
Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 259

1. Introduction

Conjugate gradient method represents an
important computational innovation for
continuously differentiable large scale
unconstrained optimization with strong local
and global convergence properties and very
modest and predictable memory requirements.
This family of algorithms includes a lot of
variants and extensions with important
convergence properties and numerical
efficiency. Different from the Newton or quasi-
Newton methods (including here the limited-
memory quasi-Newton methods), the descent
condition plays a crucial role in convergence of
the conjugate gradient algorithms. As a
characteristic the searching directions in
conjugate gradient algorithms are selected in
such a way that, when applied to minimize a
strongly quadratic convex function, two
successive directions are conjugate, subject to
the Hessian of the quadratic function.
Therefore, to minimize a convex quadratic
function in a subspace spanned by a set of

mutually conjugate directions is equivalent to
minimize this function along each conjugate
direction in turn. This is a very good and
productive idea, leading us to many variants of
conjugate gradient algorithms, but the
performance of these algorithms is strongly
dependent on the accuracy of the line search.

For solving the nonlinear unconstrained
optimization problem:

min ()
nx R

f x


, (1)

where : nf R R is a continuously
differentiable function, bounded from below,
starting from an initial guess ,0x a nonlinear

conjugate gradient algorithm generates a
sequence of points  kx , according to the

following recurrence formula

1k k k kx x d   , (2)

where k is the step length, usually obtained

by Wolfe line search [51, 52],

A Numerical Study on Efficiency and Robustness of
Some Conjugate Gradient Algorithms for
Large-scale Unconstrained Optimization

Neculai ANDREI1,2
1 Center for Advanced Modeling and Optimization,

National Institute for Research & Development in Informatics,
8-10, Averescu Avenue, Bucharest 1, Romania.
nandrei@ici.ro

2 Academy of Romanian Scientists,
54, Splaiul Independenţei, Bucharest 5, Romania.

Abstract: A numerical evaluation and comparisons using performance profiles of some representative conjugate gradient
algorithms for solving a large variety of large-scale unconstrained optimization problems are carried on. In this intensive
numerical study we selected eight known conjugate gradient algorithms: Hestenes and Stiefel (HS), Polak-Ribière-Polyak
(PRP), CONMIN, ASCALCG, CG-DESCENT, AHYBRIDM, THREECG and DESCON. These algorithms are different
in many respects. However, they have a lot of concepts in common, which give the numerical comparisons sense and
confident expectations. The initial search direction in all algorithms is the negative gradient computed in the initial point
and the step length is computed by the Wolfe line search conditions. Excepting CONMIN and CG-DESCENT, all the
algorithms from this numerical study implement an acceleration scheme which modifies the step length in a multiplicative
manner to improve the reduction of the functions values along the iterations. The numerical study is based on a set of 800
artificially large-scale unconstrained optimization test functions of different complexity and with different structures of
their Hessian matrix. A detailed numerical evaluation based on performance profiles is applied to the comparisons of these
algorithms showing that all of them are able to solve difficult large-scale unconstrained optimization problems. However,
comparisons using only artificially test problems are weak and dependent on arbitrary choices concerning the stopping
criteria of the algorithms and on decision of whether an algorithm found a solution or not. To get definitive conclusions
using this sort of comparisons based only on artificially test problems is an illusion. However, using some real
unconstrained optimization applications we can get a more confident conclusion about the efficiency and robustness of
optimization algorithms considered in this numerical study.

Keywords: Large scale unconstrained optimization. Conjugate gradient algorithms. Numerical comparisons.
Benchmarking, Performance profiles, Data profiles, MINPACK-2 applications.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 260

() () ,T
k k k k k k kf x d f x g d    (3a)

1 ,T T
k k k kg d g d  (3b)

with 0 1/ 2 1,     and the directions

kd are computed as:

1 1k k k kd g s    , 0 0.d g  (4)

Here k is a scalar known as the conjugate

gradient parameter, ()k kg f x  and

1 .k k ks x x  In the following

1 .k k ky g g  Even that the conjugate
gradient algorithms correspond to different

choices for the parameter k , often they are
designed in a specific manner in such a way

that the search direction kd satisfies the

sufficient descent condition
,

2

kk
T
k gcdg 

for some arbitrary positive constant .0c In
these algorithms, the conjugacy condition, or
the modified conjugacy condition, is

,01  k
T
k yd or),(11 k

T
kk

T
k sgtyd   where

0t is a scalar. When applied to general
nonlinear functions, often, the searching
directions in conjugate gradient algorithms
are computed using some formulas which do
not satisfy the conjugacy condition.
However, by extension we call they
conjugate gradient algorithms.

The elaboration of nonlinear optimization
software using nonlinear conjugate gradient
algorithms is a very active field of research. On
one hand, many conjugate gradient algorithms
have achieved a maturity stage and are
frequently used for solving a wide range of real
applied problems in a large variety of areas. On
the other hand, plenty of conjugate gradient
algorithms are continuously elaborated and
therefore their efficiency and robustness need
to be established. The development of different
versions of nonlinear conjugate gradient
algorithms can be presented as follows.
Classical conjugate gradient algorithms:
Hestenes and Stiefel [33], Fletcher and Reeves
[26], Daniel [21], Polak and Ribière [42] and
Polyak [43], conjugate descent by Fletcher
[27], Liu and Storey [36] and Day and Yuan
[22]. Hybrid conjugate gradient algorithms
using projections: hybrid Dai-Yuan [23],

Gilbert and Nocedal [28], Hu and Storey [34],
Touati-Ahmed and Storey [50], hybrid Liu and
Storey [36], and hybrid conjugate gradient
algorithms using the concept of convex
combination of classical schemes: convex
combination of Hestenes-Stiefel and Dai-Yuan
with Newton direction [3, 4, 8], convex
combination of Polak-Ribière-Polyak and Dai-
Yuan with conjugacy condition [7]. Scaled
BFGS preconditioned conjugate gradient
algorithms by Shanno [47, 48], Birgin and
Martínez [18] and Andrei [2, 9]. Conjugate
gradient algorithms with guaranteed descent
and guaranteed conjugacy conditions by Hager
and Zhang [32] and Andrei [12]. Three-term
conjugate gradient algorithms [10, 11].

The purpose of this paper is to study the
performance of some conjugate gradient
algorithms in a controlled numerical
environment to highlight the main differences
among them and to indicate the developer of
algorithms and practitioner the best algorithms
and the types of problems that are well suited to
each algorithm. Therefore, we are interested to
see the efficiency and robustness of some
conjugate gradient algorithms for solving a
large class of large-scale unconstrained
optimization problems. For this purposes from
the above classes of algorithms we selected a
number of eight conjugate gradient algorithms,
which seem to be the most representative:
Hestenes and Stiefel, (HS) [33], Polak-Ribière-
Polyak (PRP) [42, 43], CONMIN [47-49],
ASCALCG [2, 9], CG-DESCENT [32],
AHYBRIDM [3, 8], THREECG [10] and
DESCON [12]. For a numerical evaluation of
these algorithms the performance profiles [24]
or the data profiles [37] are now standards for
presenting efficiency and robustness as well as
the numerical comparisons. Besides, the
collection of unconstrained optimization test
problems used in evaluation may have a great
influence on the conclusions of the numerical
study of these algorithms. In order to see the
performances of these algorithms we assembled
a collection of 800 large-scale unconstrained
optimization test problems of a large variety
and of different complexity and different
structures of their Hessian matrix. The
comparisons among algorithms are presented
using the performance profiles. Besides, a
number of five applications from MINPACK-2
collection [14] have been used to see the
performances of the conjugate gradient
algorithms considered in this numerical study.

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 261

Our study is limited by this collection of test
problems we used. However, we have tried to
consider a test set of considerable diversity.
Some of the artificially test problems are
quadratic or nearly quadratic, while others are
cubic or cubic perturbed with quadratic and
linear. Some are combinations of quadratics
including exp, sin or cos functions. There are
varying degrees of nonlinearity and ill-
conditioning. The functions are expressed in
extended or generalized form as a sum or
difference of element functions [31]. It is worth
saying that the Hessian of the functions from
this collection has different structure: diagonal,
block-diagonal, tri-diagonal or penta-diagonal,
bounded-diagonal, bounded-block-diagonal,
etc. or full Hessian. The numerical
conclusions concerning the efficiency and
robustness of algorithms are based on this
sample of functions, but we hope that they
may be more generally useful for both the
developer of algorithms for unconstrained
optimization or practitioners faced with
solving practical applications.

All these eight Fortran codes, which implement
the conjugate gradient algorithms considered in
this numerical study, are not new. The oldest is
CONMIN, the 1978 version written by Shanno
and Phua [49]. CG-DESCENT is version 1.4,
(2005) written by Hager and Zhang [32]. The
most recent are ASCALCG (2010) [9],
AHYBRIDM (2010) [8], THREECG (2013)
[10] and DESCON (2013) [12], all written by
Andrei. In our numerical experiments we do
not try to tune the algorithms to a particular set
of test problems, and a single fixed version of
each algorithm with fixed parameters was used.

As a general conclusion of this numerical study
we can indicate that the conjugate gradient
software analyzed in this numerical study is
able to solve a very large diversity of
unconstrained optimization problems of
different complexity and with different
structures of the Hessian matrix. At least for
this set of artificially test problems, concerning
the efficiency, CG-DESCENT is slightly more
efficient, followed by DESCON and followed
by THREECG. Subject to robustness by far
DESCON is the most robust, followed by
THREECG and followed by ASCALCG. It
seems that the conjugate gradient algorithms
implementing both the sufficient descent
condition and the conjugacy condition are the
best. However, this is not a definitive
conclusion. In front of us there are an infinite

number of artificially unconstrained
optimization test problems and it is always
possible to assemble a set of problems for
which the efficiency and robustness of the
considered algorithms are completely different.
However, in order to have a true conclusion at
all we compared the above algorithms on five
applications from MINPACK-2 collection with

610 variables. In this case DESCON proved to
be the fastest and the most reliable algorithm.

The structure of the paper is as follows. In
section 2 the main characteristics of
unconstrained optimization test problems
considered in this numerical study are presented.
A detailed presentation of the comparison
framework including the performance profiles
and the data profiles, their advantages and
weakness, and the efficiency and the robustness
of an algorithm is given in section 3. In section 4
we present the conjugate gradient algorithms
considered in this numerical study insisting on
their definition and convergence properties.
Section 5 is devoted to present the numerical
experiments and comparisons using the
performance profiles. In section 6 some
discussions are given including some
comparisons among algorithms for solving
problems with different structures of the
Hessian, the weakness of the numerical
experiments and comparisons using artificially
test problems and some results and comparisons
for solving five MINPACK-2 applications.
Conclusions are drawn in the last section.

