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1. Introduction 

Convexity is one of the most frequently used 
hypotheses in optimization theory and certainly 
the most beneficial property in the practice of 
optimization because the convexity of an 
optimization model ensures global validity to 
properties otherwise only locally true. But in real 
life problems, the hypothesis of convexity is not 
very often fulfilled. The primal-dual method has 
been one of the most efficient solution 
algorithms in solving constrained optimization 
problems, see for example Lasdon [8], 
Luenberger [13]. The success of the primal-dual 
method depends on the local convexity of the 
Lagrangian function at the optimal solution of 
the problem. Several convexification schemes 
have been proposed in the literature to extend 
the primal- dual method for certain nonconvex 
problems, see for example Bertsekas [1], Li [10] 
and [11], Xu [21].  

In this paper we propose a convexification 
technique for a general differentiable nonlinear 
programming problem with inequality 
constraints. We begin by giving some examples 
which illustrate the usefulness of the 
convexification techniques in practical 
situations of portfolio optimization. 

Examples of nonconvex models for 
portfolio optimization.  

The modern portfolio theory trades off the risk 
and expected return of a portfolio, Markowitz 
[15]. The classical Mean-Variance (MV) 
portfolio model is     2min ,

X
E R R

x
, where 

the notations used are: n  the number of 

securities available, :r    the random 
vector of the asset returns 

      1 ,..., ,
T

nr r r       or simply r  

(we use bold symbols for vectors), 
 , TR R x r x r  the return of the portfolio 

,Xx    1,  n TX R   0x x 1 x  the feasible 

set,  i iE r   estimates of each asset expected 

return and the variance  2 2
i ir  , correlation 

coefficient of any two assets 
 ,i j

i j

cov r r

ij    ,

, 1,i j n , the expected return and the variance 

of the portfolio   TE R  x  and  2 TR  x x  

where  1,..., ,
T

n    
1 ,

,ij i j n 
 

 , ,ij i jcov r r  1,ii   , 1,i j n . The efficient 

frontier set is defined as the set of efficient 
portfolios. An efficient portfolio is a portfolio 
whose expected return cannot increase unless 
its risk represented here by its variance 
increases as well. But determining the set of 
efficient portfolios is just the first step of the 
portfolio selection procedure. The second step 
is the actual selection of one optimal portfolio 
out of the entire efficient frontier corresponding 
to the specific investor's preference structure. In 
order to determine an optimal portfolio 
corresponding to a given degree of risk 
aversion within the MV approach, we consider 
the MV utility function ( 0a   and 0b  ): 

     2
, .a bU aE R b R x  The optimal 

portfolio corresponding to the investor's degree 
of risk aversion 0b

a    is the solution of the 

problem, see Markowitz [16]:  
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     2max .MV

X
U E R R 

x
x

  (1) 

The covariance matrix Σ  is positive semi-definite, 
Tx xΣ  represents the variance of the portfolio x.  

But in practice we work with real data and it is not 
rare the case when the real data have missing 
values. In this case, one can estimate a covariance 
matrix by considering the matrix that will be called 
NAN - covariance matrix and denoted here by   
which is constructed in a simple and natural way 
starting from the rate of return matrix by ignoring 
the terms containing unknown return values (NAN 
is the Matlab convention for Not a Number). 
Unfortunately, the positive semi-definiteness of the 
resulting matrix   may not be assured. The 
immediate consequence is the lack of convexity of 
the objective function of the optimization problem 
even in this case when the optimal decision is 
determined based on solely two numbers: the 
mean and the variance of the portfolio.  

The MV approach is consistent with the von 
Neumann-Morgenstern expected utility theory 
only if (i) the returns of the assets are normally 
distributed and consequently it is legitimate to 
ignore higher moments beginning with third 
order and (ii) the utility function characterizing 
the investor's attitude towards risk is quadratic. 
But there is a plethora of empirical studies 
showing that portfolio returns are generally not 
normally distributed. Consequently, in some 
recent studies, the concept of Mean-Variance 
trade-off has been extended to include the 
skewness of return in portfolio selection, see 
Konno and Suzuki [6], Leung et al. [9], Liu et 
al. [12], Joro and Na [5], Briec et al. [2], or the 
kurtosis, see Maringer and Parpas [14], Lai et 
al. [7], Jondeau and Rockinger [4] among 
others and also applied in various practical 
problems, see Rădulescu et al. [17-19]. Many 
empirical studies show that investors prefer 
positive skewness, because it implies a low 
probability of obtaining a large negative return. 
It was also observed that an increased 
diversification leads frequently to skewness 
loss. In order to integrate the skewness, we use 
the Mean-Variance-Skewness (MVS) utility: 

