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1. Introduction 

Conjugate gradient method represents an 
important computational innovation for 
continuously differentiable large scale 
unconstrained optimization with strong local 
and global convergence properties and very 
modest and predictable memory requirements. 
This family of algorithms includes a lot of 
variants and extensions with important 
convergence properties and numerical 
efficiency. Different from the Newton or quasi-
Newton methods (including here the limited-
memory quasi-Newton methods), the descent 
condition plays a crucial role in convergence of 
the conjugate gradient algorithms. As a 
characteristic the searching directions in 
conjugate gradient algorithms are selected in 
such a way that, when applied to minimize a 
strongly quadratic convex function, two 
successive directions are conjugate, subject to 
the Hessian of the quadratic function. 
Therefore, to minimize a convex quadratic 
function in a subspace spanned by a set of 

mutually conjugate directions is equivalent to 
minimize this function along each conjugate 
direction in turn. This is a very good and 
productive idea, leading us to many variants of 
conjugate gradient algorithms, but the 
performance of these algorithms is strongly 
dependent on the accuracy of the line search.  

For solving the nonlinear unconstrained 
optimization problem: 

min ( )
nx R

f x


,  (1) 

where : nf R R  is a continuously 
differentiable function, bounded from below, 
starting from an initial guess ,0x  a nonlinear 

conjugate gradient algorithm generates a 
sequence of points  kx , according to the 

following recurrence formula  

1k k k kx x d   ,  (2) 

where k  is the step length, usually obtained 

by Wolfe line search [51, 52],  
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( ) ( ) ,T
k k k k k k kf x d f x g d     (3a) 

1 ,T T
k k k kg d g d    (3b) 

with 0 1/ 2 1,      and the directions 

kd  are computed as: 

1 1k k k kd g s    ,   0 0.d g    (4) 

Here k  is a scalar known as the conjugate 

gradient parameter, ( )k kg f x   and 

1 .k k ks x x   In the following 

1 .k k ky g g   Even that the conjugate 
gradient algorithms correspond to different 

choices for the parameter k , often they are 
designed in a specific manner in such a way 

that the search direction kd  satisfies the 

sufficient descent condition 
,

2

kk
T
k gcdg 

 

for some arbitrary positive constant .0c  In 
these algorithms, the conjugacy condition, or 
the modified conjugacy condition, is 

,01  k
T
k yd  or ),( 11 k

T
kk

T
k sgtyd    where 

0t  is a scalar. When applied to general 
nonlinear functions, often, the searching 
directions in conjugate gradient algorithms 
are computed using some formulas which do 
not satisfy the conjugacy condition. 
However, by extension we call they 
conjugate gradient algorithms. 

The elaboration of nonlinear optimization 
software using nonlinear conjugate gradient 
algorithms is a very active field of research. On 
one hand, many conjugate gradient algorithms 
have achieved a maturity stage and are 
frequently used for solving a wide range of real 
applied problems in a large variety of areas. On 
the other hand, plenty of conjugate gradient 
algorithms are continuously elaborated and 
therefore their efficiency and robustness need 
to be established. The development of different 
versions of nonlinear conjugate gradient 
algorithms can be presented as follows. 
Classical conjugate gradient algorithms: 
Hestenes and Stiefel [33], Fletcher and Reeves 
[26], Daniel [21], Polak and Ribière [42] and 
Polyak [43], conjugate descent by Fletcher 
[27], Liu and Storey [36] and Day and Yuan 
[22]. Hybrid conjugate gradient algorithms 
using projections: hybrid Dai-Yuan [23], 

Gilbert and Nocedal [28], Hu and Storey [34], 
Touati-Ahmed and Storey [50], hybrid Liu and 
Storey [36], and hybrid conjugate gradient 
algorithms using the concept of convex 
combination of classical schemes: convex 
combination of Hestenes-Stiefel and Dai-Yuan 
with Newton direction [3, 4, 8], convex 
combination of Polak-Ribière-Polyak and Dai-
Yuan with conjugacy condition [7]. Scaled 
BFGS preconditioned conjugate gradient 
algorithms by Shanno [47, 48], Birgin and 
Martínez [18] and Andrei [2, 9]. Conjugate 
gradient algorithms with guaranteed descent 
and guaranteed conjugacy conditions by Hager 
and Zhang [32] and Andrei [12]. Three-term 
conjugate gradient algorithms [10, 11]. 

The purpose of this paper is to study the 
performance of some conjugate gradient 
algorithms in a controlled numerical 
environment to highlight the main differences 
among them and to indicate the developer of 
algorithms and practitioner the best algorithms 
and the types of problems that are well suited to 
each algorithm. Therefore, we are interested to 
see the efficiency and robustness of some 
conjugate gradient algorithms for solving a 
large class of large-scale unconstrained 
optimization problems. For this purposes from 
the above classes of algorithms we selected a 
number of eight conjugate gradient algorithms, 
which seem to be the most representative: 
Hestenes and Stiefel, (HS) [33], Polak-Ribière-
Polyak (PRP) [42, 43], CONMIN [47-49], 
ASCALCG [2, 9], CG-DESCENT [32], 
AHYBRIDM [3, 8], THREECG [10] and 
DESCON [12]. For a numerical evaluation of 
these algorithms the performance profiles [24] 
or the data profiles [37] are now standards for 
presenting efficiency and robustness as well as 
the numerical comparisons. Besides, the 
collection of unconstrained optimization test 
problems used in evaluation may have a great 
influence on the conclusions of the numerical 
study of these algorithms. In order to see the 
performances of these algorithms we assembled 
a collection of 800 large-scale unconstrained 
optimization test problems of a large variety 
and of different complexity and different 
structures of their Hessian matrix. The 
comparisons among algorithms are presented 
using the performance profiles. Besides, a 
number of five applications from MINPACK-2 
collection [14] have been used to see the 
performances of the conjugate gradient 
algorithms considered in this numerical study. 
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Our study is limited by this collection of test 
problems we used. However, we have tried to 
consider a test set of considerable diversity. 
Some of the artificially test problems are 
quadratic or nearly quadratic, while others are 
cubic or cubic perturbed with quadratic and 
linear. Some are combinations of quadratics 
including exp, sin or cos functions. There are 
varying degrees of nonlinearity and ill-
conditioning. The functions are expressed in 
extended or generalized form as a sum or 
difference of element functions [31]. It is worth 
saying that the Hessian of the functions from 
this collection has different structure: diagonal, 
block-diagonal, tri-diagonal or penta-diagonal, 
bounded-diagonal, bounded-block-diagonal, 
etc. or full Hessian. The numerical 
conclusions concerning the efficiency and 
robustness of algorithms are based on this 
sample of functions, but we hope that they 
may be more generally useful for both the 
developer of algorithms for unconstrained 
optimization or practitioners faced with 
solving practical applications. 

All these eight Fortran codes, which implement 
the conjugate gradient algorithms considered in 
this numerical study, are not new. The oldest is 
CONMIN, the 1978 version written by Shanno 
and Phua [49]. CG-DESCENT is version 1.4, 
(2005) written by Hager and Zhang [32]. The 
most recent are ASCALCG (2010) [9], 
AHYBRIDM (2010) [8], THREECG (2013) 
[10] and DESCON (2013) [12], all written by 
Andrei. In our numerical experiments we do 
not try to tune the algorithms to a particular set 
of test problems, and a single fixed version of 
each algorithm with fixed parameters was used.  

As a general conclusion of this numerical study 
we can indicate that the conjugate gradient 
software analyzed in this numerical study is 
able to solve a very large diversity of 
unconstrained optimization problems of 
different complexity and with different 
structures of the Hessian matrix. At least for 
this set of artificially test problems, concerning 
the efficiency, CG-DESCENT is slightly more 
efficient, followed by DESCON and followed 
by THREECG. Subject to robustness by far 
DESCON is the most robust, followed by 
THREECG and followed by ASCALCG. It 
seems that the conjugate gradient algorithms 
implementing both the sufficient descent 
condition and the conjugacy condition are the 
best. However, this is not a definitive 
conclusion. In front of us there are an infinite 

number of artificially unconstrained 
optimization test problems and it is always 
possible to assemble a set of problems for 
which the efficiency and robustness of the 
considered algorithms are completely different. 
However, in order to have a true conclusion at 
all we compared the above algorithms on five 
applications from MINPACK-2 collection with 

610  variables. In this case DESCON proved to 
be the fastest and the most reliable algorithm.  

The structure of the paper is as follows. In 
section 2 the main characteristics of 
unconstrained optimization test problems 
considered in this numerical study are presented. 
A detailed presentation of the comparison 
framework including the performance profiles 
and the data profiles, their advantages and 
weakness, and the efficiency and the robustness 
of an algorithm is given in section 3. In section 4 
we present the conjugate gradient algorithms 
considered in this numerical study insisting on 
their definition and convergence properties. 
Section 5 is devoted to present the numerical 
experiments and comparisons using the 
performance profiles. In section 6 some 
discussions are given including some 
comparisons among algorithms for solving 
problems with different structures of the 
Hessian, the weakness of the numerical 
experiments and comparisons using artificially 
test problems and some results and comparisons 
for solving five MINPACK-2 applications. 
Conclusions are drawn in the last section.  

2. Unconstrained Optimization 
Test Problems Considered in 
this Numerical Study 

In this numerical study, we have considered 80 
large-scale unconstrained optimization test 
functions, in extended or generalized form we 
presented in [5], some of them being taken 
from Cuter collection [19]. Each problem was 
tested 10 times for a gradually increasing 
number of variables: 

.10000,,2000,1000 n  Therefore, we 
obtained a set of 800 unconstrained 
optimization test problems of different 
complexity and with different structures of 
their Hessian. The problems considered in this 
numerical study are in generalized or extended 
form as a sum or difference of element 
functions [31] of different nonlinear 
complexity. The structure of the Hessian matrix 
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of the generalized functions is tri-diagonal or 
multi-diagonal. The structure of the Hessian 
matrix of the extended function is block-
diagonal. Some functions are highly nonlinear 
and ill-conditioned. 