2. Unconstrained Optimization
Test Problems Considered in
this Numerical Study

In this numerical study, we have considered 80
large-scale unconstrained optimization test
functions, in extended or generalized form we
presented in [5], some of them being taken
from Cuter collection [19]. Each problem was
tested 10 times for a gradually increasing
number of variables:

.10000,,2000,1000 n Therefore, we
obtained a set of 800 unconstrained
optimization test problems of different
complexity and with different structures of
their Hessian. The problems considered in this
numerical study are in generalized or extended
form as a sum or difference of element
functions [31] of different nonlinear
complexity. The structure of the Hessian matrix

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 262

of the generalized functions is tri-diagonal or
multi-diagonal. The structure of the Hessian
matrix of the extended function is block-
diagonal. Some functions are highly nonlinear
and ill-conditioned.

In [38] Nash and Nocedal suggested some
criteria to classify the test problems used in
numerical studies. For the various function
characteristics that are relevant to the
convergence theory or computational
performances of algorithms they selected the
following criteria: deviation from quadratic
(degree of nonlinearity), condition number of
the Hessian, convexity, eigenvalue structure,
cost of evaluating the function and its gradient,
etc. None of these criteria is operational for
large-scale unconstrained optimization. For
example, the deviation from quadratic involves
the computation of the Hessian which is a very
difficult task for functions with a large number
of variables. Probably, the most important
criterion is the eigenvalue structure of the
Hessian. The eigenvalue distribution greatly
affects the performance of conjugate gradient
algorithms. However, in case of large-scale
optimization computation of eigenvalue
structure of the Hessian is not tractable. Also,
convexity, an important concept in

optimization, is difficult to be established.
Hence, we do not classify the problems
according to these criteria because we believe
that they are not relevant for our purpose and,
besides, there is not a clear conclusion
concerning the performances of algorithms
subject to the criteria considered in [38].

However, we can classify the problems
according to the structure of their Hessian.
Knowing the analytical expression of the
gradient it is very easy to get the structure of
the Hessian. In this numerical study, out of 80
functions for 10 of them the Hessian is a
diagonal matrix, for 19 the Hessian is a block-
diagonal matrix, for 22 the Hessian is tri-
diagonal (or penta-diagonal) and finally for 16
of them the Hessian is a full matrix.
Therefore, in the last section of the paper we
present some comments about the
performances of the above conjugate gradient
algorithms for solving problems with different
structures of the Hessian.

3. Comparison Framework

3.1 Performance profiles versus data profiles

Both performance profiles [24] and data
profiles [37] are common standards for
presenting the numerical comparisons among
algorithms. In the following we shall present
them insisting both on their importance and the
main differences. Let us consider a number m
of methods mMM ,,1  used for solving p

problems pPP ,1 and let ijt be a metric

representing the effort method iM made for

solving problem jP in order to get a point in

which the value of the function is .ijf We

assume that the metric ijt is such that the

smaller its value, the higher the performance of
the method iM for solving the problem .jP

Consider min
jt the smallest value among all the

ijt required by each method iM that get a

solution for problem .jP With these elements

let us define the performance profile of method

iM as (5):

where A# is the cardinality of the set .A
Observe that the performance profiles, as
defined in (5), represent a curve very useful for
graphical representation of comparisons among
several methods for solving large sets of
problems. Mainly,)(i represents the

fraction of problems a method iM solved

within a prescribed limit on its performance
measurement like, for example, the number of
iterations, or the number of functions
evaluation or the CPU time. The main
characteristic of the performance profile is that
for each problem, the imposed limit is a
proportion 1 of the performance
measurement of the most efficient method for
solving this particular problem. Therefore, for
a given method ,iM)1( i represents the

fraction of problems for which the method was
the most efficient over all methods. On the
other hand,)( i represents the fraction

  

,
:,,1#

)(
min

p

ttwithPforsolutionafoundMpj jijji
i








 (5)

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 263

of problems solved by method ,iM

irrespective of the required effort. In this
context,)1( i is associated to the

efficiency of method ,iM while)( i is

associated to the robustness of method .iM

It is worth saying that the performance profile
gives the same importance both to the problems
easy to be solved and to the problems hard to
be solved, where by easy we understand that
the problem can be solved without a consistent
effort (number of iterations, or number of
functions evaluation or CPU time).

In order to make a difference between the easy
problems and the hard ones the data profiles
has been introduced as (6):

As we can see,)(i represents the fraction of

problems method iM is able to solve within a

prescribed limit on its performance
measurement like the number of iterations, or
the number of function evaluations, or CPU
time. Observe that in this case the limit is
independent of the performances of the other
methods considered in a numerical study.

The difference between these two profiles is
major and there is not a clear answer which
one from these two to prefer. However, in this
paper we select the performance profiles as
the main instrument for comparing the
algorithms. The motivation behind this
selection is that we consider the easy and the
hard problem have the same importance
within a set of test problems.

3.2 Solving an unconstrained
optimization problem and
comparison framework

In this numerical study by solving an
unconstrained optimization problem we
understand that the methods mMM ,,1 

determine local solutions of the problems

pPP ,1 . For a given problem it is quite

possible that two different methods determine
two different local minimizers with different
function values. There is a great discussion
whether all these problems should be removed

from the performance evaluation process or
not. In our analysis all the problems for which
two different methods found different function
values are removed. The motivation behind this
selection is that we are interested to compare
algorithms which find the same function values
(in a given tolerance) to see the main
characteristics of the optimization processes
concerning the number of iterations, the
number of function and its gradient evaluations
and the CPU running time.

In case of the unconstrained optimization the
quality of solutions can be very simple
evaluated by comparing only the values of
function to be minimized. Since we are
working in floating-point arithmetic we must
compare two function values using relative

errors, as follows. Let us consider that when the
methods mMM ,,1  are applied for solving a

particular problem, the following function
values mff ,,1  are obtained. Let

 mfff ,,min 1
min  and consider

,
},1max{ min

min

f

ffi
i


 .,,1 mi  (7)

Therefore, for a given tolerance ,0f we

say that the method iM found a solution if

,f
i   (8)

i.e. in comparisons when 1min f we

consider “small absolute errors”, and “small
relative errors” otherwise. It is quite clear that
using relative errors in this manner, the
question is the value of the threshold parameter

.f Arbitrary small or large value choices of
this parameter will have some influence in the
comparison of algorithms. Since we do not
have any possibility to fix a “good” value for

,f in this numerical study we compare the

algorithms using the performance profiles)1(

(efficiency) and)( (robustness) for 6

different values of f : .10,,10 83  f
From our intensive numerical experiments we
observed that the value of the threshold

  

.
:,,1#

)(
p

twithPforsolutionafoundMpj ijji
i








 (6)

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 264

parameter f does not have a great influence
on the performance profiles)1( and)( of
the algorithms. In order to have a better
understanding of the efficiency and the
robustness of algorithms we present the
performance profiles for 16,,1 and

.10 3f

4. Conjugate Gradient
Algorithms Considered in this
Numerical Study

In this work we focus on unconstrained
optimization software which implements
conjugate gradient algorithms. The eight
solvers considered in this numerical study
include: the classical conjugate gradient
algorithms Hestenes and Stiefel (HS)

(k
T
kk

T
k

HS
k syyg /1) [33] and Polak-Ribière-

Polyak (PRP) (k
T
kk

T
k

PRP
k ggyg /1) [42, 43];

the BFGS preconditioned conjugate gradient
algorithms CONMIN [49] and ASCALCG [9];
a conjugate gradient algorithm with guaranteed
descent CG-DESCENT [32]; a hybrid
conjugate gradient algorithm as a convex
combination of HS, and Day and Yuan
conjugate gradient algorithms AHYBRIDM [3,
8]; a simple three-term conjugate gradient
algorithm which satisfy both the descent and
the conjugacy conditions THREECG [10], and
a conjugate gradient algorithm for which both
the descent and the conjugacy conditions are
guaranteed with modified second Wolfe line
search condition DESCON [12]. In this study
we are interested to see the efficiency and the
robustness of these algorithms and to compare
their performances subject to a large class of
artificially test problems and real unconstrained
optimization applications.

Intensive numerical experiments proved that in
conjugate gradient algorithms the step length
may differ from 1 in a very unpredictable
manner. They can be larger or smaller than 1
depending on how the problem is scaled. This
is in very sharp contrast to the Newton and
quasi-Newton algorithms, including the limited
memory quasi-Newton algorithms, which
accept the unit step length most of the time
along the iterations, thus requiring only few
function evaluations per search direction.
Therefore, excepting CONMIN and CG-
DESCENT, all the algorithms from this

numerical study implement an acceleration
scheme which modifies the step length in a
multiplicative manner to improve the reduction
of the functions values along the iterations [1,
6]. The initial search direction in all algorithms
is 00 gd  and the step length is computed by

the Wolfe line search conditions implemented
in the same manner. The initial guess of the
step length at the first iteration is ./1 00 g

At the following iterations, in all algorithms,
the starting guess for step k is computed as

./
2211 kkk dd  This strategy proved to be

one of the best selection of the initial guess of
the step length.

The HS and PRP conjugate gradient
algorithms are very well known in literature.

Both of them have k
T
k yg 1 in numerator and

possess a built-in restart feature that directly
addresses the jamming, which is a very
important property. When the step

kkk xxs  1 is small, the factor ky in the

numerator of HS
k and PRP

k tends to zero.

Therefore, HS
k and PRP

k become small and

the direction 1kd corresponding to HS or

PRP algorithms is essentially the steepest
descent direction .1 kg Hence, the HS and

PRP methods automatically adjust the
parameter k to avoid jamming. The HS

method has the property that the conjugacy

condition 1 0T
k ky d   always holds,

independent by the line search. If f is
uniformly convex and the line search is exact,
Polak and Ribière [42] proved the global
convergence of PRP algorithm. On the other
hand, for general nonlinear function Powell
[45] proved the global convergence of PRP
algorithm if the step size ks tends to zero, the

line search is exact and the gradient is
Lipschitz continuous. Using an exact line

search, .HS PRP
k k  Therefore, the

convergence properties of the HS algorithm
should be similar to the convergence
properties of the PRP algorithm. But, for
general nonlinear functions the convergence
of the PRP method is uncertain. The classical
Powell’s example shows that when the
function is not strongly convex, the PRP
algorithm may not converge, even with an
exact line search [44]. Hence, the HS

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 265

algorithm with an exact line search may not
converge for general nonlinear functions.
However, although HS and PRP may not
converge in general, they often perform better
than some other conjugate gradient algorithms
like Fletcher and Reeves (FR)

(
2 2

1 /FR
k k kg g ) [26], Dai and Yuan (DY)

(
2

1 /DY T
k k k kg y s ) [22] and the Fletcher’s

algorithm CD (
2

1 / ()CD T
k k k kg g s  ) [27].

The line search in both HS and PRP is based
on the Wolfe conditions implemented in the
same manner.