       2
, , ,a b cU aE R b R cS R  x  where 

 S R  is the portfolio skewness, 0, 0a b   and 

0c   . The optimal portfolio corresponding to 
the investor's specific degree of risk aversion 

0b
a    and degree of absolute prudence 

0c
b    , see Eeckhoudt [3], is the solution of 

the maximization problem, see Briec et al. [2]:  

       2max .MVS

X
U E R R S R   

x
x

  (2) 

We note that this model is not convex also. It is 
not necessary for our present purposes to 
pursue the generalization of this result by 
taking into account the kurtosis or other higher 
moments, or to discuss further the possibility of 
nonexistence of some of these moments. But in 
general, we can construct an utility function 
defined over the first m  moments of the 
probability distribution of the underlying 
random variable, provided all of the first m  
moments exist and are finite. We remark the 
general lack of convexity of these models 
(nonconcavity for max problems). Next we 
propose a convexification technique for a 
general differentiable nonlinear programming 
problem with inequality constraints which 
includes models like (1) and (2). 

2. Equivalent Transformations of the 
General Nonconvex Model and 
Local Convexity of the Lagrangian 

In order to formalize models like (1) and (2) 
having even more complicated constraints like 
budget constraints, we consider the general model: 

 

 

min

, 1, ,

X

j j

f

g c j m




 

x
x

x

  (3) 

where , : , 1, ,n
jf g R R j m   are twice 

continuously differentiable functions and 
nX R  is a nonempty closed set. It is well 

known that the Lagrangian function plays an 
important role in many optimization problems 
such as the development of duality theory 
which is the foundation of primal-dual 
methods. The properties of Lagrangian function 
are of great importance for the convergence of 
these methods. Let 

      , ,TL f g  x x x c   

be the Lagrangian function associated to (3) 

where    1 1,..., ,  ,..., .
T

m mg g g   0   

The success of the primal-dual method has 
been limited to the case when  ,L x   is locally 

convex at the optimal solution of problem (3). 
But convexity is not an inherent property in 
optimization. A set could be nonconvex in one 
representation space, while the same set could 
become convex when changing the coordinates 
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of the representation space. Let x  satisfy 
condition (C1): x  is a regular point of the 
constraints in (3) i.e.    , ,jg j J  x x  are 

linearly independent where 

    .j jJ j g c  x x  We also assume 

condition (C2) to be fulfilled: x  satisfies the 
second-order sufficiency condition. Then there 
exists a vector of Lagrange multipliers 

 1 ,..., m    0   such that 

 
  

, 0,
  and

0, 1,j j j

L

g c j m

 

 

  


  

x

x


 

 
      

   

2 , 0, 0 and 

0, ,

where 0 .

T

n T
j

j

L

T R g j J

J j 

 

   

  

   

     

 

y x y y

y x y y x x

x



The third assumption regarding x  is: (C3) 

  .J    x  Throughout this paper we consider 

:h R R  a strictly increasing function locally 

convex in  .f y x  Moreover, without 

restricting the generality, we suppose that h  is 
a positive function and thus so it is ah  and bh , 
where , 1a b   . We consider the model 

  
  

min

, 1, ,

a

X

b
j j

h f

h g d j m




 

x
x

x

  (4) 

where   , 1, .b
j jd h c j m  For Xx let 

        , ,
1

,
m

a b
h a b j j j

j

L h f h g d


  x x x (5) 

be the Lagrangian function associated to 

problem (3) where  1,...,
T

m   0   . The 

optimal Lagrangian multipliers are 0 if 

 j J   x and 

   
     
1

1
,  if .

a
j

j b
j j

ah h
j J

bh c h c




   
  








y y
x  (6) 

Theorem 1. If x  is a local optimal solution of 
(3) satisfying (C1)-(C3), then there exist 0A   
and 0B   such that the Hessian matrix 

 2
, , ,h a bL   x  is positive definite for a A  

and b B  . 

Proof The Hessian matrix at  , x   is: 

     
         

       

2 1
, ,

2

1

,

, 1

1 ,

a
h a b

T

m T

j j j j
j

L ah h

L s a t f f

s b t f f

    

   

 



  

      
      

x y y

x x x

x x



  

where    / 0,s h h   y y     / 0,t h h  y y  for 

  :j J  x     / 0j j j js h c h c     and 

   / 0j j j jt h c h c   . We note that when the 

tangent space  T x  reduces to the set {0}, it is 

straightforward that  2
, , ,h a bL   x  is positive 

definite on the entire space Rn. When 

   T   0x  there is at least one vector y≠0 

such that, for all   ,j J  x  the angle between 

y  and  jg  x  is / 2.  If we note 

 1 ,nR  y y
  2min ,T L   




y
y x y

  

and 
 

 2min , 0
Ç

T

T
v L



  
 


y x

y x y   , we have 

 
          

 

2
, ,

2
1

2
, ,

,

1

, 0.