In [38] Nash and Nocedal suggested some 
criteria to classify the test problems used in 
numerical studies. For the various function 
characteristics that are relevant to the 
convergence theory or computational 
performances of algorithms they selected the 
following criteria: deviation from quadratic 
(degree of nonlinearity), condition number of 
the Hessian, convexity, eigenvalue structure, 
cost of evaluating the function and its gradient, 
etc. None of these criteria is operational for 
large-scale unconstrained optimization. For 
example, the deviation from quadratic involves 
the computation of the Hessian which is a very 
difficult task for functions with a large number 
of variables. Probably, the most important 
criterion is the eigenvalue structure of the 
Hessian. The eigenvalue distribution greatly 
affects the performance of conjugate gradient 
algorithms. However, in case of large-scale 
optimization computation of eigenvalue 
structure of the Hessian is not tractable. Also, 
convexity, an important concept in 

optimization, is difficult to be established. 
Hence, we do not classify the problems 
according to these criteria because we believe 
that they are not relevant for our purpose and, 
besides, there is not a clear conclusion 
concerning the performances of algorithms 
subject to the criteria considered in [38]. 

However, we can classify the problems 
according to the structure of their Hessian. 
Knowing the analytical expression of the 
gradient it is very easy to get the structure of 
the Hessian. In this numerical study, out of 80 
functions for 10 of them the Hessian is a 
diagonal matrix, for 19 the Hessian is a block-
diagonal matrix, for 22 the Hessian is tri-
diagonal (or penta-diagonal) and finally for 16 
of them the Hessian is a full matrix. 
Therefore, in the last section of the paper we 
present some comments about the 
performances of the above conjugate gradient 
algorithms for solving problems with different 
structures of the Hessian. 

3. Comparison Framework 

3.1 Performance profiles versus data profiles 

Both performance profiles [24] and data 
profiles [37] are common standards for 
presenting the numerical comparisons among 
algorithms. In the following we shall present 
them insisting both on their importance and the 
main differences. Let us consider a number m  
of methods mMM ,,1   used for solving p  

problems pPP ,1  and let ijt  be a metric 

representing the effort method iM  made for 

solving problem jP  in order to get a point in 

which the value of the function is .ijf  We 

assume that the metric ijt  is such that the 

smaller its value, the higher the performance of 
the method iM  for solving the problem .jP  

Consider min
jt  the smallest value among all the 

ijt  required by each method iM  that get a 

solution for problem .jP  With these elements 

let us define the performance profile of method 

iM  as (5): 

where A#  is the cardinality of the set .A  
Observe that the performance profiles, as 
defined in (5), represent a curve very useful for 
graphical representation of comparisons among 
several methods for solving large sets of 
problems.  Mainly, )(i  represents the 

fraction of problems a method iM  solved 

within a prescribed limit on its performance 
measurement like, for example, the number of 
iterations, or the number of functions 
evaluation or the CPU time. The main 
characteristic of the performance profile is that 
for each problem, the imposed limit is a 
proportion 1  of the performance 
measurement of the most efficient method for 
solving this particular problem.  Therefore, for 
a given method ,iM  )1(  i  represents the 

fraction of problems for which the method was 
the most efficient over all methods. On the 
other hand, )(  i  represents the fraction 

                 
  

,
:,,1#

)(
min

p

ttwithPforsolutionafoundMpj jijji
i








  (5)
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of problems solved by method ,iM  

irrespective of the required effort. In this 
context, )1(  i  is associated to the 

efficiency of method ,iM  while )(  i  is 

associated to the robustness of method .iM  

It is worth saying that the performance profile 
gives the same importance both to the problems 
easy to be solved and to the problems hard to 
be solved, where by easy we understand that 
the problem can be solved without a consistent 
effort (number of iterations, or number of 
functions evaluation or CPU time).  

In order to make a difference between the easy 
problems and the hard ones the data profiles 
has been introduced as (6): 

As we can see, )(i  represents the fraction of 

problems method iM  is able to solve within a 

prescribed limit on its performance 
measurement like the number of iterations, or 
the number of function evaluations, or CPU 
time. Observe that in this case the limit is 
independent of the performances of the other 
methods considered in a numerical study. 

The difference between these two profiles is 
major and there is not a clear answer which 
one from these two to prefer. However, in this 
paper we select the performance profiles as 
the main instrument for comparing the 
algorithms. The motivation behind this 
selection is that we consider the easy and the 
hard problem have the same importance 
within a set of test problems.  

3.2 Solving an unconstrained 
optimization problem and 
comparison framework 

In this numerical study by solving an 
unconstrained optimization problem we 
understand that the methods mMM ,,1   

determine local solutions of the problems

pPP ,1 . For a given problem it is quite 

possible that two different methods determine 
two different local minimizers with different 
function values. There is a great discussion 
whether all these problems should be removed 

from the performance evaluation process or 
not. In our analysis all the problems for which 
two different methods found different function 
values are removed. The motivation behind this 
selection is that we are interested to compare 
algorithms which find the same function values 
(in a given tolerance) to see the main 
characteristics of the optimization processes 
concerning the number of iterations, the 
number of function and its gradient evaluations 
and the CPU running time. 

In case of the unconstrained optimization the 
quality of solutions can be very simple 
evaluated by comparing only the values of 
function to be minimized. Since we are 
working in floating-point arithmetic we must 
compare two function values using relative 

errors, as follows. Let us consider that when the 
methods mMM ,,1   are applied for solving a 

particular problem, the following function 
values mff ,,1   are obtained. Let 

 mfff ,,min 1
min   and consider 

,
},1max{ min

min

f

ffi
i


    .,,1 mi    (7) 

Therefore, for a given tolerance ,0f  we 

say that the method iM  found a solution if  

,f
i     (8) 

i.e. in comparisons when 1min f  we 

consider “small absolute errors”, and “small 
relative errors” otherwise. It is quite clear that 
using relative errors in this manner, the 
question is the value of the threshold parameter 

.f  Arbitrary small or large value choices of 
this parameter will have some influence in the 
comparison of algorithms. Since we do not 
have any possibility to fix a “good” value for 

,f  in this numerical study we compare the 

algorithms using the performance profiles )1(  

(efficiency) and )(  (robustness) for 6 

different values of f : .10,,10 83  f  
From our intensive numerical experiments we 
observed that the value of the threshold 

                 
  

.
:,,1#

)(
p

twithPforsolutionafoundMpj ijji
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



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
  (6)
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parameter f does not have a great influence 
on the performance profiles )1(  and )(  of 
the algorithms. In order to have a better 
understanding of the efficiency and the 
robustness of algorithms we present the 
performance profiles for 16,,1  and 

.10 3f  

4. Conjugate Gradient 
Algorithms Considered in this 
Numerical Study 

In this work we focus on unconstrained 
optimization software which implements 
conjugate gradient algorithms. The eight 
solvers considered in this numerical study 
include: the classical conjugate gradient 
algorithms Hestenes and Stiefel (HS) 

( k
T
kk

T
k

HS
k syyg /1 ) [33] and Polak-Ribière-

Polyak (PRP) ( k
T
kk

T
k

PRP
k ggyg /1 ) [42, 43]; 

the BFGS preconditioned conjugate gradient 
algorithms CONMIN [49] and ASCALCG [9]; 
a conjugate gradient algorithm with guaranteed 
descent CG-DESCENT [32]; a hybrid 
conjugate gradient algorithm as a convex 
combination of HS, and Day and Yuan 
conjugate gradient algorithms AHYBRIDM [3, 
8]; a simple three-term conjugate gradient 
algorithm which satisfy both the descent and 
the conjugacy conditions THREECG [10], and 
a conjugate gradient algorithm for which both 
the descent and the conjugacy conditions are 
guaranteed with modified second Wolfe line 
search condition DESCON [12]. In this study 
we are interested to see the efficiency and the 
robustness of these algorithms and to compare 
their performances subject to a large class of 
artificially test problems and real unconstrained 
optimization applications.  

Intensive numerical experiments proved that in 
conjugate gradient algorithms the step length 
may differ from 1 in a very unpredictable 
manner. They can be larger or smaller than 1 
depending on how the problem is scaled. This 
is in very sharp contrast to the Newton and 
quasi-Newton algorithms, including the limited 
memory quasi-Newton algorithms, which 
accept the unit step length most of the time 
along the iterations, thus requiring only few 
function evaluations per search direction. 
Therefore, excepting CONMIN and CG-
DESCENT, all the algorithms from this 

numerical study implement an acceleration 
scheme which modifies the step length in a 
multiplicative manner to improve the reduction 
of the functions values along the iterations [1, 
6]. The initial search direction in all algorithms 
is 00 gd   and the step length is computed by 

the Wolfe line search conditions implemented 
in the same manner. The initial guess of the 
step length at the first iteration is ./1 00 g  

At the following iterations, in all algorithms, 
the starting guess for step k  is computed as 

./
2211 kkk dd   This strategy proved to be 

one of the best selection of the initial guess of 
the step length. 

The HS and PRP conjugate gradient 
algorithms are very well known in literature. 

Both of them have k
T
k yg 1  in numerator and 

possess a built-in restart feature that directly 
addresses the jamming, which is a very 
important property. When the step 

kkk xxs  1  is small, the factor ky  in the 

numerator of HS
k and PRP

k  tends to zero. 