Both CONMIN and ASCALCG belong to the
same class of conjugate gradient algorithms
based on scaled BFGS preconditioning.
CONMIN elaborated by Shanno and Phua [49]
incorporates two nonlinear optimization
algorithms, a conjugate gradient algorithm and a
variable metric BFGS one. The conjugate
gradient algorithm in CONMIN, we consider in
our numerical study, is the Beale restarted
memoryless BFGS updating algorithm, which in
fact is a modification of Perry algorithm [41].
Shanno [47] observed that the conjugate
gradient algorithms are exactly the BFGS quasi-
Newton algorithm where the approximation to
the inverse Hessian is restarted as the scaled
identity matrix at every step, as no additional
storage is used to develop a better approximation
to the inverse Hessian. The scaling factor is

computed as ./
2

kk
T
k ydy The algorithm

implemented in CONMIN is a composite
conjugate gradient algorithm in which the same
philosophy used in BFGS of modifying the
negative gradient with a positive definite matrix
which best estimates the inverse Hessian without
adding anything to storage requirements [47] is
implemented at restarting, i.e. when the Beale-
Powell restart criterion is satisfied. The linear
search uses Davidon’s cubic interpolation to find
a step-length satisfying the Wolfe line search
conditions. Shanno [47] proved that under the
assumptions on)(xf that

,)(
22 uMuxfuT  0M and Lxf )(

uniformly in ,x either 0lim  kk g or

.0lim  kk s Under the further assumption

that for any 0R the level set
 RxfxS )(: is bounded, then the

sequence  kx generated by the algorithm

converges to a point *x at which ,0)(* xg

or the sequence cycles.

On the other hand, ASCALCG elaborated by
Andrei [9] is an accelerated scaled conjugate
gradient algorithm which combines the scaled
memoryless BFGS algorithm and the
preconditioning technique. The preconditioner,
which is also a scaled memoryless BFGS
matrix, is reset when the Beale-Powell restart
criterion [16] holds. The parameter scaling the
gradient is selected as a spectral gradient:

./1 k
T
kk

T
kk syss The search direction in

ASCALCG is computed as a double quasi-
Newton update scheme (9):

1 1
1

1

() ()

1 ,

T T
k k k k

k T
k k

T T
k k k

kT T
k k k k

g s w g w s
d v

y s

y w g s
s

y s y s

 





   

 
  
 

 (9)

where 11  kr gHv and kr yHw 1 and

1rH is the BFGS approximation to the inverse
Hessian initialized with the identity matrix and
scaled by the scalar 1r at the r th iteration
where the Beale-Powell restart test is
satisfied (10):

1 1 1

11 .

T T
r r r r

r r r T
r r

T T
r r r r

r T T
r r r r

y s s y
H I

y s

y y s s

y s y s

 



  




  

 
  
 

 (10)

The restart direction is computed as

,1
*

11   kkk gQd where *
1kQ is exactly the

BFGS quasi-Newton matrix, and at every step the
approximation of the inverse Hessian is the
identity matrix multiplied by the scalar ,1k (11):

1
1 1 1 1

1 1
1 11 .

T
k k

k k k k kT
k k

T T T
k k k k k k

k k kT T T
k k k k k k

g s
d g y

y s

y y g s g y
s

y s y s y s

 

 


   

 
 

 
    

 
  

    
   

 (11)

For the step-length computation the algorithm
implements the Wolfe line search conditions in
the same manner as in CONMIN. The global
convergence of ASCALCG was established by
Babaie-Kafaki [15]. For uniformly convex
function if the gradient of the function f is
Lipschitz continuous on the level set

 )()(: 0xfxfxS  , then the search

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 266

directions generated by ASCALCG satisfy the
sufficient descent condition. For general
nonlinear functions under exact line search and
if the gradient of the function f is Lipschitz
continuous, then the algorithm satisfies the
sufficient descent condition, i.e. it is
globally convergent.

CG-DESCENT algorithm was elaborated by
Hager and Zhang [32] in order to ensure
sufficient descent, independent of the accuracy
of the line search. In CG_DESCENT the search

direction 1 1
HZ

k k k kd g s    , where

2

12 ,

T

kHZ k
k k kT T

k k k k

y g
y s

y s y s
 

 
   
 
 

 (12)

satisfies the sufficient descent condition
2

(7 / 8) .T
k k kg d g  If the function f is a

quadratic and the line search is exact, then
CG_DESCENT reduces to HS. In fact,
CG_DESCENT is a modification of HS
algorithm. However, in CG_DESCENT the
search directions do not satisfy the conjugacy
condition. Again, when iterates jam the

expression
2 2

1(()) / ()T T
k k k k ky s g y s in the

above formulation of HZ
k becomes negligible.

This modification of the HS scheme makes
CG_DESCENT to perform better than HS [32].
In order to obtain global convergence for
general nonlinear functions, the algorithm

truncates the parameter HZ
k in a manner

similar to PRP+ [28]. It is not clearly known
that this truncation mechanism is benefic in the
economy of the algorithm. Under standard
assumptions the algorithm that satisfies the
Wolfe line search is convergent in the sense
that either 0kg for some k or

0inflim  kk g [32]. A very simple restart

scheme is implemented in CG-DESCENT:
when the number of iterations is a multiple of
n , then the searching direction is reset to the
negative gradient. However, for the vast
majority of problems the number of iterations
for solving a problem is much smaller that its
dimension. Therefore, the restart iterations are
very seldom used.

AHYBRIDM, elaborated by Andrei [3, 8], is an
accelerated hybrid conjugate gradient algorithm
in which the parameter k is computed as a

convex combination of HS
k and DY

k where

the parameter k in the convex combination is

computed in such a way the direction
corresponding to the conjugate gradient
algorithm is the best direction we know, i.e. the
Newton direction, while the pair),(kk ys

satisfies the modified secant given by Li et al.
[35] ,1 kkk zsB  where

kkkkk ssyz)/(
2 and

.)()(2 11 k
T

kkkkk sggff  

Therefore,

(1) HS DY
k k k k k       (13)

where

1
1

1
1

1

.

T
Tk k k
k k kT T

k k k k
k T

T k k
k k kT

k k

y g
s g

s s y s

g g
g g

y s

 










 
  

 


 (14)

 is a scalar parameter (1 in our numerical
experiments). In [8] we have the computational
evidence that AHYBRIDM, as a convex
combination of HS and DY conjugate gradient
algorithms, is top performer versus the hybrid
conjugate gradient algorithms obtained by
projections, like hybrid Dai and Yuan [23]

(  ,,min,max DY
k

HS
k

DY
k

hDY
k c   where

)1/()1( c), Gilbert and Nocedal [28]

(  FR
k

PRP
k

FR
k

GN
k  ,min,max ) or

hybrid Liu and Storey [36]

(  CD
k

LS
k

CDLS
k  ,min,0max ,

)/()(1 k
T
kk

T
k

LS
k sgyg ). This is the reason

we selected AHYBRIDM in this numerical
study on the efficiency and robustness of
conjugate gradient algorithms. The step-length
is computed using the Wolfe line search. An
acceleration scheme is implemented by
modifying the step-length in order to improve
de reduction of function values along the
iterations. Under classical assumptions, both
for uniformly convex functions and for general
nonlinear functions the algorithm with strong
Wolfe line search is globally convergent [8].

THREECG is a simple three-term conjugate
gradient algorithm developed by Andrei [10].
The algorithm is a modification of the HS

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 267

algorithm or of CG-DESCENT in such a way
that the search direction is descent and it
satisfies the conjugacy condition. These
properties are independent of the line search.
Also, the algorithm could be considered as a
very simple modification of the memoryless
BFGS quasi-Newton method. The search
direction is computed as:

1 1 ,k k k k k kd g s y      (15)

where

2

1 11 ,
T T

k k k k k
k T T T

k k k k k k

y s g y g

y s y s y s
  

 
    
 
 

 (16)

1 .
T
k k

k T
k k

s g

y s
  (17)

The new approximation of the minimum is
obtained by the general Wolfe line search
conditions and the acceleration technique. For
uniformly convex functions, under standard
assumptions, the algorithm is globally
convergent [10].

Finally DESCON [12] is a conjugate gradient
algorithm for which both the descent and the
conjugacy conditions are guaranteed. The
search direction is selected as

1 1k k k k kd g s     , (18)

where

2

1

1

()
1

T
k k kk k

k T
k k k k

y s ga b

y g
 



 
   

   
, (19)

2

11 1
T

kk k k
k kT

k k k k

gy g b
a

y s
   

     
 (20)

and

1 1() ,T T
k k k k ka v s g y g   (21)

2

1 1 1() ()(),T T T
k k k k k k k kb w g y s y g s g    (22)

2

1 1 1()() ().T T T
k k k k k k k ky g s g g y s     (23)

0w and 0v are arbitrary positive
constants which specify the sufficient descent

condition
2

1!1   kk
T
k gwdg and the

conjugacy condition),(11 k
T
kk

T
k sgvyd  

respectively. The algorithm introduces the

modified Wolfe line search conditions, in
which the parameter in the second Wolfe
condition is modified at every step as:

2 2

1 1 1/ ()T
k k k k kg y g g     . (24)

The algorithm implements the acceleration
scheme. Both for uniformly convex functions
and for general nonlinear functions, the
algorithm with strong Wolfe line search
generates directions bounded away from
infinite. Therefore, the algorithm is globally
convergent [12].

HS, PRP, AHYBRIDM, THREECG and
DESCON use the Beale-Powell [16, 45] restart

mechanism: if
2

11 2.0   kk
T
k ggg is

satisfied, then .11   kk gd In our numerical

experiments we noticed that for solving a
problem this test is used in many
iterations representing a sort of relaxation of
the algorithm.

Excepting CG-DESCENT all the algorithms
considered in this numerical study use exactly
the same implementation of the Wolfe line
search (3). This is an advanced implementation
with Davidon’s cubic interpolation and
different safeguards to ensure that the search
procedure cannot be stuck or attempt to move
away past a local maximum to a more distant
local minimum.

5. Numerical Experiments
and Comparisons

In the present numerical experiments we
considered 800 large-scale unconstrained
optimization test problems of the form

}:)(min{ nRxxf  . The stopping criterion
associated with successful convergence of the
algorithms, very used in large-scale
optimization, was

,g
kg 


 (25)

where


. is the maximum absolute component

of a vector. Concerning the threshold parameter
g there is not a clear rule to establish its

value. However, in order to achieve small
values of the sup-norm of the gradient we
selected 610g in (25). We see that for

problems with 410n variables (25) implies

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 268

that .10 4

2

kg In all algorithms considered

in this numerical study, for the step length k
computation, the same implementation of the
Wolfe line searches conditions (3) is used,
where 410 and .8.0 In DESCON the

parameter  is computed at every step as in
(24). At the same time, even CG-DESCENT
has two procedures for the step length k

computation, the classical Wolfe line search (3)
and the approximate Wolfe line search, in our
numerical experiments we have considered
only the classical Wolfe conditions. In all cases
we preserved the software’s default parameters.
Software was compiled with Fortran 77, option
–O4. The numerical experiments were executed
on a Workstation Intel Pentium 4 with 1.8
GHz. Excepting CONMIN, all algorithms use
the loop unrolling of depth 5.