T
h a b

a T

T
h a b

L

ah h v s a t f

L

 

   

 

 

     

  





y x y

y y y x

y x y

We note that for  T y x  there exists 

 k J  x  such that   , / 2kg   y x  . 

But  ÇT  x  is compact and hence there 

exists  0, / 2   such that for any y  for 

which     , / 2 ,  / 2jg       y x   for 

all   ,j J  x  we get  2 , / 2T L v  y x y  

and consequently 

     2 1
, , , / 2 0.T a

h a bL ah h v      y x y y y  

For y  for which there exists  k J  x  

such that     , / 2 , / 2kg        y x  

we make the following notations: 

  min cos   / 2 ,  0, ,            

 
 

 min 0,j
j J

f
 

  
x

x


  
 

min 0,j
j J

s s
 

 
x

  

 
min 0.j

j J
t t

 
 

x
 We find that 

     
         

2 1
, ,

2
2 2

,

1 1 .

T a
h a b

T

L ah h

s a t f s b t  

    



  

       

y x y y y

y x


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We have  2
, , , 0T

h a bL   y x y  for all ,a A  

     2

1,  if 0

1 / ,  if 0TA A
t f



 


     

y
y x

 and 

 2 21 / .b B t                Q.E.D. 

Let    , , , ,min ,h a b h a bX
D L


 

x
x  be the dual 

function of (3) where the minimization is 
considered locally in a neighborhood of .x  
Inserting the results from Theorem 1 into the 
Local Duality Theorem of Xu [21], we can prove: 

Theorem 2. If the previous conditions are 
satisfied and x  is a local optimum of (3), then 
there exist 0A   and 0B   such that the dual 
problem  , ,max h a bD

0
  has a local solution   

defined by (6), having the optimal value 

  ah f x  and    , , , ,,h a b h a bL D   x  for all 

a A  and .b B  

3. Illustrative Examples 

3.1 Example of real data failing to fulfill 
the requirement on the estimated 
covariance matrix of being positive 
semi-definite 

We consider the practical case of missing data 
and the construction of the NAN – covariance 
matrix that may be not positive semi-definite. 
We exemplify here by considering the following 
data set given in Table 1 consisting in the returns 
r1, r2, r3 of three assets spanning two weeks (10 
working days). Missing data are labeled NaN 
(Matlab convention for Not a Number).  

Table 1. Historical data set of daily rate of returns 
r1, r2, r3 of three assets. 

Day k rk1 rk2 rk3 
1 -0,5 -0,38 -1 
2 0 0,21 -0,52 
3 0,1 0,21 0 
4 -0,261 NaN -0,43 
5 0 -0,21 0,198 
6 0,18 NaN 0,31 
7 0,02 0,215 0,24 
8 NaN 0,048 0,09 
9 NaN 0,02 0,13 

10 0,089 -0,23 0,068 

Starting from  1 10,,...,T
i i ir rr  we calculate the 

NAN-covariance matrix denoted by 
  

1 , 3
,ij

i j 
  by ignoring the missing data. We 

suppose that for every   , 1,2,3  i j there is at 

least  1,...,10k  such that both kir  and kjr  are 

known. 


  

10

1
10

1

10

1
10

1

,

0, if  is not known (NaN)
 ,

,  otherwise

0, if  is not known (NaN)
,

1,  otherwise,

,

ki kjki kj i j
k

ij

ki kj
k

ki
ki

ki

ki
ki

ki ki
k

i

ki
k

r r

r
r

r

r

r

   

 
















 
 


 



 












 





  

for all  1 , 3 and 1 10.i j k     

The resulting NAN-covariance matrix is: 

 
0.050221 0.037172 0.089450

0.037172 0.053831 0.037213

0.089450 0.037213 0.177143

 
 
 
 
 

  . 

The corresponding eigenvalues are: 

 
0.00172

0.045771

0.237144

 
   
 
 

  

and thus,   is not positive semi-definite. 

There are methods for estimating covariance or 
correlation matrices which ensure that the 
matrix is positive definite or at least positive 
semi-definite, see Schottle and Werner [20], 
Jaeckle and Rebonato [22] for a thoroughly 
discussion on the methods for creating a valid 
covariation/correlation matrix.  

