
overshoot of 9.89% for the conventional controller 
due to the disturbance.

The values of different time domain performance 
indices, namely rise time (tr), peak overshoot (Mp), 
settling time (tss), integral absolute Error (IAE), 
integral time absolute error (ITAE), integral square 
error (ISE), and integral time squared error (ITSE) 
are included in Table 2.

Table 2. Comparative performance of conventional 
and proposed IT2 controller

N
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/

D
is

tu
rb
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ce

Time domain 
performance index

IT2 Controller used

Conventional Proposed

N
o 

no
is

e 
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d 
no

 
di

st
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e 
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ie

d

tr (sec.) 1.22 0.49

Mp% 4.59624 4.29711

tss (sec.) 1.44 0.63

IAE 0.68807 0.28447

ITAE 0.29912 0.08630

ISE 0.49016 0.19074

ITSE 0.15704 0.02434

R
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m

 n
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 w
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Va
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nc

e 
of

 0
.1

tr (sec.) 1.21 0.49

Mp% 4.80191 4.28470

tss (sec.) 1.42 0.63

IAE 0.68119 0.28314

ITAE 0.30557 0.08655

ISE 0.48081 0.18938

ITSE 0.15218 0.02408

U
ni

t i
m

pu
ls

e 
di

st
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ba
nc

e 
ap
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ie

d 
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 2
.5

 se
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nd
s tr (sec.) 1.22 0.49

Mp% 4.59624 4.29711

tss (sec.) 1.44 0.63

IAE 0.72002 0.28640

ITAE 0.38856 0.09130

ISE 0.49220 0.19079

ITSE 0.16255 0.02445

From Table 2, it appears that the proposed 
IT2 controller outperforms the conventional 
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IT2 controller for all the performance indices 
considered here.

6. Conclusion and Future Scope

This paper prescribes a systematic approach 
to modelling an interval type-2 fuzzy logic 
controller. It proposes a way to generate 
primary type-1 membership functions in order 
to formulate the upper and the lower membership 
functions for the interval type-2 controller. The 
number of rules is also reduced from 49 for 

the conventional IT2 controller to only 9 for 
the proposed IT2 controller. From the obtained 
simulation results, it can be seen that the 
proposed controller outperforms the conventional 
IT2 controller, and that it also shows robustness 
to the noise and the applied disturbance.

The present work considers the shape of primary 
membership functions as being Gaussian. Further 
research may also be conducted with the purpose 
of generating an IT2 controller with triangular or 
trapezoidal membership functions.
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