In all the numerical comparisons we selected to
use the performance profiles [24] to present the
results of the numerical experiments. This is
motivated by the fact that using a large set of
test problems, the easy-to-solve problems have
the same importance as the harder ones.
Besides, the performance profiles illustrate
both the efficiency and the robustness of a
method versus some other methods considered
in this numerical study. The performance
profiles correspond to the CPU time metric in
which all the problems that do not satisfy the
criterion (8) have been ignored. It is worth
saying that the performance profiles refer to a
comparative analysis of eight conjugate
gradient algorithms using only two algorithms
each time.

5.1 DESCON versus classical conjugate
gradient algorithms HS and PRP

Considering 310f in (8), in Figures 1 and
2 we present the performance profile of
DESCON versus HS and PRP subject to CPU
time metric, respectively. Observe that the best
performance, relative to the CPU time metric,
was obtained by DESCON, the solid top curve
in Figures 1 and 2. The figures indicate that
relative to CPU time metric, DESCON is
fastest. Since all these three codes use the same
line search based on Wolfe conditions
(implemented in exactly the same manner),
these codes only differ in their choice of the
search direction.

Comparing, for example, DESCON versus HS
(see Figure 1), subject to the number of
iterations, we see that DESCON was better in
610 problems (i.e. it achieved the minimum
number of iterations in 610 problems). HS was
better in 84 problems and they achieved the
same number of iterations in 62 problems, etc.
Out of 800 problems, only for 756 problems
does the criterion (8) holds with .10 3f
Therefore in comparison with HS (see Figure
1) and PRP (see Figure 2) DESCON appear to
generate the best search direction on average.

Figure 1. DESCON versus HS. (310f)

Figure 2. DESCON versus PRP. (310f)

Tables 1 and 2 present the efficiency and
robustness rates of DESCON versus HS and of
DESCON versus PRP respectively, for

610g and  .10,,10 83  f From
these Tables we have the computational
evidence that DESCON is the most efficient
and the most robust method for every value of

f in the set:  .10,,10 83   For example, for

,10 3f from Table 1 we see that DESCON
is 8.069% more efficient than HS and 12.037%
more robust. Concerning PRP, DESCON is

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 269

9.272% more efficient and 12.848% more
robust. In Tables 1 and 2 Nrp is the number of
problems, out of 800 used in these numerical
studies that satisfy criterion (8). Again, from
Tables 1 and 2 observe that the value of the
threshold parameter f does not have a great
influence on performance profiles)1( and

)( of DESCON versus HS and PRP. All
these three algorithms use the Beale-Powell

restart procedure. If
2

11 2.0   kk
T
k ggg is

satisfied, then ,11   kk gd i.e. the current

direction is the negative gradient. This is an
important ingredient in conjugate gradient
algorithms representing a sort of relaxation of
iterations. It is worth seeing the restart
iterations in these algorithms for a particular
problem. Let us consider the problem #3

(extended Rosenbrock function). This problem
was chosen because it illustrates the typical
performance that we observed in numerical
experiments. For 1000n to get the optimal
solution, DESCON needs 57 iterations out of
which 21 are restart iterations, i.e. 36.842% are
restart iterations. On the other hand, HS needs
79 iterations, out of which 46 are restart
iterations, i.e. 58.227% are restart iterations. In
the same context, PRP needs 78 iterations, 42
from these being restart iterations, i.e. 53.846%
are restart iterations that use the negative
gradient as the searching direction. Observe
that DESCON needs the least number of restart
iterations, and this is the reason of its
efficiency and robustness in comparisons with
HS and PRP.

HS and PRP conjugate gradient algorithms use
the Wolfe line search conditions (3) where

410 and .8.0 On the other hand,
DESCON again use the Wolfe line search (3),
but at every step modifies k as in (24).

5.2 DESCON versus CONMIN and
ASCALCG

For 310f Figures 3 and 4 present the
performance profiles of DESCON versus
CONMIN and ASCALCG, respectively. The
best performance, relative to the CPU time
metric, again was obtained by DESCON, the
solid top curve in Figures 3 and 4. We see that
out of 800 problems used in these numerical
experiments in case of CONMIN only 730
satisfy criterion (8). In case of ASCALCG only
743 problems satisfy the same criterion. Tables
3 and 4 present the performance profiles)1(

and)( of DESCON versus CONMIN and
ASCALCG, respectively. From Tables 3 and 4,
for ,10 3f observe that DESCON is
23.287% more efficient than CONMIN and
35.262% more efficient than ASCALCG.
Concerning the robustness, from the same
tables we see that DESCON is 3.151% more
robust than CONMIN and 1.076% more robust
than ASCALCG. Observe that DESCON is
more efficient and more robust versus
CONMIN and ASCALCG, respectively, for
every value of f in the considered set

 .10,,10 83  

Table 1. Performance profiles)1( and)( of

DESCON versus HS.

f Nrp
)1()(

DESCON HS DESCON HS

310
 756 0.69841 0.61772 0.99735 0.87698

410
 727 0.69876 0.62173 0.99725 0.87208

510
 700 0.70143 0.62857 0.99714 0.86714

610
 677 0.70901 0.62925 0.99705 0.86263

710
 647 0.71252 0.63679 0.99691 0.85781

810
 620 0.71613 0.64677 0.99677 0.85806

Table 2. Performance profiles)1( and)( of

DESCON versus PRP.

f Nrp
)1()(

DESCON PRP DESCON PRP

310
 755 0.70861 0.61589 0.99735 0.86887

410
 724 0.71685 0.61326 0.99724 0.86326

510
 697 0.71736 0.62267 0.99713 0.85796

610
 673 0.72511 0.62407 0.99703 0.85290

710
 629 0.72019 0.64865 0.99682 0.85056

810
 604 0.72351 0.64404 0.99669 0.85099

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 270

It is worth saying that CONMIN uses the
second order information as the BFGS update
initialized with the identity matrix at every
step. On the other hand, ASCALCG uses the
second order information as the BFGS update
in which, at every step, the approximate of the
inverse Hessian is restarted as ,1Ik  where

./1 k
T
kk

T
kk syss (0k

T
k sy by Wolfe line

search conditions.) Both CONMIN and
ASCALCG satisfy the sufficient descent
condition, but do not satisfy the conjugacy
condition. On the other hand, DESCON
satisfies both the sufficient descent and the
conjugacy conditions. Besides, DESCON uses
the second order information by using the
modified conjugacy condition

)(11 k
T
kk

T
k sgvyd   with 05.0v .

ASCALCG, is more elaborated than CONMIN.
Therefore, subject to robustness, it is closer to
DESCON than CONMIN is (see Figure 4).

Figure 3. DESCON versus CONMIN. (310f)

Figure 4. DESCON versus ASCALCG.

(310f)

There are problems for which ASCALCG takes
very few Beale-Powell restart iterations. For
example, for problem #13 (Hager), with

,1000n ASCALCG needs 42 iterations, out
of which 1 iteration is a restart one. On the
other hand, DESCON needs 44 iterations, out
of which 2 iterations are restart iterations. But,
for some other problems (not so many in this
collection) ASCALCG takes a large number of
Beale-Powell restart iterations. For example,
for problem #32 (White & Holst), with

,1000n ASCALCG needs 3111 iterations,
out of which 1281 (41.176%) are Beale-Powell
restart iterations. In this case, DESCON takes
only 148 iterations, out of which 12 (8.108%)
are restart iterations. This is the weakness
of ASCALCG.

Table 3. Performance profiles)1( and)( of

DESCON versus CONMIN.

f Nrp
)1()(

DESCON CONMIN DESCON CONMIN

310 730 0.78219 0.54932 0.99863 0.96712

410 720 0.77917 0.55417 0.99861 0.96667

510 682 0.77273 0.57918 0.99853 0.96481

610 660 0.77273 0.59091 0.99848 0.96515

710 614 0.78013 0.60098 1 0.96254

810 592 0.77365 0.61318 1 0.96284

Table 4. Performance profiles)1( and)( of

DESCON versus ASCALCG.

f Nrp
)1()(

DESCON ASCALCG DESCON ASCALCG

310 743 0.81292 0.46030 0.99596 0.98520

410 721 0.81415 0.46186 0.99584 0.98474

510 671 0.81669 0.46796 0.99553 0.98510

610 603 0.81758 0.45439 0.99502 0.98673

710 518 0.80888 0.45946 0.99421 0.99035

810 478 0.80335 0.45816 0.99372 0.99163

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 271

5.3 DESCON versus CG-DESCENT

These two algorithms differ in many respects.
CG-DESCENT was designed to guarantee the
sufficient descent condition

2
(7 / 8) .T

k k kg d g 

On the other hand, DESCON is more
elaborated it uses the second order information
by satisfying the modified conjugacy condition

)(11 k
T
kk

T
k sgvyd  

with 05.0v and the sufficient descent condition

2

1!1   kk
T
k gwdg

with .8/7w Observe that we consider
8/7w in DESCON as in CG-DESCENT.

Intensive numerical studies and sensitivity
analysis [12] proved that DESCON is very little
sensitive to the numerical values of v and .w
Besides, DESCON is equipped with an
acceleration scheme very efficient for
improving the values of the minimizing
function.

Figure 5 presents the performance profile of
DESCON versus CG-DESCENT for

.10 3f Observe that DESCON is more
efficient and more robust versus CG-
DESCENT. Out of 800 unconstrained
optimization problems considered in this
numerical study, only for 774 problems does
the criterion (8) holds. Table 5 presents the
performance profiles)1( and)( of
DESCON versus CG-DESCENT. From Table
5, for ,10 3f we see that DESCON is
6.589% more efficient than CG-DESCENT
and 4.522% more robust. For ,10 8f
DESCON is 1.540% more efficient than CG-
DESCENT and 3.236% more robust. In this
case out of 800, only for 649 problems the
criterion (8) holds. Observe that DESCON is
more efficient and more robust versus CG-
DESCENT for every value of f in the set

 .10,,10 83   In DESCON two important
ingredients have been implemented: the
acceleration and the Beale-Powell restart
iterations which are responsible with the
performances of it. On the other hand in CG-
DESCENT the restart mechanism is very
simple: when the number of iterations is a
multiple of n , then the direction is the

negative gradient. Since the number of
iterations is much smaller than n , the restart
iterations are very rare used.

Figure 5. DESCON versus CG-DESCENT.