Therefore, HS
k and PRP

k  become small and 

the direction 1kd  corresponding to HS or 

PRP algorithms is essentially the steepest 
descent direction .1 kg  Hence, the HS and 

PRP methods automatically adjust the 
parameter k  to avoid jamming. The HS 

method has the property that the conjugacy 

condition 1 0T
k ky d    always holds, 

independent by the line search. If f  is 
uniformly convex and the line search is exact, 
Polak and Ribière [42] proved the global 
convergence of PRP algorithm. On the other 
hand, for general nonlinear function Powell 
[45] proved the global convergence of PRP 
algorithm if the step size ks tends to zero, the 

line search is exact and the gradient is 
Lipschitz continuous. Using an exact line 

search, .HS PRP
k k   Therefore, the 

convergence properties of the HS algorithm 
should be similar to the convergence 
properties of the PRP algorithm. But, for 
general nonlinear functions the convergence 
of the PRP method is uncertain. The classical 
Powell’s example shows that when the 
function is not strongly convex, the PRP 
algorithm may not converge, even with an 
exact line search [44]. Hence, the HS 
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algorithm with an exact line search may not 
converge for general nonlinear functions. 
However, although HS and PRP may not 
converge in general, they often perform better 
than some other conjugate gradient algorithms 
like Fletcher and Reeves (FR) 

(
2 2

1 /FR
k k kg g  ) [26], Dai and Yuan (DY) 

(
2

1 /DY T
k k k kg y s  ) [22] and the Fletcher’s 

algorithm CD (
2

1 / ( )CD T
k k k kg g s   ) [27]. 

The line search in both HS and PRP is based 
on the Wolfe conditions implemented in the 
same manner. 

Both CONMIN and ASCALCG belong to the 
same class of conjugate gradient algorithms 
based on scaled BFGS preconditioning. 
CONMIN elaborated by Shanno and Phua [49] 
incorporates two nonlinear optimization 
algorithms, a conjugate gradient algorithm and a 
variable metric BFGS one. The conjugate 
gradient algorithm in CONMIN, we consider in 
our numerical study, is the Beale restarted 
memoryless BFGS updating algorithm, which in 
fact is a modification of Perry algorithm [41]. 
Shanno [47] observed that the conjugate 
gradient algorithms are exactly the BFGS quasi-
Newton algorithm where the approximation to 
the inverse Hessian is restarted as the scaled 
identity matrix at every step, as no additional 
storage is used to develop a better approximation 
to the inverse Hessian. The scaling factor is 

computed as ./
2

kk
T
k ydy The algorithm 

implemented in CONMIN is a composite 
conjugate gradient algorithm in which the same 
philosophy used in BFGS of modifying the 
negative gradient with a positive definite matrix 
which best estimates the inverse Hessian without 
adding anything to storage requirements [47] is 
implemented at restarting, i.e. when the Beale-
Powell restart criterion is satisfied. The linear 
search uses Davidon’s cubic interpolation to find 
a step-length satisfying the Wolfe line search 
conditions. Shanno [47] proved that under the 
assumptions on )(xf  that 

,)(
22 uMuxfuT   0M  and Lxf )(  

uniformly in ,x  either 0lim  kk g  or 

.0lim  kk s  Under the further assumption 

that for any 0R  the level set 
 RxfxS  )(:  is bounded, then the 

sequence  kx  generated by the algorithm 

converges to a point *x  at which ,0)( * xg  

or the sequence cycles.  

On the other hand, ASCALCG elaborated by 
Andrei [9] is an accelerated scaled conjugate 
gradient algorithm which combines the scaled 
memoryless BFGS algorithm and the 
preconditioning technique. The preconditioner, 
which is also a scaled memoryless BFGS 
matrix, is reset when the Beale-Powell restart 
criterion [16] holds. The parameter scaling the 
gradient is selected as a spectral gradient: 

./1 k
T
kk

T
kk syss  The search direction in 

ASCALCG is computed as a double quasi-
Newton update scheme (9): 

1 1
1

1

( ) ( )

1 ,

T T
k k k k

k T
k k

T T
k k k

kT T
k k k k

g s w g w s
d v

y s

y w g s
s

y s y s

 





   

 
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 

  (9) 

where 11  kr gHv  and kr yHw 1  and 

1rH  is the BFGS approximation to the inverse 
Hessian initialized with the identity matrix and 
scaled by the scalar 1r  at the r th iteration 
where the Beale-Powell restart test is     
satisfied (10): 

1 1 1

11 .

T T
r r r r

r r r T
r r

T T
r r r r

r T T
r r r r

y s s y
H I

y s

y y s s

y s y s

 



  




  

 
  
 

  (10) 

The restart direction is computed as 

,1
*

11   kkk gQd where *
1kQ  is exactly the 

BFGS quasi-Newton matrix, and at every step the 
approximation of the inverse Hessian is the 
identity matrix multiplied by the scalar ,1k (11): 

1
1 1 1 1

1 1
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  (11) 

For the step-length computation the algorithm 
implements the Wolfe line search conditions in 
the same manner as in CONMIN. The global 
convergence of ASCALCG was established by 
Babaie-Kafaki [15]. For uniformly convex 
function if the gradient of the function f  is 
Lipschitz continuous on the level set 

 )()(: 0xfxfxS  , then the search 
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directions generated by ASCALCG satisfy the 
sufficient descent condition. For general 
nonlinear functions under exact line search and 
if the gradient of the function f  is Lipschitz 
continuous, then the algorithm satisfies the 
sufficient descent condition, i.e. it is      
globally convergent. 

CG-DESCENT algorithm was elaborated by 
Hager and Zhang [32] in order to ensure 
sufficient descent, independent of the accuracy 
of the line search. In CG_DESCENT the search 

direction 1 1
HZ

k k k kd g s    , where 

2

12 ,

T

kHZ k
k k kT T

k k k k

y g
y s

y s y s
 

 
   
 
 

  (12) 

satisfies the sufficient descent condition 
2

(7 / 8) .T
k k kg d g   If the function f  is a 

quadratic and the line search is exact, then 
CG_DESCENT reduces to HS. In fact, 
CG_DESCENT is a modification of HS 
algorithm. However, in CG_DESCENT the 
search directions do not satisfy the conjugacy 
condition. Again, when iterates jam the 

expression 
2 2

1( ( )) / ( )T T
k k k k ky s g y s  in the 

above formulation of HZ
k  becomes negligible. 

This modification of the HS scheme makes 
CG_DESCENT to perform better than HS [32]. 
In order to obtain global convergence for 
general nonlinear functions, the algorithm 

truncates the parameter HZ
k  in a manner 

similar to PRP+ [28]. It is not clearly known 
that this truncation mechanism is benefic in the 
economy of the algorithm. Under standard 
assumptions the algorithm that satisfies the 
Wolfe line search is convergent in the sense 
that either 0kg  for some k  or 

0inflim  kk g  [32]. A very simple restart 

scheme is implemented in CG-DESCENT: 
when the number of iterations is a multiple of 
n , then the searching direction is reset to the 
negative gradient. However, for the vast 
majority of problems the number of iterations 
for solving a problem is much smaller that its 
dimension. Therefore, the restart iterations are 
very seldom used.  

AHYBRIDM, elaborated by Andrei [3, 8], is an 
accelerated hybrid conjugate gradient algorithm 
in which the parameter k  is computed as a 

convex combination of HS
k  and DY

k  where 

the parameter k  in the convex combination is 

computed in such a way the direction 
corresponding to the conjugate gradient 
algorithm is the best direction we know, i.e. the 
Newton direction, while the pair ),( kk ys  

satisfies the modified secant given by Li et al. 
[35] ,1 kkk zsB   where 

kkkkk ssyz )/(
2  and  

.)()(2 11 k
T

kkkkk sggff    

Therefore, 

(1 ) HS DY
k k k k k         (13) 

where  

1
1

1
1

1

.

T
Tk k k
k k kT T

k k k k
k T

T k k
k k kT

k k

y g
s g

s s y s

g g
g g

y s

 










 
  

 


  (14) 

 is a scalar parameter ( 1  in our numerical 
experiments). In [8] we have the computational 
evidence that AHYBRIDM, as a convex 
combination of HS and DY conjugate gradient 
algorithms, is top performer versus the hybrid 
conjugate gradient algorithms obtained by 
projections, like hybrid Dai and Yuan [23] 

(   ,,min,max DY
k

HS
k

DY
k

hDY
k c    where 

)1/()1(  c ), Gilbert and Nocedal [28] 

(   FR
k

PRP
k

FR
k

GN
k  ,min,max  ) or 

hybrid Liu and Storey [36] 

(   CD
k

LS
k

CDLS
k  ,min,0max , 

)/()( 1 k
T
kk

T
k

LS
k sgyg  ). This is the reason 

we selected AHYBRIDM in this numerical 
study on the efficiency and robustness of 
conjugate gradient algorithms. The step-length 
is computed using the Wolfe line search. An 
acceleration scheme is implemented by 
modifying the step-length in order to improve 
de reduction of function values along the 
iterations. Under classical assumptions, both 
for uniformly convex functions and for general 
nonlinear functions the algorithm with strong 
Wolfe line search is globally convergent [8]. 

THREECG is a simple three-term conjugate 
gradient algorithm developed by Andrei [10]. 
The algorithm is a modification of the HS 
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algorithm or of CG-DESCENT in such a way 
that the search direction is descent and it 
satisfies the conjugacy condition. These 
properties are independent of the line search. 
Also, the algorithm could be considered as a 
very simple modification of the memoryless 
BFGS quasi-Newton method. The search 
direction is computed as: 

1 1 ,k k k k k kd g s y        (15) 

where 

2

1 11 ,
T T

k k k k k
k T T T

k k k k k k

y s g y g

y s y s y s
  

 
    
 
 

  (16) 

1 .
T
k k

k T
k k

s g

y s
    (17) 

The new approximation of the minimum is 
obtained by the general Wolfe line search 
conditions and the acceleration technique. For 
uniformly convex functions, under standard 
assumptions, the algorithm is globally 
convergent [10].  