(310f)

Table 5. Performance profiles)1( and)( of

DESCON versus CG-DESCENT.

f Nrp
)1()(

DESCON CG-DES DESCON CG-DES

310 774 0.69380 0.62791 0.99612 0.95090

410 762 0.69160 0.63517 0.99606 0.96063

510 729 0.68861 0.65295 0.99588 0.95885

610 705 0.68511 0.66525 0.99574 0.95887

710 686 0.68076 0.66910 0.99563 0.95918

810 649 0.69183 0.67643 0.99538 0.96302

Besides, we must emphasize that as 

approaches 0 and  approaches 1, the Wolfe
line search terminates quicker. Therefore, the
chosen values in CG-DESCENT 0.1  and

0.9  represent a compromise between the
desire for rapid termination of line search and
the desire to improve the function value. On the
other hand, in DESCON in subroutine for line
search we chosen 0.0001  and we limited
the number of line search iterations to 3. To
improve the function values the acceleration
scheme is used which involves only one
function evaluation. These are the rationales
DESCON is top performer versus CG-
DESCENT in Figure 5.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 272

5.4 DESCON versus the hybrid conjugate
gradient algorithm AHYBRIDM

Figure 6 presents the performance profiles of
DESCON versus AHYBRIDM. It is worth
saying that AHYBRIDM is based on the concept
of hybridization by convex combination of HS
and DY conjugate gradient algorithms in order
to exploit their attractive features. On one side
DY has strong convergence properties and HS in
numerical experiments performs better than
some other conjugate gradient algorithms, on the
other side.

We see that out of 800 unconstrained
optimization problems only for 773 problems
does the criterion (8) holds. Table 6 presents
the performance profiles)1( and)( of
DESCON versus AHYBRIDM. From Table 6
we see that DESCON is 34.670% more
efficient than AHYBRIDM and 1.164 %
more robust.

Figure 6. DESCON versus AHYBRIDM.

(310f)

Table 6. Performance profiles)1( and)( of

DESCON versus AHYBRIDM.

f Nrp
)1()(

DESCON AHYBRIDM DESCON AHYBRIDM

310
 773 0.83829 0.49159 0.99741 0.98577

410
 766 0.83943 0.48825 0.99739 0.98564

510
 746 0.83914 0.49732 0.99732 0.98660

610
 722 0.84211 0.50277 0.99723 0.99169

710
 706 0.84136 0.50992 0.99717 0.99292

810
 693 0.83838 0.51804 0.99711 0.99423

Observe that DESCON is more efficient and
more robust versus AHYBRIDM for every
value of f in the set  3 810 , ,10 .  In

numerical experiments we noticed that in
AHYBRIDM the iterations often trigger
between HS and DY and their convex
combination very seldom are used. Rephrased,
the performance profile of AHYBRIDM is a
little higher than the corresponding profiles of
HS and DY. This is the reason why DESCON
is far away more efficient than AHYBRIDM.

5.5 DESCON versus the three-term
conjugate gradient algorithm
THREECG

In Figure 7 we have the performance profiles of
DESCON versus THREECG. Out of 800
unconstrained optimization test problems only
for 778 problems does the criterion (8) holds.
Even that there is a discrepancy concerning the
efficiency, the algorithms are very close subject
to robustness. In Table 7 we see the
performance profiles)1( and)( of
DESCON versus THREECG.

Figure 7. DESCON versus THREECG.

(310f)

Table 7. Performance profiles)1( and)( of

DESCON versus THREECG.

f Nrp
)1()(

DESCON THREECG DESCON THREECG
310 778 0.75193 0.62211 0.99743 0.99229

410 771 0.75097 0.61868 0.99741 0.99222

510 760 0.75395 0.62105 0.99737 0.99474

610 737 0.75984 0.62551 0.99729 0.99729

710 727 0.76754 0.62173 0.99725 0.99725

810 704 0.76562 0.63636 0.99716 0.99858

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 273

For 310f DESCON is 12.982% more
efficient than THREECG and 0.514% more
robust. For 810f we see that THREECG
is slightly more robust than DESCON. Both
algorithms use the acceleration of iterations,
the Beale-Powell restart and the same
implementation of the Wolfe line search
conditions, but with parameter k in

DESCON modified at every step. Concerning
the restart iterations, we noticed that the
number of restart iterations for both
algorithms, are very close for all the
problems considered in this numerical study.
For example, for problem #39 (BDQRTIC)
with ,1000n to get the minimum
DESCON needs 77 iterations, out of which
12 (15.584%) are Beale-Powell restart
iterations. For the same problem
THREECG needs again 77 iterations out of
which this time 10 (12.987%) are Beale-
Powell restart iterations. Observe that
THREECG (15)-(17) is simpler than
DESCON (18)-(24), and this could be an
advantage. However, both the sufficient
descent and the conjugacy conditions are
natural properties of the THREECG. On the
other hand, in DESCON these properties are
imposed through the values of the parameters
v and ,w which may have a positive
influence on its performances.

5.6 ASCALCG versus CG-DESCENT,
AHYBRIDM and THREECG

These algorithms differ in many respects. For
example, ASCALCG, AHYBRIDM and
THREECG use the acceleration scheme, the
same line search procedure based on Wolfe
conditions, but different restart procedures. In
both algorithms AHYBRIDM and THREECG
when the restart Beale-Powell test

2

11 2.0   kk
T
k ggg

is satisfied then ,11   kk gd the negative

gradient. On the other hand, ASCALCG is an
accelerated scaled conjugate gradient
algorithm, BFGS preconditioned, using an
advanced restarting procedure. When the
Beale-Powell restart test is satisfied then the
restart direction in ASCALCG is computed
using again a BFGS preconditioned scheme,
which is time consuming in some cases. In
our numerical tests we observed that the

number of restart iterations is completely
unpredictable. For example, for problem #29
(full Hessian) with ,1000n to get the
minimum point ASCALCG needs 480
iterations. The number of restart iterations in
ASCALCG is 21 which represent 4.375% out
of the total number of iterations. On the other
hand, in AHYBRIDM the number of restart
iteration to get the solution is 689, out of
which 50 (7.256%) are restart iterations.
Finally, THREECG needs 610 iterations, out
of which 52 (8.524%) are restart iterations.
There are some other problems for which the
restart iterations are more frequent. For
example, for problem #3 (extended
Rosenbrock) with 1000n the number of
iterations to get the minimum point is 49, out
of which 42, i.e. 85.714%, are restart
iterations. On the other hand AHYBRIDM
needs 55 iterations for solving this problem.
The number of restart iterations in this case is
20 which represent 36.363% out the total
number of iterations. THREECG takes 61
iterations to solve this problem. From these
22 are restart iterations which represent
36.065%. In any case, in conjugate gradient
algorithms restart is an important ingredient
representing a relaxation of algorithm.

In Figures 8, 9 and 10 we have the
performance profiles of ASCALCG versus
CG-DESCENT, AHYBRIDM and
THREECG, respectively. Observe that all
these three conjugate gradient algorithms
CG-DESCENT, AHYBRIDM and
THREECG are more efficient than
ASCALCG. For example, from Tables 8, 9
and 10, for ,10 3f CG-DESCENT is
14.577% more efficient than ASCALCG;
AHYBRIDM is 20.755% more efficient than
ASCALCG and finally THREECG is again
31.241% more efficient than ASCALCG.
Observe that the great discrepancy
concerning efficiency is between ASCALCG
and THREECG.

Concerning robustness, ASCALCG is more
robust than CG-DESCENT (0.817%) and
AHYBRIDM (0.135%). However, from
Table 10 we see that THREECG is 0.267%
more robust than ASCALCG. The direction
in ASCALCG is more complicated (more
time consuming) and this is the reason why
its efficiency is smaller than the
corresponding efficiency of the algorithms
we compare with.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 274

Figure 8. ASCALCG versus CG-DESCENT.

(310f)

Table 8. Performance profiles)1( and)( of

ASCALCG versus CG-DESCENT.

f Nrp

)1()(

ASCALCG
CG-

DESCENT
ASCALCG

CG-
DESCENT

310
 734 0.55586 0.70163 0.98501 0.97684

410
 715 0.56364 0.69930 0.98462 0.97622

510
 674 0.56528 0.69733 0.98516 0.97478

610
 595 0.54622 0.70252 0.98655 0.97311

710
 511 0.54795 0.69863 0.99022 0.97065

810
 453 0.54967 0.69978 0.99117 0.98455

Besides the restart and the acceleration, the
other profitable ingredient used in
AHYBRIDM is the second order information
given by the modified secant condition. In
contrast to ASCALCG the second order
information in AHYBRIDM is used in a very
direct and simple manner. Therefore, the
algebraic expression of the direction is not
complicated, this being very easy to be
computed. If the line search is exact, the
direction reduces to a minor modification of the
HS algorithm. On the other hand, THREECG is
a very simple three-term conjugate gradient
algorithm which uses the second order
information as a minor modification of the
BFGS updating formula. In this algorithm the
BFGS formula is restarted with the identity
matrix at every step and the sign in front of the

T
kk sy term is changed in order to get the

descent property. Again observe that
THREECG is a modification of HS algorithm.

This modification is dependent by 1k
T
k gs

which is going to zero along the iterations.
Apparently, this contribution to the HS
direction determines a better direction in
THREECG. Concerning the robustness,
observe that ASCALCG and THREECG are
bunched closer together. This is because
ASCALCG in its essence is a more
complicated three-term conjugate gradient
algorithm (see (9)-(11)).

Together, Figures 8, 9 and 10 seem to imply that
ASCALCG is the least efficient algorithm in
comparison to CG-DESCENT, AHYBRIDM
and THREECG. The linear algebra in
ASCALCG code to update the search direction
is more time consuming than the linear algebra
in the algorithms we compare with. Therefore,
the CPU time of ASCALCG is dominated by the
cost of linear algebra. On the other hand, the
number of iterations in line search in
ASCALCG, AHYBRIDM and THREECG is
limited to 3 to get an acceptable step length.

Figure 9. ASCALCG versus AHYBRIDM.

(310f)

Table 9. Performance profiles)1( and)( of

ASCALCG versus AHYBRIDM.

f Nrp
)1()(

ASCALCG AHYBRIDM ASCALCG AHYBRIDM

310 742 0.53908 0.74663 0.99461 0.99326

410 719 0.54242 0.74548 0.99444 0.99305

510 670 0.55224 0.74179 0.99552 0.99552

610 608 0.53947 0.74836 0.99507 0.99671

710 517 0.53772 0.74855 0.99807 0.99613

810 471 0.54140 0.74310 0.99788 0.99788

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 275

Using the acceleration technique in these
algorithms this value of the step length is
modified to reduce the value of the minimizing
function. Also, it is interesting to observe that
the performances of these algorithms are
dependent on this number, which limits the
iterations in line search. It seems that the smaller
the number of line search iterations, the more
efficient the algorithms are. In CG-DESCENT,
in the line search, more function evaluations are
needed to get the stopping criterion. However,
the value of the step length in CG-DESCENT is
more accurate, and this is the rationale
concerning the efficiency of this algorithm.

5.7 CG-DESCENT versus AHYBRIDM
and THREECG

For 310f , in Figures 11 and 12 we present
the performance profiles of CG-DESCENT
versus AHYBRIDM and THREECG,
respectively. Observe that, at least for this set

of problems, CG-DESCENT is more efficient
than AHYBRIDM, and the difference is
significant, about 14.305%. However, in
comparison with THREECG, observe that this
time THREECG is very little more efficient,
about 1.428%. Concerning the robustness, both
AHYBRIDM and THREECG are more robust
than CG-DESCENT. From Tables 11 and 12
we see that this characteristic of robustness of
AHYBRIDM and THREECG is maintained for
all values of f in the set }.10,,10{ 83   For

example, for 310f , from Table 11 we see
that AHYBRIDM is about 0.918% more robust
than CG-DESCENT. Again, from Table 12
observe that THREECG is 1.948% more robust
than CG-DESCENT.

We emphasize that in CG-DESCENT the
mechanism of restarting the iterations is very
simple. Since n is often larger than the number

Figure 11. CG-DESCENT versus AHYBRIDM.
(310f)

Table 11. Performance profiles)1( and)( of

CG-DESCENT versus AHYBRIDM.

f Nrp

)1()(

CG-
DESCENT

AHYBRIDM
CG-

DESCENT
AHYBRIDM

310 762 0.71785 0.57480 0.97507 0.98425

410 754 0.72281 0.57162 0.97878 0.98408

510 731 0.73598 0.56772 0.97811 0.98632

610 703 0.74964 0.56330 0.97724 0.99147

710 680 0.75294 0.56324 0.97794 0.99118

810 643 0.75894 0.57543 0.98289 0.99222

Figure 10. ASCALCG versus THREECG.

(310f)

Table 10. Performance profiles)1( and)( of

ASCALCG versus THREECG.

f Nrp
)1()(

ASCALCG THREECG ASCALCG THREECG

310 749 0.48198 0.79439 0.99199 0.99466

410 726 0.48623 0.79614 0.99174 0.99449

510 672 0.49405 0.79911 0.99256 0.99554

610 608 0.48191 0.80263 0.99342 0.99671

710 521 0.48369 0.80230 0.99616 0.99616

810 475 0.48421 0.79368 0.99789 0.99789

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 276

of iterations needed for solving a problem, it
follows that the algorithm performs no restarts
in the vast majority of test runs. This is the
reason why the CG-DESCENT is more
efficient than AHYBRIDM. The iterations in
CG-DESCENT are not relaxed as in
AHYBRIDM and THREECG where the Beale-
Powell restart test is used.

As we know, AHYBRIDM is an accelerated
hybrid conjugate gradient algorithm obtained as
a convex combination of HS and DY conjugate
gradient algorithms. In our intensive numerical
experiments we observed that the AHYBRIDM
have the propensity to use the HS algorithm
along the iterations. Besides, we notice that
AHYBRIDM often triggers between HS and
DY, while their convex combination is seldom
used. For example for problem #3 (extended
Rosenbrock) with 1000n , AHYBRIDM
needs 55 iterations. Out of these, the HS
algorithm is used in 39 (70.92%) iterations, the

DY algorithm is used in 14 (25.45%), and the
convex combination of HS and DY is used in 2
(3.63%) iterations. This is a typical behavior of
AHYBRIDM. As we said, CG-DESCENT also
is a modification of HS algorithm, but this
modification is always used along the iterations
without any possibility to change it at least as
the negative gradient in case of restart. This is
the rationale for a better robustness of
AHYBRIDM versus CG-DESCENT.

From (12) and (16) observe that both CG-
DESCENT and THREECG have in common the
expression 2

1)/()(k
T
kk

T
kk sygsy  . When iterates

jam, ky becomes tiny while kg is bounded

away from zero. Therefore, in CG-DESCENT
when iterates jam, this expression becomes

negligible, i.e. .HS
k

HZ
k   However, in case of

jamming, in THREECG there is the third
component kk y (see 15) which compensate

the lost of robustness of CG-DESCENT.

5.8. AHYBRIDM versus THREECG

In Figure 13 we have the performance profiles
of these algorithms for .10 3f Out of 800
problems only for 782 problems the criterion
(8) holds. Observe that THREECG is about
30.563% more efficient and about 0.511%
more robust then AHYBRIDM. Besides, from
Table 13 we see that this characteristic of these
algorithms is invariant at the variation of f in

the set }.10,,10{ 83   As we have already
seen these algorithms are different in many
respects. Even that AHYBRIDM often triggers
between HS and DY trying to exploit the
attractive features of these algorithms,
THREECG is more efficient and more robust

Figure 12. CG-DESCENT versus THREECG.

(310f)

Table 12. Performance profiles)1( and)( of

CG-DESCENT versus THREECG.

f Nrp

)1()(

CG-
DESCENT

THREECG
CG-

DESCENT
THREECG

310
 770 0.64286 0.65714 0.97143 0.99091

410
 762 0.64567 0.65748 0.97507 0.99081

510
 729 0.66255 0.65432 0.97394 0.99314

610
 704 0.67756 0.64631 0.97301 0.99574

710
 682 0.68182 0.64370 0.97507 0.99560

810
 642 0.68692 0.65732 0.97975 0.99688

Figure 13. AHYBRIDM versus THREECG.

(310f)

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 277

showing the importance of three-term concept
in conjugate gradient paradigm. On the other
hand, the algebraic expression of the search
direction in THREECG is simpler then the
search direction in AHYBRIDM. This makes
THREECG more efficient that AHYBRIDM.

Table 13. Performance profiles)1( and)( of

AHYBRIDM versus THREECG.

f Nrp
)1()(

AHYBRIDM THREECG AHYBRIDM THREECG

310
 782 0.51662 0.82225 0.99361 0.99872

410
 782 0.51662 0.82225 0.99361 0.99872

510
 763 0.52425 0.82307 0.99345 0.99869

610
 741 0.52632 0.82861 0.99595 1

710
 726 0.53444 0.82782 0.99725 1

810
 704 0.54403 0.82812 0.99716 1

5.9 The performance profiles of all algorithms

Firstly, in this section we present the
performance profile of all eight algorithms
considered in this numerical study for

.10 3f The top solid curve in Figure 14
corresponds to DESCON, the top performer
among these algorithms. In Table 14 we can
see the efficiency)1( and the robustness

)( of these algorithms, relative to the CPU
time metric. Concerning the efficiency CG-
DESCENT is top performer. The second place
is taken by DESCON and the third by HS.
Concerning the robustness on the first place is

DESCON, followed by THREECG and
followed by ASCALCG.

Table 14. Performance profiles)1( and)( of

all algorithms.

The first, the second and the third places of
algorithms are shown in

bold, italic and underline, respectively.

)1()(

DESCON 0.35000 0.99853

HS 0.34118 0.87353

PRP 0.33382 0.85735

CONMIN 0.30294 0.95294

ASCALCG 0.25147 0.98529

CG-DESCENT 0.43529 0.97059

AHYBRIDM 0.23676 0.98382

THREECG 0.32059 0.99118

In Figure 14 observe that HS and PRP have the
most reduced performance profiles. Therefore,
in Figure 15 we present the performance
profiles of five algorithms for .10 3f
Observe in Figure 15 that concerning the
robustness the algorithms are grouped, but
subject to efficiency they are more dispersed,
slightly fastest being CG-DESCENT. Again,
the top solid curve in Figure 15 corresponds to
DESCON. Subject to the efficiency, from
Table 15, we see that CG-DESCENT is slightly
faster, followed by DESCON and followed by
THREECG. Concerning the robustness, the
DESCON is the most robust, followed by
THREECG and followed by ASCALCG. Since
all these algorithms use the same line search
procedure, based on the Wolfe conditions,
DESCON appears to generate the best search
direction, on average.

In Figure 15, we have the computational evidence
that these five algorithms are the best conjugate
gradient algorithms able to solve a large variety
of large-scale unconstrained optimization
problems of different structures of their Hessian.
Excepting CG-DESCENT all the algorithms
considered in Figure 15 implement an
acceleration procedure which proves to be very
efficient in reducing the values of the function
values. On the other hand, these algorithms
contain in a way or another, the second order
information which improve in a certain way the
computation of the search direction.

Figure 14. Performance profiles of all algorithms

for 610g and .10 3f

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 278

Figure 15. Performance profiles of 5 algorithms for
610g and .10 3f

Table 15. Performance profiles)1( and)( of

5 algorithms.

The first, the second and the third places of
algorithms are shown in

bold, italic and underline, respectively.

)1()(

DESCON 0.46379 0.99582

ASCALCG 0.29805 0.98329

CG-DESCENT 0.48886 0.97214

AHYBRIDM 0.27716 0.98050

THREECG 0.37326 0.98886

6. Discussion

6.1 Comparisons among algorithms for
solving problems with different
structure of the Hessian matrix

In this numerical study we classified the
problem according to the structure of their
Hessian matrix. Hence, out of 800 unconstrained
optimization test problems, considered in this
paper, for 100 of them the Hessian is a diagonal
matrix, for 190 the Hessian is a block-diagonal
matrix, for 220 the Hessian is tri-diagonal (or
penta-diagonal) and for 160 the Hessian is a full
matrix. The rest of the problems have a bounded
diagonal or a bounded block-diagonal structure
of the Hessian matrix we do not consider in our
analysis. In this section we present a comparison
of AHYBRIDM, ASCALCG, CG-DESCENT,
DESCON and THREECG conjugate gradient
algorithms for solving these four classes of
unconstrained optimization test problems. The
below tables present the efficiency and the
robustness of these algorithms.

Table 16. The efficiency and robustness of
algorithms for solving 100 test problems with

diagonal Hessian matrix. ,10 6g .10 3f

)1()(

AHYBRIDM 0.17582 0.97802

ASCALCG 0.17582 0.96703

CG-DESCENT 0.89011 1

DESCON 0.26374 1

THREECG 0.26374 1

Table 17. The efficiency and robustness of
algorithms for solving 190 test problems with block-

diagonal Hessian matrix. ,10 6g .10 3f

)1()(

AHYBRIDM 0.31138 1

ASCALCG 0.27545 1

CG-DESCENT 0.55090 0.99401

DESCON 0.41317 1

THREECG 0.48503 1

Table 18. The efficiency and robustness of
algorithms for solving 220 test problems with tri-

diagonal or penta-diagonal Hessian matrix.

,10 6g .10 3f

)1()(

AHYBRIDM 0.14894 0.99468

ASCALCG 0.06915 0.99468

CG-DESCENT 0.52128 1

DESCON 0.43085 1

THREECG 0.25000 0.99468

Table 19. The efficiency and robustness of
algorithms for solving 160 test problems with full

Hessian matrix. ,10 6g .10 3f

)1()(

AHYBRIDM 0.27451 0.94118

ASCALCG 0.35948 0.94771

CG-DESCENT 0.36601 0.92810

DESCON 0.43137 0.98039

THREECG 0.31373 0.95425

Observe that CG-DESCENT is the most efficient
algorithm for solving problems with structured
Hessian. On the other hand, DESCON is the most
efficient and the most robust algorithm for
solving problems with full Hessian.