Finally DESCON [12] is a conjugate gradient 
algorithm for which both the descent and the 
conjugacy conditions are guaranteed. The 
search direction is selected as  

1 1k k k k kd g s     ,  (18) 

where  
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1
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 
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and 

1 1( ) ,T T
k k k k ka v s g y g     (21) 

2

1 1 1( ) ( )( ),T T T
k k k k k k k kb w g y s y g s g      (22) 

2

1 1 1( )( ) ( ).T T T
k k k k k k k ky g s g g y s       (23) 

0w and 0v  are arbitrary positive 
constants which specify the sufficient descent 

condition 
2

1!1   kk
T
k gwdg  and the 

conjugacy condition ),( 11 k
T
kk

T
k sgvyd    

respectively. The algorithm introduces the 

modified Wolfe line search conditions, in 
which the parameter in the second Wolfe 
condition is modified at every step as: 

2 2

1 1 1/ ( )T
k k k k kg y g g     .  (24) 

The algorithm implements the acceleration 
scheme. Both for uniformly convex functions 
and for general nonlinear functions, the 
algorithm with strong Wolfe line search 
generates directions bounded away from 
infinite. Therefore, the algorithm is globally 
convergent [12]. 

HS, PRP, AHYBRIDM, THREECG and 
DESCON use the Beale-Powell [16, 45] restart 

mechanism: if 
2

11 2.0   kk
T
k ggg is  

satisfied, then .11   kk gd  In our numerical 

experiments we noticed that for solving a 
problem this test is used in many          
iterations representing a sort of relaxation of 
the algorithm.  

Excepting CG-DESCENT all the algorithms 
considered in this numerical study use exactly 
the same implementation of the Wolfe line 
search (3). This is an advanced implementation 
with Davidon’s cubic interpolation and 
different safeguards to ensure that the search 
procedure cannot be stuck or attempt to move 
away past a local maximum to a more distant 
local minimum.  

5.  Numerical Experiments 
and Comparisons 

In the present numerical experiments we 
considered 800 large-scale unconstrained 
optimization test problems of the form

}:)(min{ nRxxf  . The stopping criterion 
associated with successful convergence of the 
algorithms, very used in large-scale 
optimization, was 

,g
kg 


  (25) 

where 


.  is the maximum absolute component 

of a vector. Concerning the threshold parameter 
g  there is not a clear rule to establish its 

value. However, in order to achieve small 
values of the sup-norm of the gradient we 
selected 610g in (25). We see that for 

problems with 410n variables (25) implies 
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that .10 4

2

kg  In all algorithms considered 

in this numerical study, for the step length k
computation, the same implementation of the 
Wolfe line searches conditions (3) is used, 
where 410 and .8.0  In DESCON the 

parameter   is computed at every step as in 
(24). At the same time, even CG-DESCENT 
has two procedures for the step length k  

computation, the classical Wolfe line search (3) 
and the approximate Wolfe line search, in our 
numerical experiments we have considered 
only the classical Wolfe conditions. In all cases 
we preserved the software’s default parameters. 
Software was compiled with Fortran 77, option 
–O4. The numerical experiments were executed 
on a Workstation Intel Pentium 4 with 1.8 
GHz. Excepting CONMIN, all algorithms use 
the loop unrolling of depth 5. 

In all the numerical comparisons we selected to 
use the performance profiles [24] to present the 
results of the numerical experiments. This is 
motivated by the fact that using a large set of 
test problems, the easy-to-solve problems have 
the same importance as the harder ones. 
Besides, the performance profiles illustrate 
both the efficiency and the robustness of a 
method versus some other methods considered 
in this numerical study. The performance 
profiles correspond to the CPU time metric in 
which all the problems that do not satisfy the 
criterion (8) have been ignored. It is worth 
saying that the performance profiles refer to a 
comparative analysis of eight conjugate 
gradient algorithms using only two algorithms 
each time.  

5.1 DESCON versus classical conjugate 
gradient algorithms HS and PRP 

Considering 310f  in (8), in Figures 1 and 
2 we present the performance profile of 
DESCON versus HS and PRP subject to CPU 
time metric, respectively. Observe that the best 
performance, relative to the CPU time metric, 
was obtained by DESCON, the solid top curve 
in Figures 1 and 2. The figures indicate that 
relative to CPU time metric, DESCON is 
fastest. Since all these three codes use the same 
line search based on Wolfe conditions 
(implemented in exactly the same manner), 
these codes only differ in their choice of the 
search direction.  

Comparing, for example, DESCON versus HS 
(see Figure 1), subject to the number of 
iterations, we see that DESCON was better in 
610 problems (i.e. it achieved the minimum 
number of iterations in 610 problems). HS was 
better in 84 problems and they achieved the 
same number of iterations in 62 problems, etc. 
Out of 800 problems, only for 756 problems 
does the criterion (8) holds with .10 3f  
Therefore in comparison with HS (see Figure 
1) and PRP (see Figure 2) DESCON appear to 
generate the best search direction on average.  

 

Figure 1. DESCON versus HS. ( 310f ) 

 

Figure 2. DESCON versus PRP. ( 310f ) 

Tables 1 and 2 present the efficiency and 
robustness rates of DESCON versus HS and of 
DESCON versus PRP respectively, for 

610g  and  .10,,10 83  f  From 
these Tables we have the computational 
evidence that DESCON is the most efficient 
and the most robust method for every value of 

f in the set:  .10,,10 83    For example, for 

,10 3f  from Table 1 we see that DESCON 
is 8.069% more efficient than HS and 12.037% 
more robust. Concerning PRP, DESCON is 
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9.272% more efficient and 12.848% more 
robust. In Tables 1 and 2 Nrp is the number of 
problems, out of 800 used in these numerical 
studies that satisfy criterion (8). Again, from 
Tables 1 and 2 observe that the value of the 
threshold parameter f  does not have a great 
influence on performance profiles )1(  and 

)(  of DESCON versus HS and PRP. All 
these three algorithms use the Beale-Powell 

restart procedure. If 
2

11 2.0   kk
T
k ggg is 

satisfied, then ,11   kk gd  i.e. the current 

direction is the negative gradient. This is an 
important ingredient in conjugate gradient 
algorithms representing a sort of relaxation of 
iterations. It is worth seeing the restart 
iterations in these algorithms for a particular 
problem. Let us consider the problem #3 

(extended Rosenbrock function). This problem 
was chosen because it illustrates the typical 
performance that we observed in numerical 
experiments. For 1000n  to get the optimal 
solution, DESCON needs 57 iterations out of 
which 21 are restart iterations, i.e. 36.842% are 
restart iterations. On the other hand, HS needs 
79 iterations, out of which 46 are restart 
iterations, i.e. 58.227% are restart iterations. In 
the same context, PRP needs 78 iterations, 42 
from these being restart iterations, i.e. 53.846% 
are restart iterations that use the negative 
gradient as the searching direction. Observe 
that DESCON needs the least number of restart 
iterations, and this is the reason of its 
efficiency and robustness in comparisons with 
HS and PRP.  

HS and PRP conjugate gradient algorithms use 
the Wolfe line search conditions (3) where 

410 and .8.0  On the other hand, 
DESCON again use the Wolfe line search (3), 
but at every step modifies k  as in (24). 

5.2 DESCON versus CONMIN and 
ASCALCG 

For 310f  Figures 3 and 4 present the 
performance profiles of DESCON versus 
CONMIN and ASCALCG, respectively. The 
best performance, relative to the CPU time 
metric, again was obtained by DESCON, the 
solid top curve in Figures 3 and 4. We see that 
out of 800 problems used in these numerical 
experiments in case of CONMIN only 730 
satisfy criterion (8). In case of ASCALCG only 
743 problems satisfy the same criterion. Tables 
3 and 4 present the performance profiles )1(  

and )(  of DESCON versus CONMIN and 
ASCALCG, respectively. From Tables 3 and 4, 
for ,10 3f  observe that DESCON is 
23.287% more efficient than CONMIN and 
35.262% more efficient than ASCALCG. 
Concerning the robustness, from the same 
tables we see that DESCON is 3.151% more 
robust than CONMIN and 1.076% more robust 
than ASCALCG. Observe that DESCON is 
more efficient and more robust versus 
CONMIN and ASCALCG, respectively, for 
every value of f  in the considered set 

 .10,,10 83    

Table 1. Performance profiles )1(  and )(  of 

DESCON versus HS. 

f  Nrp 
)1(  )(  

DESCON HS DESCON HS 

310
 756 0.69841 0.61772 0.99735 0.87698 

410
 727 0.69876 0.62173 0.99725 0.87208 

510
 700 0.70143 0.62857 0.99714 0.86714 

610
 677 0.70901 0.62925 0.99705 0.86263 

710
 647 0.71252 0.63679 0.99691 0.85781 

810
 620 0.71613 0.64677 0.99677 0.85806 

Table 2. Performance profiles )1(  and )(  of 

DESCON versus PRP. 

f  Nrp 
)1(  )(  

DESCON PRP DESCON PRP 

310
 755 0.70861 0.61589 0.99735 0.86887 

410
 724 0.71685 0.61326 0.99724 0.86326 

510
 697 0.71736 0.62267 0.99713 0.85796 

610
 673 0.72511 0.62407 0.99703 0.85290 

710
 629 0.72019 0.64865 0.99682 0.85056 

810
 604 0.72351 0.64404 0.99669 0.85099 
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It is worth saying that CONMIN uses the 
second order information as the BFGS update 
initialized with the identity matrix at every 
step. On the other hand, ASCALCG uses the 
second order information as the BFGS update 
in which, at every step, the approximate of the 
inverse Hessian is restarted as ,1Ik  where 

./1 k
T
kk

T
kk syss  ( 0k

T
k sy  by Wolfe line 

search conditions.) Both CONMIN and 
ASCALCG satisfy the sufficient descent 
condition, but do not satisfy the conjugacy 
condition. On the other hand, DESCON 
satisfies both the sufficient descent and the 
conjugacy conditions. Besides, DESCON uses 
the second order information by using the 
modified conjugacy condition 

)( 11 k
T
kk

T
k sgvyd    with 05.0v .  

ASCALCG, is more elaborated than CONMIN. 
Therefore, subject to robustness, it is closer to 
DESCON than CONMIN is (see Figure 4). 

 

Figure 3. DESCON versus CONMIN. ( 310f ) 

 

Figure 4. DESCON versus ASCALCG. 