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 279

It is worth seeing the behavior of these
algorithms for solving these four classes of
problems subject to the CPU time metric. In
Table 20 we present the total CPU time for
solving these classes of problems with the
Hessian matrix structured as: diagonal (DD),
block-diagonal (BD), tri-diagonal or penta-
diagonal (TP) and full Hessian (FH). Observe
that for solving 100 unconstrained optimization
problems with Hessian a diagonal matrix all
algorithms need a grand total of 958.85
seconds. AHYBRIDM needs 286.45 seconds.
Therefore, for AHYBRIDM, in average one
problem in this class needs 286.45/100=2.8645
seconds. Observe that the fastest algorithm for
solving problems in this class is CG-
DESCENT. For solving one problem, in
average this algorithm needs 49.51/100=0.4951
seconds. For solving this class of problems
DESCON is on the second place (in italics).

From Table 20 we have the computational
evidence that all algorithms considered in this
study are fastest for solving problems whose
Hessian is a bloc-diagonal matrix. For solving
190 problems, with Hessian a block-diagonal
matrix, all algorithms need a grand total of
40.82 seconds. We see that, in average, for
solving one problem, for which the Hessian is
bloc-diagonal, THREECG needs
7.22/190=0.038 seconds, this algorithm being
the fastest among all the algorithms considered
in this numerical study. Observe that DESCON
again is on the second place, etc.

Table 20. CPU time (seconds) for solving
unconstrained optimization test problems classified

as: DD, BD, TP and FH. ,10 6g .10 3f

The first, the second places of algorithms are shown
in bold and italic, respectively.

 DD BD TP FH

 100 190 220 160

AHYBRIDM 286.45
(2.8645)

8.26
(0.0434)

517.18
(2.3508)

594.77
(3.7173)

ASCALCG 299.96
(2.9996)

8.42
(0.0443)

795.11
(3.6141)

406.94
(2.5433)

CG-
DESCENT

49.51
(0.4951)

9.39
(0.0492)

394.88
(1.7949)

1455.53
(9.0970)

DESCON 153.00
(1.53)

7.53
(0.0396)

363.78
(1.6535)

442.69
(2.7668)

THREECG 169.93
(1.6993)

7.22
(0.038)

379.18
(1.7235)

452.63
(2.8289)

TOTAL 958.85 40.82 2450.13 3352.56

Concerning the 220 problems with Hessian a
tri-diagonal or a penta-diagonal matrix all
algorithms need a grand total of 2450.13
seconds. The fastest algorithm for solving the
problems from this class is DESCON. In
average, it needs 363.78/220=1.6535 seconds.
The second place is taken by THREECG.

Subject to CPU time metric, the most difficult
problems seem to be the problems with full
Hessian. For solving 160 problems with full
Hessian all algorithms need a grand total of
3352.56 seconds, ASCALCG being the fastest
for solving these problems. Again DESCON is
on the second place.

As we know the convergence of conjugate
gradient algorithms is very dependent by the
entire spectrum of the Hessian. Suppose that
the Hessian is a positive definite matrix. If the
eigenvalues of the Hessian matrix are contained
in, let say, m disjoint intervals of very small
length on the real axis, then the conjugate
gradient algorithms will produce very small
gradients after at most m steps. In case of
functions with Hessian a block-diagonal matrix
the eigenvalues of Hessian are clustered in a
number of disjoint intervals. Therefore, for
these sorts of functions all the algorithms
considered in this numerical study are faster
versus functions with some other structures of
the Hessian.

6.2 The weakness of numerical
experiments and comparisons using
artificially test problems

From the above numerical experiments and
comparisons we have the computational
evidence that the conjugate gradient algorithms
considered in this numerical study are able to
solve a large variety of large-scale
unconstrained optimization problems of
different nonlinear complexity and with
different structures of their Hessian matrix.
This is the main remark of this numerical study.

Apparently some algorithms are more efficient,
or more robust, or faster than others. For
example, from Figures 14 and 15, it seems that
the algorithms DESCON and THREECG, for
which both the sufficient descent condition and
the conjugacy condition are satisfied, are the
best in this class of algorithms. But this is not a
definitive conclusion. This behavior is obtained
by means of a relatively large collection of
artificially unconstrained optimization test

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 280

problems we have used in our numerical study.
It is quite clear that in front of us we have an
infinite number of artificially unconstrained
optimization test problems from which it is
always possible to assemble a set of problems
for which completely different conclusions
about the efficiency and robustness of the
algorithms considered in this numerical study
are obtained. This is the weakness of numerical
studies using artificially optimization test
problems, even that they are of different
nonlinear complexity and with different
structures of their Hessian matrix.

Therefore, in order to get a true conclusion at all
the real unconstrained optimization applications
must be used in numerical experiments and
comparisons. The main characteristic of real
optimization applications is that their
mathematical model is written on the basis of the
conservation laws. In this respect the Noether
theorem [39] shows that the conservation laws are
direct consequences of symmetries. But, in any
time and any place we are surrounded by
concepts that appear in dual-symmetric pairs.
Therefore, the conservation laws have very solid
fundamentals which are directly transmitted to the
mathematical models of real applications. For
example [25] and [46] present plenty of
optimization mathematical models of real
applications. This is the main reason why the real
optimization applications give true insights on
behavior of optimization algorithms.

6.3 Solving MINPACK-2 applications

Now, we present comparisons between
AHYBRIDM, ASCALCG, CG-DESCENT,
DESCON and THREECG conjugate gradient
algorithms for solving five applications from
MINPACK-2 test problem collection [14]. In
Table 21, we present these applications, as well
as the values of their parameters.

Table 21. Applications from
MINPACK-2 collection.

A1 Elastic-Plastic Torsion [29, pp. 41-55], 5.c 

A2
Pressure Distribution in a Journal Bearing
[20], 10,b  0.1. 

A3
Optimal Design with Composite Materials
[30], 0.008. 

A4
Steady-State Combustion [13, pp. 292-299],
[17], 5. 

A5
Minimal Surfaces with Enneper conditions
[40, pp. 80-85].

The infinite-dimensional version of these
problems is transformed into a finite element
approximation by triangulation. The
discretization steps are nx = 1000 and ny = 1000,
thus obtaining minimization problems with
1,000,000 variables. Considering ,10 6g
then the number of iterations (#iter), or the
number of function and its gradient evaluation
(#fg), or the CPU time (seconds), required by
AHYBRIDM, ASCALCG, CG-DESCENT,
DESCON and THREECG conjugate gradient
algorithms, for solving all these applications, is
given in Tables 22-24.

Table 22. Performances of AHYBRIDM,
ASCALCG, CG-DESCENT, DESCON and

THREECG algorithms for solving applications A1

and A2. 610g . CPU seconds.

 A1 A2

 #iter #fg CPU #iter #fg CPU

AHYBRIDM 1113 1114 378.14 2845 2873 1209.13

ASCALCG 1110 1142 485.26 2842 2871 1473.58

CG-
DESCENT

1145 2291 476.12 3370 6741 1838.77

DESCON 1113 2257 347.25 2845 5718 1122.64

THREECG 1111 2253 352.60 2845 5718 1140.19

Table 23. Performances of AHYBRIDM,
ASCALCG, CG-DESCENT, DESCON and

THREECG algorithms for solving applications A3

and A4. 610g . CPU seconds.

 A3 A4

 #iter #fg CPU #iter #fg CPU

AHYBRIDM 4701 4738 2876.92 1413 1451 2050.96

ASCALCG 4701 4854 3362.16 1412 1451 2192.64

CG-
DESCENT

4814 9630 3960.59 1802 3605 3796.39

DESCON 4693 9425 2715.07 1413 2864 2003.78

THREECG 4478 9045 2641.22 1413 2864 2059.80

Table 24. Performances of AHYBRIDM,
ASCALCG, CG-DESCENT, DESCON and

THREECG algorithms for solving application A5.
610g . CPU seconds.

 A5

 #iter #fg CPU

AHYBRIDM 1265 1293 600.54

ASCALCG 1280 1323 729.97

CG-DESCENT 1225 2451 756.21

DESCON 1277 2576 568.06

THREECG 1298 2619 582.29

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 281

Subject to the CPU time metric the first, the
second and the third places of algorithms in
Tables 22-24 are shown in bold, italic and
underline, respectively. The first place is
gained by DESCON being the fastest algorithm
for applications A1, A2, A4 and A5.

7. Conclusions

Conjugate gradient algorithms have been
subjected to intensive theoretical and
computational developments for over 60 years.
The main ingredients used in these
developments include: scaled memoryless
BFGS preconditioning (Perry [41], Shanno
[47], Andrei [9]); restarting the iterations
(Beale [16], Powell [45], Birgin and Martínez
[18]); acceleration of iterations (Andrei [6]);
hybridization by convex combination of
classical conjugate gradients (Andrei [8]);
guaranteed sufficient descent condition and
conjugacy conditions (Hager and Zhang [32],
Andrei [12]).

In this paper we have presented a
comprehensive numerical study on efficiency
and robustness of the most well-known eight
conjugate gradient algorithms for solving large-
scale nonlinear unconstrained optimization
problems of different complexities and
structures of the Hessian matrix. Both the
artificially test problems and real nonlinear
optimization applications have been included in
this study. While the artificially test problems
lead to partial conclusions, the real nonlinear
optimization applications give more true insights
on performances of optimization algorithms.

Detailed and meticulous numerical evaluation
based on the performance profiles was applied to
the comparisons of the algorithms showing that
all of them are able to solve a large variety of
large-scale unconstrained optimization problems.
In our analysis all the problems for which two
different algorithms found different function
values are removed. We have the computational
evidence that the threshold parameter f
deciding that an algorithm found a solution or not
does not have a great influence of the
performance profiles of efficiency or robustness.

At least for this collection of 800 artificially
unconstrained optimization test problems the
CPU time performance profile for DESCON
was higher than those of HS, PRP, ASCALCG,
CONMIN, AHYBRIDM, CG-DESCENT and
THREECG. The second best performance in the

time metric was achieved by THREECG. It
seems that the conjugate gradient algorithms
satisfying both the sufficient descent condition
and the conjugacy condition are the best.
Apparently, introducing of the second order
information in conjugate gradient algorithms
like CONMIN, ASCALCG and AHYBRIDM
does not have too much significance in
efficiency or robustness of these algorithms.
Additionally, hybridization by convex
combination of classical conjugate gradient
algorithms does not lead us to more efficient or
more robust algorithms. Concerning the
efficiency, due to its highly accurate procedure
for step length computation, CG-DESCENT is
the best conjugate gradient algorithm, especially
for solving large-scale unconstrained
optimization problems with structured Hessian
matrix. The second place is taken by DESCON.
For solving problems for which the Hessian
matrix is full (unstructured), DESCON remains
to be the best both subject to efficiency and
robustness. Concerning the robustness DESCON
is by far the most robust, followed by
THREECG and followed by ASCALCG. For
solving large-scale real nonlinear unconstrained
optimization applications, DESCON is the
fastest conjugate gradient algorithm.

All in all we can conclude that conjugate
gradient algorithms represent one of the most
important mathematical optimization
technologies able to solve both structured and
unstructured large-scale unconstrained
optimization problems and applications.

REFERENCES

1. ANDREI, N., An Acceleration of
Gradient Descent Algorithm with
Backtracking for Unconstrained
Optimization. Numerical Algorithms, vol.
42, 2006, pp. 63-73.

2. ANDREI, N., Scaled Conjugate Gradient
Algorithms for Unconstrained
Optimization. Computational
Optimization and Applications, vol. 38,
2007, pp. 401-416.

3. ANDREI, N., A Hybrid Conjugate
Gradient Algorithm for Unconstrained
Optimization as a Convex Combination
of Hestenes-Stiefel and Dai-Yuan.
Studies in Informatics and Control, vol. 17,
no. 1, March 2008, pp. 55-70.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 282

4. ANDREI, N., Another Hybrid Conjugate
Gradient Algorithm for Unconstrained
Optimization. Numerical Algorithms, vol.
47, 2008, pp. 143-156.

5. ANDREI, N., An Unconstrained
Optimization Test Functions Collection.
Advanced Modeling and Optimization, vol.
10, 2008, pp. 147-161.

6. ANDREI, N., Acceleration of Conjugate
Gradient Algorithms for Unconstrained
Optimization. Applied Mathematics and
Computation, vol. 213, 2009, pp. 361-369.

7. ANDREI, N., A Hybrid Conjugate
Gradient Algorithm for Unconstrained
Optimization, Journal of Optimization
Theory and Applications, vol. 141, 2009,
pp. 249-264.

8. ANDREI, N., Accelerated Hybrid
Conjugate Gradient Algorithm with
Modified Secant Condition for
Unconstrained Optimization, Numerical
Algorithms, vol. 54, 2010, pp. 23-46.

9. ANDREI, N., Accelerated Scaled
Memoryless BFGS Preconditioned
Conjugate Gradient Algorithm for
Unconstrained Optimization. European
Journal of Operational Research, vol. 204,
2010, pp. 410-420.

10. ANDREI, N., A Simple Three-term
Conjugate Gradient Algorithm for
Unconstrained Optimization. Journal of
Computational and Applied Mathematics,
vol. 241, 2013, pp. 19-29.

11. ANDREI, N., On Three-term Conjugate
Gradient Algorithms for Unconstrained
Optimization. Applied Mathematics and
Computation, vol. 219, 2013,
pp. 6316-6327.

12. ANDREI, N., Another Conjugate
Gradient Algorithm with Guaranteed
Descent and Conjugacy Conditions for
Large-scale Unconstrained
Optimization. Journal of Optimization
Theory and Applications, DOI:
10.1007/s10957-013-0285-9

13. ARIS, R., The Mathematical Theory of
Diffusion and Reaction in Permeable
Catalysts. Oxford, 1975.

14. AVERICK, B. M., R. G. CARTER, J. J.
MORÉ, G. L. XUE, The MINPACK-2
Test Problem Collection. Mathematics

and Computer Science Division, Argonne
National Laboratory, Preprint MCS-P153-
0692, June 1992.

15. BABAIE-KAFAKI, S., A Note on the
Global Convergence Theorem of the
Scaled Conjugate Gradient Algorithm
Proposed by Andrei, Computational
Optimization and Applications, vol. 52,
2012, pp. 409-414.

16. BEALE, E. M. L., A Derivation of
Conjugate Gradients. In F. A. Lootsma
(Ed.), Numerical Methods for Nonlinear
Optimization, Academic Press, London,
1972, pp. 39-43.

17. BEBERNES, J., D. EBERLY,
Mathematical Problems from
Combustion Theory. Applied
Mathematical Sciences, Springer-Verlag,
vol. 83, 1989.

18. BIRGIN, E., J. M. MARTÍNEZ, A
Spectral Conjugate Gradient Method for
Unconstrained Optimization. Applied
Mathematics & Optimization, vol. 43,
2001, pp. 117-128.

19. BONGARTZ, I., A. R. CONN, N. I. M.
GOULD, Ph. L. TOINT, CUTE:
Constrained and Unconstrained Testing
Environment. ACM Transactions on
Mathematical Software, vol. 21, 1995,
pp. 123-160.

20. CIMATTI, G., On a Problem of the
Theory of Lubrication Governed by a
Variational Inequality. Applied
Mathematics & Optimization, vol. 3, 1977,
pp. 227-242.

21. DANIEL, J. W., The Conjugate Gradient
Method for Linear and Nonlinear
Operator Equations. SIAM Journal on
Numerical Analysis, vol. 4, 1967,
pp. 10-26.

22. DAI, Y. H., Y. YUAN, A Nonlinear
Conjugate Gradient Method with a
Strong Global Convergence Property,
SIAM Journal on Optimization, vol. 10,
1999, pp. 177-182.

23. DAI, Y. H., Y. YUAN, An Efficient
Hybrid Conjugate Gradient Method for
Unconstrained Optimization. Annals of
Operation Research, vol. 103, 2001,
pp. 33-47.

Studies in Informatics and Control, Vol. 22, No. 4, December 2013 http://www.sic.ici.ro 283

24. DOLAN, E. D., J. J. MORÉ,
Benchmarking Optimization Software
with Performance Profiles, Mathematical
Programming, vol. 91, 2002, pp. 201-213.

25. FILIP. F. G., Sisteme suport pentru
decizii. Editura Tehnică, Bucharest, 2004.
(Editia II completată şi revizuită, 2007.)

26. FLETCHER, R., C. M. REEVES,
Function Minimization by Conjugate
Gradients, The Computer Journal, vol. 7,
1964, pp. 149-154.

27. FLETCHER, R., Practical Methods of
Optimization, vol. 1: Unconstrained
Optimization, John Wiley & Sons, New
York, 1987.

28. GILBERT, J. C., J. NOCEDAL, Global
Convergence Properties of Conjugate
Gradient Methods for Optimization,
SIAM Journal on Optimization, vol. 2,
1992, pp. 21-42.

29. GLOWINSKI, R., Numerical Methods
for Nonlinear Variational Problems.
Springer-Verlag, Berlin, 1984.

30. GOODMAN, J., R. KOHN, L. REYNA,
Numerical Study of a Relaxed
Variational Problem from Optimal
Design. Computer Methods in Applied
Mechanics and Engineering, vol. 57, 1986,
pp.107-127.

31. GRIEWANK, A., Ph. L. TOINT,
Partitioned Variable Metric Update for
Large Structured Optimization
Problems. Numerical Mathematics, vol.
39, 1982, pp. 119-137.

32. HAGER, W. W., H. ZHANG, A New
Conjugate Gradient Method with
Guaranteed Descent and an Efficient
Line Search, SIAM Journal on
Optimization, vol. 16, 2005, pp. 170-192.

33. HESTENES, M. R., E. L. STIEFEL,
Methods of Conjugate Gradients for
Solving Linear Systems. Journal of
Research of the National Bureau Standards,
vol. 49, 1952, pp. 409-436.

34. HU, Y. F., STOREY, C., Global
Convergence Result for Conjugate
Gradient Methods. Journal of Optimization
Theory and Applications, vol. 71, 1991,
pp. 399-405.

35. LI, G., C. TANG, Z. WEI, New
Conjugacy Condition and Related New
Conjugate Gradient Methods for
Unconstrained Optimization, Journal of
Computational Applied Mathematics, vol.
202, 2007, pp. 523-539.

36. LIU, Y., C. STOREY, Efficient
Generalized Conjugate Gradient
Algorithms, Part 1: Theory. Journal of
Optimization Theory and Applications, vol.
69, 1991, pp. 129-137.

37. MORÉ, J. J., S. M. WILD, Benchmarking
Derivative-free Optimization
Algorithms. SIAM Journal on
Optimization, vol. 20, 2009, pp. 172-191.

38. NASH, S. G., J. NOCEDAL, A Numerical
Study of the Limited Memory BFGS
Method and the Truncated-Newton
Method for Large Scale Optimization,
SIAM Journal on Optimization, vol. 1,
1991, pp. 358-372.

39. NOETHER, E., Invariante
Variationsprobleme. Nachrichten der
Könighche Gesellschaft der
Wissenschaften zu Göttingen, Math-phys.
Klasse, 1918, pp. 235-257.

40. NITSCHE, J. C. C., Lectures on Minimal
Surfaces. vol. 1, Cambridge University
Press, 1989.

41. PERRY, A., A Class of Conjugate
Gradient Algorithms with a Two Step
Variable Metric Memory. Discussion
Paper No. 269, Center for Mathematical
Studies in Economics and Management
Science, Northwestern University, 1977.

42. POLAK, E., G. RIBIÈRE, Note sur la
convergence de directions conjuguée,
Revue française d'informatique et de
recherche opérationnelle, 3e Année, vol.
16, 1969, pp. 35-43.

43. POLYAK, B. T., The Conjugate
Gradient Method in Extreme Problems.
USSR Computational Mathematics and
Mathematical Physics, vol. 9, 1969,
pp. 94-112.

44. POWELL, M. J. D., Nonconvex
Minimization Calculations and the
Conjugate Gradient Method. Numerical
Analysis (Dundee, 1983), Lecture Notes in
Mathematics, Vol. 1066, Springer, Berlin,
1984, pp. 122-141.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 284

45. POWELL, M. J. D., Restart procedures
of the Conjugate Gradient Method.
Mathematical Programming, vol. 2, 1977,
pp. 241-254.

46. RĂDULESCU, C. Z., M. RĂDULESCU,
A Decision Support Tool Based on a
Portfolio Selection Model for Crop
Planning under Risk, Studies in
Informatics and Control, ISSN 1220-1766,
vol. 21 (4), 2012, pp. 377-382.

47. SHANNO, D. F., On the Convergence of
a New Conjugate Gradient Algorithm.
SIAM Journal on Numerical Analysis, vol.
15, 1978, pp. 1247-1257.

48. SHANNO, D. F., Conjugate Gradient
Methods with Inexact Searches.
Mathematics of Operations Research, vol.
3, No. 3, 1978, pp. 244-256.

49. SHANNO, D. F., K. H. PHUA, Algorithm
500, Minimization of unconstrained
multivariate functions, ACM
Transcriptions on Mathematical Software,
vol. 2, 1976, pp. 87-94.

50. TOUATI-AHMED, D., C. STOREY,
Efficient Hybrid Conjugate Gradient
Techniques, Journal of Optimization
Theory and Applications, vol. 64, 1990,
pp. 379-397.

51. WOLFE, P., Convergence Conditions for
Ascent Methods, SIAM Review, vol. 11,
1968, pp. 226-235.

52. WOLFE, P., Convergence Conditions for
Ascent Methods, (II): Some Corrections.
SIAM Review, vol. 13, 1971, pp. 185-188.