( 310f ) 

There are problems for which ASCALCG takes 
very few Beale-Powell restart iterations. For 
example, for problem #13 (Hager), with 

,1000n  ASCALCG needs 42 iterations, out 
of which 1 iteration is a restart one. On the 
other hand, DESCON needs 44 iterations, out 
of which 2 iterations are restart iterations. But, 
for some other problems (not so many in this 
collection) ASCALCG takes a large number of 
Beale-Powell restart iterations. For example, 
for problem #32 (White & Holst), with 

,1000n  ASCALCG needs 3111 iterations, 
out of which 1281 (41.176%) are Beale-Powell 
restart iterations. In this case, DESCON takes 
only 148 iterations, out of which 12 (8.108%) 
are restart iterations. This is the weakness       
of ASCALCG. 

Table 3. Performance profiles )1(  and )(  of 

DESCON versus CONMIN. 

f Nrp
)1(  )(  

DESCON CONMIN DESCON CONMIN

310 730 0.78219 0.54932 0.99863 0.96712 

410 720 0.77917 0.55417 0.99861 0.96667 

510 682 0.77273 0.57918 0.99853 0.96481 

610 660 0.77273 0.59091 0.99848 0.96515 

710 614 0.78013 0.60098 1 0.96254 

810 592 0.77365 0.61318 1 0.96284 

Table 4. Performance profiles )1(  and )(  of 

DESCON versus ASCALCG. 

f Nrp
)1(  )(  

DESCON ASCALCG DESCON ASCALCG

310 743 0.81292 0.46030 0.99596 0.98520 

410 721 0.81415 0.46186 0.99584 0.98474 

510 671 0.81669 0.46796 0.99553 0.98510 

610 603 0.81758 0.45439 0.99502 0.98673 

710 518 0.80888 0.45946 0.99421 0.99035 

810 478 0.80335 0.45816 0.99372 0.99163 
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5.3 DESCON versus CG-DESCENT 

These two algorithms differ in many respects. 
CG-DESCENT was designed to guarantee the 
sufficient descent condition  

2
(7 / 8) .T

k k kg d g   

On the other hand, DESCON is more 
elaborated it uses the second order information 
by satisfying the modified conjugacy condition  

)( 11 k
T
kk

T
k sgvyd    

with 05.0v  and the sufficient descent condition  

2

1!1   kk
T
k gwdg   

with .8/7w  Observe that we consider 
8/7w  in DESCON as in CG-DESCENT. 

Intensive numerical studies and sensitivity 
analysis [12] proved that DESCON is very little 
sensitive to the numerical values of v  and .w  
Besides, DESCON is equipped with an 
acceleration scheme very efficient for 
improving the values of the minimizing 
function.  

Figure 5 presents the performance profile of 
DESCON versus CG-DESCENT for 

.10 3f  Observe that DESCON is more 
efficient and more robust versus CG-
DESCENT. Out of 800 unconstrained 
optimization problems considered in this 
numerical study, only for 774 problems does 
the criterion (8) holds. Table 5 presents the 
performance profiles )1(  and )(  of 
DESCON versus CG-DESCENT. From Table 
5, for ,10 3f  we see that DESCON is 
6.589% more efficient than CG-DESCENT 
and 4.522% more robust. For ,10 8f  
DESCON is 1.540% more efficient than CG-
DESCENT and 3.236% more robust. In this 
case out of 800, only for 649 problems the 
criterion (8) holds. Observe that DESCON is 
more efficient and more robust versus CG-
DESCENT for every value of f  in the set 

 .10,,10 83    In DESCON two important 
ingredients have been implemented: the 
acceleration and the Beale-Powell restart 
iterations which are responsible with the 
performances of it. On the other hand in CG-
DESCENT the restart mechanism is very 
simple: when the number of iterations is a 
multiple of n , then the direction is the 

negative gradient. Since the number of 
iterations is much smaller than n , the restart 
iterations are very rare used.  

 

Figure 5. DESCON versus CG-DESCENT. 

( 310f ) 

Table 5. Performance profiles )1(  and )(  of 

DESCON versus CG-DESCENT. 

f Nrp
)1(  )(  

DESCON CG-DES DESCON CG-DES

310 774 0.69380 0.62791 0.99612 0.95090 

410 762 0.69160 0.63517 0.99606 0.96063 

510 729 0.68861 0.65295 0.99588 0.95885 

610 705 0.68511 0.66525 0.99574 0.95887 

710 686 0.68076 0.66910 0.99563 0.95918 

810 649 0.69183 0.67643 0.99538 0.96302 

Besides, we must emphasize that as   

approaches 0 and   approaches 1, the Wolfe 
line search terminates quicker. Therefore, the 
chosen values in CG-DESCENT 0.1   and 

0.9   represent a compromise between the 
desire for rapid termination of line search and 
the desire to improve the function value. On the 
other hand, in DESCON in subroutine for line 
search we chosen 0.0001   and we limited 
the number of line search iterations to 3. To 
improve the function values the acceleration 
scheme is used which involves only one 
function evaluation. These are the rationales 
DESCON is top performer versus CG-
DESCENT in Figure 5. 
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5.4 DESCON versus the hybrid conjugate 
gradient algorithm AHYBRIDM 

Figure 6 presents the performance profiles of 
DESCON versus AHYBRIDM. It is worth 
saying that AHYBRIDM is based on the concept 
of hybridization by convex combination of HS 
and DY conjugate gradient algorithms in order 
to exploit their attractive features. On one side 
DY has strong convergence properties and HS in 
numerical experiments performs better than 
some other conjugate gradient algorithms, on the 
other side. 

We see that out of 800 unconstrained 
optimization problems only for 773 problems 
does the criterion (8) holds. Table 6 presents 
the performance profiles )1(  and )(  of 
DESCON versus AHYBRIDM. From Table 6 
we see that DESCON is 34.670% more 
efficient than AHYBRIDM and 1.164 % 
more robust.  

Figure 6. DESCON versus AHYBRIDM. 

( 310f ) 

Table 6. Performance profiles )1(  and )(  of 

DESCON versus AHYBRIDM. 

f  Nrp 
)1(  )(  

DESCON AHYBRIDM DESCON AHYBRIDM

310
 773 0.83829 0.49159 0.99741 0.98577 

410
 766 0.83943 0.48825 0.99739 0.98564 

510
 746 0.83914 0.49732 0.99732 0.98660 

610
 722 0.84211 0.50277 0.99723 0.99169 

710
 706 0.84136 0.50992 0.99717 0.99292 

810
 693 0.83838 0.51804 0.99711 0.99423 

Observe that DESCON is more efficient and 
more robust versus AHYBRIDM for every 
value of f  in the set  3 810 , ,10 .   In 

numerical experiments we noticed that in 
AHYBRIDM the iterations often trigger 
between HS and DY and their convex 
combination very seldom are used. Rephrased, 
the performance profile of AHYBRIDM is a 
little higher than the corresponding profiles of 
HS and DY. This is the reason why DESCON 
is far away more efficient than AHYBRIDM. 

5.5 DESCON versus the three-term 
conjugate gradient algorithm 
THREECG 

In Figure 7 we have the performance profiles of 
DESCON versus THREECG. Out of 800 
unconstrained optimization test problems only 
for 778 problems does the criterion (8) holds. 
Even that there is a discrepancy concerning the 
efficiency, the algorithms are very close subject 
to robustness. In Table 7 we see the 
performance profiles )1( and )(  of 
DESCON versus THREECG.  

 

Figure 7. DESCON versus THREECG. 

( 310f ) 

Table 7. Performance profiles )1(  and )(  of 

DESCON versus THREECG. 

f Nrp
)1(  )(  

DESCON THREECG DESCON THREECG
310 778 0.75193 0.62211 0.99743 0.99229 

410 771 0.75097 0.61868 0.99741 0.99222 

510 760 0.75395 0.62105 0.99737 0.99474 

610 737 0.75984 0.62551 0.99729 0.99729 

710 727 0.76754 0.62173 0.99725 0.99725 

810 704 0.76562 0.63636 0.99716 0.99858 
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For 310f  DESCON is 12.982% more 
efficient than THREECG and 0.514% more 
robust. For 810f  we see that THREECG 
is slightly more robust than DESCON. Both 
algorithms use the acceleration of iterations, 
the Beale-Powell restart and the same 
implementation of the Wolfe line search 
conditions, but with parameter k  in 

DESCON modified at every step. Concerning 
the restart iterations, we noticed that the 
number of restart iterations for both 
algorithms, are very close for all the 
problems considered in this numerical study. 
For example, for problem #39 (BDQRTIC) 
with ,1000n  to get the minimum 
DESCON needs 77 iterations, out of which 
12 (15.584%) are Beale-Powell restart 
iterations. For the same problem 
THREECG needs again 77 iterations out of 
which this time 10 (12.987%) are Beale-
Powell restart iterations. Observe that 
THREECG (15)-(17) is simpler than 
DESCON (18)-(24), and this could be an 
advantage. However, both the sufficient 
descent and the conjugacy conditions are 
natural properties of the THREECG. On the 
other hand, in DESCON these properties are 
imposed through the values of the parameters 
v  and ,w  which may have a positive 
influence on its performances. 

5.6 ASCALCG versus CG-DESCENT, 
AHYBRIDM and THREECG 

These algorithms differ in many respects. For 
example, ASCALCG, AHYBRIDM and 
THREECG use the acceleration scheme, the 
same line search procedure based on Wolfe 
conditions, but different restart procedures. In 
both algorithms AHYBRIDM and THREECG 
when the restart Beale-Powell test  

2

11 2.0   kk
T
k ggg  

is satisfied then ,11   kk gd  the negative 

gradient. On the other hand, ASCALCG is an 
accelerated scaled conjugate gradient 
algorithm, BFGS preconditioned, using an 
advanced restarting procedure. When the 
Beale-Powell restart test is satisfied then the 
restart direction in ASCALCG is computed 
using again a BFGS preconditioned scheme, 
which is time consuming in some cases. In 
our numerical tests we observed that the 

number of restart iterations is completely 
unpredictable. For example, for problem #29 
(full Hessian) with ,1000n  to get the 
minimum point ASCALCG needs 480 
iterations. The number of restart iterations in 
ASCALCG is 21 which represent 4.375% out 
of the total number of iterations. On the other 
hand, in AHYBRIDM the number of restart 
iteration to get the solution is 689, out of 
which 50 (7.256%) are restart iterations. 
Finally, THREECG needs 610 iterations, out 
of which 52 (8.524%) are restart iterations. 
There are some other problems for which the 
restart iterations are more frequent. For 
example, for problem #3 (extended 
Rosenbrock) with 1000n  the number of 
iterations to get the minimum point is 49, out 
of which 42, i.e. 85.714%, are restart 
iterations. On the other hand AHYBRIDM 
needs 55 iterations for solving this problem. 
The number of restart iterations in this case is 
20 which represent 36.363% out the total 
number of iterations. THREECG takes 61 
iterations to solve this problem. From these 
22 are restart iterations which represent 
36.065%. In any case, in conjugate gradient 
algorithms restart is an important ingredient 
representing a relaxation of algorithm.  

In Figures 8, 9 and 10 we have the 
performance profiles of ASCALCG versus 
CG-DESCENT, AHYBRIDM and 
THREECG, respectively. Observe that all 
these three conjugate gradient algorithms 
CG-DESCENT, AHYBRIDM and 
THREECG are more efficient than 
ASCALCG. For example, from Tables 8, 9 
and 10, for ,10 3f  CG-DESCENT is 
14.577% more efficient than ASCALCG; 
AHYBRIDM is 20.755% more efficient than 
ASCALCG and finally THREECG is again 
31.241% more efficient than ASCALCG. 
Observe that the great discrepancy 
concerning efficiency is between ASCALCG 
and THREECG.  

Concerning robustness, ASCALCG is more 
robust than CG-DESCENT (0.817%) and 
AHYBRIDM (0.135%). However, from 
Table 10 we see that THREECG is 0.267% 
more robust than ASCALCG. The direction 
in ASCALCG is more complicated (more 
time consuming) and this is the reason why 
its efficiency is smaller than the 
corresponding efficiency of the algorithms 
we compare with. 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 274

 

Figure 8. ASCALCG versus CG-DESCENT. 

( 310f ) 

Table 8. Performance profiles )1(  and )(  of 

ASCALCG versus CG-DESCENT. 

f  Nrp 

)1(  )(  

ASCALCG 
CG-

DESCENT 
ASCALCG 

CG-
DESCENT

310
 734 0.55586 0.70163 0.98501 0.97684 

410
 715 0.56364 0.69930 0.98462 0.97622 

510
 674 0.56528 0.69733 0.98516 0.97478 

610
 595 0.54622 0.70252 0.98655 0.97311 

710
 511 0.54795 0.69863 0.99022 0.97065 

810
 453 0.54967 0.69978 0.99117 0.98455 

Besides the restart and the acceleration, the 
other profitable ingredient used in 
AHYBRIDM is the second order information 
given by the modified secant condition. In 
contrast to ASCALCG the second order 
information in AHYBRIDM is used in a very 
direct and simple manner. Therefore, the 
algebraic expression of the direction is not 
complicated, this being very easy to be 
computed. If the line search is exact, the 
direction reduces to a minor modification of the 
HS algorithm. On the other hand, THREECG is 
a very simple three-term conjugate gradient 
algorithm which uses the second order 
information as a minor modification of the 
BFGS updating formula. In this algorithm the 
BFGS formula is restarted with the identity 
matrix at every step and the sign in front of the 

T
kk sy  term is changed in order to get the 

descent property. Again observe that 
THREECG is a modification of HS algorithm. 

This modification is dependent by 1k
T
k gs

which is going to zero along the iterations. 
Apparently, this contribution to the HS 
direction determines a better direction in 
THREECG. Concerning the robustness, 
observe that ASCALCG and THREECG are 
bunched closer together. This is because 
ASCALCG in its essence is a more 
complicated three-term conjugate gradient 
algorithm (see (9)-(11)). 

Together, Figures 8, 9 and 10 seem to imply that 
ASCALCG is the least efficient algorithm in 
comparison to CG-DESCENT, AHYBRIDM 
and THREECG. The linear algebra in 
ASCALCG code to update the search direction 
is more time consuming than the linear algebra 
in the algorithms we compare with. Therefore, 
the CPU time of ASCALCG is dominated by the 
cost of linear algebra.  On the other hand, the 
number of iterations in line search in 
ASCALCG, AHYBRIDM and THREECG is 
limited to 3 to get an acceptable step length. 

Figure 9. ASCALCG versus AHYBRIDM. 

( 310f ) 

Table 9. Performance profiles )1(  and )(  of 

ASCALCG versus AHYBRIDM. 

f Nrp
)1(  )(  

ASCALCG AHYBRIDM ASCALCG AHYBRIDM

310 742 0.53908 0.74663 0.99461 0.99326 

410 719 0.54242 0.74548 0.99444 0.99305 

510 670 0.55224 0.74179 0.99552 0.99552 

610 608 0.53947 0.74836 0.99507 0.99671 

710 517 0.53772 0.74855 0.99807 0.99613 

810 471 0.54140 0.74310 0.99788 0.99788 
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Using the acceleration technique in these 
algorithms this value of the step length is 
modified to reduce the value of the minimizing 
function. Also, it is interesting to observe that 
the performances of these algorithms are 
dependent on this number, which limits the 
iterations in line search. It seems that the smaller 
the number of line search iterations, the more 
efficient the algorithms are. In CG-DESCENT, 
in the line search, more function evaluations are 
needed to get the stopping criterion. However, 
the value of the step length in CG-DESCENT is 
more accurate, and this is the rationale 
concerning the efficiency of this algorithm. 

 

5.7 CG-DESCENT versus AHYBRIDM 
and THREECG 

For 310f , in Figures 11 and 12 we present 
the performance profiles of CG-DESCENT 
versus AHYBRIDM and THREECG, 
respectively. Observe that, at least for this set 

of problems, CG-DESCENT is more efficient 
than AHYBRIDM, and the difference is 
significant, about 14.305%. However, in 
comparison with THREECG, observe that this 
time THREECG is very little more efficient, 
about 1.428%. Concerning the robustness, both 
AHYBRIDM and THREECG are more robust 
than CG-DESCENT. From Tables 11 and 12 
we see that this characteristic of robustness of 
AHYBRIDM and THREECG is maintained for 
all values of f in the set }.10,,10{ 83    For 

example, for 310f , from Table 11 we see 
that AHYBRIDM is about 0.918% more robust 
than CG-DESCENT. Again, from Table 12 
observe that THREECG is 1.948% more robust 
than CG-DESCENT. 

 

We emphasize that in CG-DESCENT the 
mechanism of restarting the iterations is very 
simple. Since n  is often larger than the number 

Figure 11. CG-DESCENT versus AHYBRIDM. 
( 310f ) 

Table 11. Performance profiles )1(  and )(  of 

CG-DESCENT versus AHYBRIDM. 

f Nrp

)1(  )(  

CG-
DESCENT

AHYBRIDM 
CG-

DESCENT 
AHYBRIDM

310 762 0.71785 0.57480 0.97507 0.98425 

410 754 0.72281 0.57162 0.97878 0.98408 

510 731 0.73598 0.56772 0.97811 0.98632 

610 703 0.74964 0.56330 0.97724 0.99147 

710 680 0.75294 0.56324 0.97794 0.99118 

810 643 0.75894 0.57543 0.98289 0.99222 

Figure 10. ASCALCG versus THREECG. 

( 310f ) 

Table 10. Performance profiles )1(  and )(  of 

ASCALCG versus THREECG. 

f  Nrp 
)1(  )(  

ASCALCG THREECG ASCALCG THREECG

310 749 0.48198 0.79439 0.99199 0.99466 

410 726 0.48623 0.79614 0.99174 0.99449 

510 672 0.49405 0.79911 0.99256 0.99554 

610 608 0.48191 0.80263 0.99342 0.99671 

710 521 0.48369 0.80230 0.99616 0.99616 

810 475 0.48421 0.79368 0.99789 0.99789 
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of iterations needed for solving a problem, it 
follows that the algorithm performs no restarts 
in the vast majority of test runs. This is the 
reason why the CG-DESCENT is more 
efficient than AHYBRIDM. The iterations in 
CG-DESCENT are not relaxed as in 
AHYBRIDM and THREECG where the Beale-
Powell restart test is used. 

As we know, AHYBRIDM is an accelerated 
hybrid conjugate gradient algorithm obtained as 
a convex combination of HS and DY conjugate 
gradient algorithms. In our intensive numerical 
experiments we observed that the AHYBRIDM 
have the propensity to use the HS algorithm 
along the iterations. Besides, we notice that 
AHYBRIDM often triggers between HS and 
DY, while their convex combination is seldom 
used. For example for problem #3 (extended 
Rosenbrock) with 1000n , AHYBRIDM 
needs 55 iterations. Out of these, the HS 
algorithm is used in 39 (70.92%) iterations, the 

DY algorithm is used in 14 (25.45%), and the 
convex combination of HS and DY is used in 2 
(3.63%) iterations. This is a typical behavior of 
AHYBRIDM. As we said, CG-DESCENT also 
is a modification of HS algorithm, but this 
modification is always used along the iterations 
without any possibility to change it at least as 
the negative gradient in case of restart. This is 
the rationale for a better robustness of 
AHYBRIDM versus CG-DESCENT.  

From (12) and (16) observe that both CG-
DESCENT and THREECG have in common the 
expression 2

1 )/()( k
T
kk

T
kk sygsy  . When iterates 

jam, ky  becomes tiny while kg  is bounded 

away from zero. Therefore, in CG-DESCENT 
when iterates jam, this expression becomes 

negligible, i.e. .HS
k

HZ
k    However, in case of 

jamming, in THREECG there is the third 
component kk y  (see 15) which compensate 

the lost of robustness of CG-DESCENT. 

5.8. AHYBRIDM versus THREECG 

In Figure 13 we have the performance profiles 
of these algorithms for .10 3f  Out of 800 
problems only for 782 problems the criterion 
(8) holds. Observe that THREECG is about 
30.563% more efficient and about 0.511% 
more robust then AHYBRIDM. Besides, from 
Table 13 we see that this characteristic of these 
algorithms is invariant at the variation of f  in 

the set }.10,,10{ 83    As we have already 
seen these algorithms are different in many 
respects. Even that AHYBRIDM often triggers 
between HS and DY trying to exploit the 
attractive features of these algorithms, 
THREECG is more efficient and more robust 

Figure 12. CG-DESCENT versus THREECG. 

( 310f ) 

Table 12. Performance profiles )1(  and )(  of 

CG-DESCENT versus THREECG. 

f  Nrp 

)1(  )(  

CG-
DESCENT 

THREECG 
CG-

DESCENT 
THREECG

310
 770 0.64286 0.65714 0.97143 0.99091 

410
 762 0.64567 0.65748 0.97507 0.99081 

510
 729 0.66255 0.65432 0.97394 0.99314 

610
 704 0.67756 0.64631 0.97301 0.99574 

710
 682 0.68182 0.64370 0.97507 0.99560 

810
 642 0.68692 0.65732 0.97975 0.99688 

Figure 13. AHYBRIDM versus THREECG. 

( 310f ) 
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showing the importance of three-term concept 
in conjugate gradient paradigm. On the other 
hand, the algebraic expression of the search 
direction in THREECG is simpler then the 
search direction in AHYBRIDM. This makes 
THREECG more efficient that AHYBRIDM. 

Table 13. Performance profiles )1(  and )(  of 

AHYBRIDM versus THREECG. 

f  Nrp 
)1(  )(  

AHYBRIDM THREECG AHYBRIDM THREECG

310
 782 0.51662 0.82225 0.99361 0.99872 

410
 782 0.51662 0.82225 0.99361 0.99872 

510
 763 0.52425 0.82307 0.99345 0.99869 

610
 741 0.52632 0.82861 0.99595 1 

710
 726 0.53444 0.82782 0.99725 1 

810
 704 0.54403 0.82812 0.99716 1 

5.9 The performance profiles of all algorithms 

Firstly, in this section we present the 
performance profile of all eight algorithms 
considered in this numerical study for 

.10 3f  The top solid curve in Figure 14 
corresponds to DESCON, the top performer 
among these algorithms. In Table 14 we can 
see the efficiency )1(  and the robustness 

)(  of these algorithms, relative to the CPU 
time metric. Concerning the efficiency CG-
DESCENT is top performer. The second place 
is taken by DESCON and the third by HS. 
Concerning the robustness on the first place is 

DESCON, followed by THREECG and 
followed by ASCALCG.  

Table 14. Performance profiles )1(  and )(  of 

all algorithms. 

The first, the second and the third places of 
algorithms are shown in 

bold, italic and underline, respectively. 

 )1(  )(  

DESCON 0.35000 0.99853 

HS 0.34118 0.87353 

PRP 0.33382 0.85735 

CONMIN 0.30294 0.95294 

ASCALCG 0.25147 0.98529 

CG-DESCENT 0.43529 0.97059 

AHYBRIDM 0.23676 0.98382 

THREECG 0.32059 0.99118 

In Figure 14 observe that HS and PRP have the 
most reduced performance profiles. Therefore, 
in Figure 15 we present the performance 
profiles of five algorithms for .10 3f  
Observe in Figure 15 that concerning the 
robustness the algorithms are grouped, but 
subject to efficiency they are more dispersed, 
slightly fastest being CG-DESCENT. Again, 
the top solid curve in Figure 15 corresponds to 
DESCON. Subject to the efficiency, from 
Table 15, we see that CG-DESCENT is slightly 
faster, followed by DESCON and followed by 
THREECG. Concerning the robustness, the 
DESCON is the most robust, followed by 
THREECG and followed by ASCALCG. Since 
all these algorithms use the same line search 
procedure, based on the Wolfe conditions, 
DESCON appears to generate the best search 
direction, on average.  

In Figure 15, we have the computational evidence 
that these five algorithms are the best conjugate 
gradient algorithms able to solve a large variety 
of large-scale unconstrained optimization 
problems of different structures of their Hessian. 
Excepting CG-DESCENT all the algorithms 
considered in Figure 15 implement an 
acceleration procedure which proves to be very 
efficient in reducing the values of the function 
values. On the other hand, these algorithms 
contain in a way or another, the second order 
information which improve in a certain way the 
computation of the search direction. 

Figure 14. Performance profiles of all algorithms 

for 610g  and .10 3f  
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Figure 15. Performance profiles of 5 algorithms for 
610g  and .10 3f  

Table 15. Performance profiles )1(  and )(  of 

5 algorithms. 

The first, the second and the third places of 
algorithms are shown in  

bold, italic and underline, respectively. 

 )1(  )(  

DESCON 0.46379 0.99582 

ASCALCG 0.29805 0.98329 

CG-DESCENT 0.48886 0.97214 

AHYBRIDM 0.27716 0.98050 

THREECG 0.37326 0.98886 

6. Discussion 

6.1 Comparisons among algorithms for 
solving problems with different 
structure of the Hessian matrix 

In this numerical study we classified the 
problem according to the structure of their 
Hessian matrix. Hence, out of 800 unconstrained 
optimization test problems, considered in this 
paper, for 100 of them the Hessian is a diagonal 
matrix, for 190 the Hessian is a block-diagonal 
matrix, for 220 the Hessian is tri-diagonal (or 
penta-diagonal) and for 160 the Hessian is a full 
matrix. The rest of the problems have a bounded 
diagonal or a bounded block-diagonal structure 
of the Hessian matrix we do not consider in our 
analysis. In this section we present a comparison 
of AHYBRIDM, ASCALCG, CG-DESCENT, 
DESCON and THREECG conjugate gradient 
algorithms for solving these four classes of 
unconstrained optimization test problems. The 
below tables present the efficiency and the 
robustness of these algorithms. 

Table 16. The efficiency and robustness of 
algorithms for solving 100 test problems with 

diagonal Hessian matrix. ,10 6g  .10 3f  

  )1(  )(  

AHYBRIDM 0.17582 0.97802 

ASCALCG 0.17582 0.96703 

CG-DESCENT 0.89011 1 

DESCON 0.26374 1 

THREECG 0.26374 1 

Table 17. The efficiency and robustness of 
algorithms for solving 190 test problems with block-

diagonal Hessian matrix. ,10 6g  .10 3f  

  )1(  )(  

AHYBRIDM 0.31138 1 

ASCALCG 0.27545 1 

CG-DESCENT 0.55090 0.99401 

DESCON 0.41317 1 

THREECG 0.48503 1 

Table 18. The efficiency and robustness of 
algorithms for solving 220 test problems with tri-

diagonal or penta-diagonal Hessian matrix. 

,10 6g  .10 3f  

  )1(  )(  

AHYBRIDM 0.14894 0.99468 

ASCALCG 0.06915 0.99468 

CG-DESCENT 0.52128 1 

DESCON 0.43085 1 

THREECG 0.25000 0.99468 

Table 19. The efficiency and robustness of 
algorithms for solving 160 test problems with full 

Hessian matrix. ,10 6g  .10 3f  

  )1(  )(  

AHYBRIDM 0.27451 0.94118 

ASCALCG 0.35948 0.94771 

CG-DESCENT 0.36601 0.92810 

DESCON 0.43137 0.98039 

THREECG 0.31373 0.95425 

Observe that CG-DESCENT is the most efficient 
algorithm for solving problems with structured 
Hessian. On the other hand, DESCON is the most 
efficient and the most robust algorithm for 
solving problems with full Hessian.  
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It is worth seeing the behavior of these 
algorithms for solving these four classes of 
problems subject to the CPU time metric. In 
Table 20 we present the total CPU time for 
solving these classes of problems with the 
Hessian matrix structured as: diagonal (DD), 
block-diagonal (BD), tri-diagonal or penta-
diagonal (TP) and full Hessian (FH). Observe 
that for solving 100 unconstrained optimization 
problems with Hessian a diagonal matrix all 
algorithms need a grand total of 958.85 
seconds. AHYBRIDM needs 286.45 seconds. 
Therefore, for AHYBRIDM, in average one 
problem in this class needs 286.45/100=2.8645 
seconds. Observe that the fastest algorithm for 
solving problems in this class is CG-
DESCENT. For solving one problem, in 
average this algorithm needs 49.51/100=0.4951 
seconds. For solving this class of problems 
DESCON is on the second place (in italics). 

From Table 20 we have the computational 
evidence that all algorithms considered in this 
study are fastest for solving problems whose 
Hessian is a bloc-diagonal matrix. For solving 
190 problems, with Hessian a block-diagonal 
matrix, all algorithms need a grand total of 
40.82 seconds. We see that, in average, for 
solving one problem, for which the Hessian is 
bloc-diagonal, THREECG needs 
7.22/190=0.038 seconds, this algorithm being 
the fastest among all the algorithms considered 
in this numerical study. Observe that DESCON 
again is on the second place, etc. 

Table 20. CPU time (seconds) for solving 
unconstrained optimization test problems classified 

as: DD, BD, TP and FH. ,10 6g  .10 3f  

The first, the second places of algorithms are shown 
in bold and italic, respectively. 

 DD BD TP FH 

 100 190 220 160 

AHYBRIDM 286.45 
(2.8645) 

8.26 
(0.0434) 

517.18 
(2.3508) 

594.77 
(3.7173)

ASCALCG 299.96 
(2.9996) 

8.42 
(0.0443) 

795.11 
(3.6141) 

406.94 
(2.5433)

CG-
DESCENT 

49.51 
(0.4951) 

9.39 
(0.0492) 

394.88 
(1.7949) 

1455.53 
(9.0970)

DESCON 153.00 
(1.53) 

7.53 
(0.0396) 

363.78 
(1.6535) 

442.69 
(2.7668)

THREECG 169.93 
(1.6993) 

7.22 
(0.038) 

379.18 
(1.7235) 

452.63 
(2.8289)

TOTAL 958.85 40.82 2450.13 3352.56

Concerning the 220 problems with Hessian a 
tri-diagonal or a penta-diagonal matrix all 
algorithms need a grand total of 2450.13 
seconds. The fastest algorithm for solving the 
problems from this class is DESCON. In 
average, it needs 363.78/220=1.6535 seconds. 
The second place is taken by THREECG. 

Subject to CPU time metric, the most difficult 
problems seem to be the problems with full 
Hessian. For solving 160 problems with full 
Hessian all algorithms need a grand total of 
3352.56 seconds, ASCALCG being the fastest 
for solving these problems. Again DESCON is 
on the second place.  

As we know the convergence of conjugate 
gradient algorithms is very dependent by the 
entire spectrum of the Hessian. Suppose that 
the Hessian is a positive definite matrix. If the 
eigenvalues of the Hessian matrix are contained 
in, let say, m  disjoint intervals of very small 
length on the real axis, then the conjugate 
gradient algorithms will produce very small 
gradients after at most m  steps. In case of 
functions with Hessian a block-diagonal matrix 
the eigenvalues of Hessian are clustered in a 
number of disjoint intervals. Therefore, for 
these sorts of functions all the algorithms 
considered in this numerical study are faster 
versus functions with some other structures of 
the Hessian.  

6.2 The weakness of numerical 
experiments and comparisons using 
artificially test problems 

From the above numerical experiments and 
comparisons we have the computational 
evidence that the conjugate gradient algorithms 
considered in this numerical study are able to 
solve a large variety of large-scale 
unconstrained optimization problems of 
different nonlinear complexity and with 
different structures of their Hessian matrix. 
This is the main remark of this numerical study.  

Apparently some algorithms are more efficient, 
or more robust, or faster than others. For 
example, from Figures 14 and 15, it seems that 
the algorithms DESCON and THREECG, for 
which both the sufficient descent condition and 
the conjugacy condition are satisfied, are the 
best in this class of algorithms. But this is not a 
definitive conclusion. This behavior is obtained 
by means of a relatively large collection of 
artificially unconstrained optimization test 
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problems we have used in our numerical study. 
It is quite clear that in front of us we have an 
infinite number of artificially unconstrained 
optimization test problems from which it is 
always possible to assemble a set of problems 
for which completely different conclusions 
about the efficiency and robustness of the 
algorithms considered in this numerical study 
are obtained. This is the weakness of numerical 
studies using artificially optimization test 
problems, even that they are of different 
nonlinear complexity and with different 
structures of their Hessian matrix. 

Therefore, in order to get a true conclusion at all 
the real unconstrained optimization applications 
must be used in numerical experiments and 
comparisons. The main characteristic of real 
optimization applications is that their 
mathematical model is written on the basis of the 
conservation laws. In this respect the Noether 
theorem [39] shows that the conservation laws are 
direct consequences of symmetries. But, in any 
time and any place we are surrounded by 
concepts that appear in dual-symmetric pairs. 
Therefore, the conservation laws have very solid 
fundamentals which are directly transmitted to the 
mathematical models of real applications. For 
example [25] and [46] present plenty of 
optimization mathematical models of real 
applications. This is the main reason why the real 
optimization applications give true insights on 
behavior of optimization algorithms.  

6.3 Solving MINPACK-2 applications 

Now, we present comparisons between 
AHYBRIDM, ASCALCG, CG-DESCENT, 
DESCON and THREECG conjugate gradient 
algorithms for solving five applications from 
MINPACK-2 test problem collection [14]. In 
Table 21, we present these applications, as well 
as the values of their parameters.  

Table 21. Applications from 
MINPACK-2 collection. 

A1 Elastic-Plastic Torsion [29, pp. 41-55], 5.c 

A2 
Pressure Distribution in a Journal Bearing 
[20], 10,b  0.1.   

A3 
Optimal Design with Composite Materials 
[30], 0.008.   

A4 
Steady-State Combustion [13, pp. 292-299], 
[17], 5.   

A5 
Minimal Surfaces with Enneper conditions 
[40, pp. 80-85]. 

The infinite-dimensional version of these 
problems is transformed into a finite element 
approximation by triangulation. The 
discretization steps are nx = 1000 and ny = 1000, 
thus obtaining minimization problems with 
1,000,000 variables. Considering ,10 6g
then the number of iterations (#iter), or the 
number of function and its gradient evaluation 
(#fg), or the CPU time (seconds), required by 
AHYBRIDM, ASCALCG, CG-DESCENT, 
DESCON and THREECG conjugate gradient 
algorithms, for solving all these applications, is 
given in Tables 22-24.  

Table 22. Performances of AHYBRIDM, 
ASCALCG, CG-DESCENT, DESCON and 

THREECG algorithms for solving applications A1 

and A2. 610g . CPU seconds. 

 A1 A2 

 #iter #fg CPU #iter #fg CPU 

AHYBRIDM 1113 1114 378.14 2845 2873 1209.13

ASCALCG 1110 1142 485.26 2842 2871 1473.58

CG-
DESCENT 

1145 2291 476.12 3370 6741 1838.77

DESCON 1113 2257 347.25 2845 5718 1122.64

THREECG 1111 2253 352.60 2845 5718 1140.19

Table 23. Performances of AHYBRIDM, 
ASCALCG, CG-DESCENT, DESCON and 

THREECG algorithms for solving applications A3 

and A4. 610g . CPU seconds.  

 A3 A4 

 #iter #fg CPU #iter #fg CPU 

AHYBRIDM 4701 4738 2876.92 1413 1451 2050.96

ASCALCG 4701 4854 3362.16 1412 1451 2192.64

CG-
DESCENT 

4814 9630 3960.59 1802 3605 3796.39

DESCON 4693 9425 2715.07 1413 2864 2003.78

THREECG 4478 9045 2641.22 1413 2864 2059.80

Table 24. Performances of AHYBRIDM, 
ASCALCG, CG-DESCENT, DESCON and 

THREECG algorithms for solving application A5. 
610g . CPU seconds. 

 A5 

 #iter #fg CPU 

AHYBRIDM 1265 1293 600.54 

ASCALCG 1280 1323 729.97 

CG-DESCENT 1225 2451 756.21 

DESCON 1277 2576 568.06 

THREECG 1298 2619 582.29 
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Subject to the CPU time metric the first, the 
second and the third places of algorithms in 
Tables 22-24 are shown in bold, italic and 
underline, respectively. The first place is 
gained by DESCON being the fastest algorithm 
for applications A1, A2, A4 and A5.  

7. Conclusions 

Conjugate gradient algorithms have been 
subjected to intensive theoretical and 
computational developments for over 60 years. 
The main ingredients used in these 
developments include: scaled memoryless 
BFGS preconditioning (Perry [41], Shanno 
[47], Andrei [9]); restarting the iterations 
(Beale [16], Powell [45], Birgin and Martínez 
[18]); acceleration of iterations (Andrei [6]); 
hybridization by convex combination of 
classical conjugate gradients (Andrei [8]); 
guaranteed sufficient descent condition and 
conjugacy conditions (Hager and Zhang [32], 
Andrei [12]). 

In this paper we have presented a 
comprehensive numerical study on efficiency 
and robustness of the most well-known eight 
conjugate gradient algorithms for solving large-
scale nonlinear unconstrained optimization 
problems of different complexities and 
structures of the Hessian matrix. Both the 
artificially test problems and real nonlinear 
optimization applications have been included in 
this study. While the artificially test problems 
lead to partial conclusions, the real nonlinear 
optimization applications give more true insights 
on performances of optimization algorithms.  

Detailed and meticulous numerical evaluation 
based on the performance profiles was applied to 
the comparisons of the algorithms showing that 
all of them are able to solve a large variety of 
large-scale unconstrained optimization problems. 
In our analysis all the problems for which two 
different algorithms found different function 
values are removed. We have the computational 
evidence that the threshold parameter f
deciding that an algorithm found a solution or not 
does not have a great influence of the 
performance profiles of efficiency or robustness.  

At least for this collection of  800 artificially 
unconstrained optimization test problems the 
CPU time performance profile for DESCON 
was higher than those of HS, PRP, ASCALCG, 
CONMIN, AHYBRIDM, CG-DESCENT and 
THREECG. The second best performance in the 

time metric was achieved by THREECG. It 
seems that the conjugate gradient algorithms 
satisfying both the sufficient descent condition 
and the conjugacy condition are the best. 
Apparently, introducing of the second order 
information in conjugate gradient algorithms 
like CONMIN, ASCALCG and AHYBRIDM 
does not have too much significance in 
efficiency or robustness of these algorithms. 
Additionally, hybridization by convex 
combination of classical conjugate gradient 
algorithms does not lead us to more efficient or 
more robust algorithms. Concerning the 
efficiency, due to its highly accurate procedure 
for step length computation, CG-DESCENT is 
the best conjugate gradient algorithm, especially 
for solving large-scale unconstrained 
optimization problems with structured Hessian 
matrix. The second place is taken by DESCON. 
For solving problems for which the Hessian 
matrix is full (unstructured), DESCON remains 
to be the best both subject to efficiency and 
robustness. Concerning the robustness DESCON 
is by far the most robust, followed by 
THREECG and followed by ASCALCG. For 
solving large-scale real nonlinear unconstrained 
optimization applications, DESCON is the 
fastest conjugate gradient algorithm. 

All in all we can conclude that conjugate 
gradient algorithms represent one of the most 
important mathematical optimization 
technologies able to solve both structured and 
unstructured large-scale unconstrained 
optimization problems and applications.  
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