But the matrices obtained with these methods 
must be verified because they may distort the 
initial information even if they become 
symmetric and positive semi-definite.  

The advantage of the convexification method 
proposed is that the minimum variance model 
with the NAN-covariance matrix calculated by 
ignoring the missing data can be used.  

3.2 Example of local convexification of 
the Lagrangian function 

We present an example which illustrates the 
local convexification of the Lagrangian 
function. This example gives a geometrical 
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illustration of Theorem 1 and 2. We consider 
the following model 

  1 2

1 2

1 2

min 1 2

2 4 1

0 , 1.

f x x

x x

x x

 
  
  

x

 (7) 

Note that the objective function is not convex. 

The optimal solution of this problem that is 
 1 1

4 8, x  is located on the boundary of the 

feasible region,   15
16 .y f  x   

The Lagrangian function of model (7) is 

   1 2 1 2, 1 2 2 4 1 .L x x x x     x   

The optimal multiplier is 1
8 0    and the 

Hessian of the Lagrangian function is  

 2 2 0 -21 1 1
, , ,

-2 04 8 8
L L            

    
x  

which is an indefinite matrix. Now we consider 
the transformed model (4) with  

 

 
1

4

xh x e

a

b

 



 

   

and the Lagrangian defined in (5) is 

    1 21 2 4 2 41 2 4
,1,4 , .x xx x

hL e e e    x  

Using (6), we find 
49
161

32 .e    The new Hessian 

matrix is  

 
15 15
16 16

15 15
16 16

33 17
16 82

,1,4
17 33
8 4

,h

e e
L

e e
 

 
  
 
 

x  

which is a positive definite matrix. The level 
curves of  ,L x  and  ,1,4 ,hL x  are given in 

Figures 1 respectively 2. As we can see, we 
obtain the local convexity in a neighborhood of 
the optimal point of contours of the Lagrangian 
function of model (4). 

4. Conclusions 

In this paper we have shown how to locally 
convexify the Lagrangian function of a 
nonconvex optimization problem. Thus, we 
have extended the class of optimization 
problems to which dual methods can be 
applied. Specifically, we have proved that, 
under mild assumptions, the Hessian of the 

Lagrangian function in some transformed 
equivalent problem formulations becomes 
positive definite in a neighborhood of a local 
optimal point of the original problem. From 
local duality theory, convexity in the 
Lagrangian guarantees the success of the dual 
search and zero duality gap is thus guaranteed 
when the primal-dual method is applied to the 
constructed equivalent form. Practical classes 
of problems where the proposed method can be 
applied include portfolio selection models. A 
numerical example which illustrates the main 
results is given. 
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Figure 1. Contour levels of the Lagrangian function 

 , .L x
  

Figure 2. Contour levels of the Lagrangian function

 ,1,4 ,hL x  of the equivalent model.  



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 290

REFERENCES 

1. BERTSEKAS, D., Convexification 
Procedures and Decomposition Methods 
for Nonconvex Optimization Problems, 
J. of Opt. Theory and App., vol. 29, 1979, 
pp. 169-197. 

2. BRIEC W., K. KERSTENS, J. LESOURD, 
Single-Period Markowitz Portfolio 
Selection, Performance Gauging, and 
Duality: A Variation on the Luenberger 
Shortage Function. J. of Opt. Theory and 
App., vol. 120, No. 1, 2004, pp. 1-27. 

3. EECKHOUDT, L., C. GOLLIER, H. 
SCHLESINGER, Economic and Financial 
Decisions under Risk, Princeton University 
Press, Princeton and Oxford, 2005. 

4. JONDEAU, E., M. ROCKINGER Optimal 
Portfolio Allocation under Higher 
Moments, European Fin. Man., vol. 12(1), 
2006, pp. 29-55. 

5. JORO, T., P. NA, Portfolio Performance 
Evaluation in a Mean--Variance--
Skewness Framework. European J. of Op. 
Res., vol. 175(1), 2006, pp. 446-461. 

6. KONNO, H., K. SUZUKI, A Mean-
Variance-Skewness Portfolio Optimization 
Model. J. of the Op. Res. Society of Japan 
vol. 38(2), 1995, pp. 173-187. 

7. LAI, K. K., Y. LEAN, W. SHOUYANG, 
Mean-Variance-Skewness-Kurtosis-based 
Portfolio Optimization, Proc. of 1st Intl. 
Multi-Symposiums on Computer and 
Computational Sciences, 2006, pp. 1-6. 

8. LASDON, L. S., Optimization Theory for 
Large Systems. Macmillan Company, 
London, England, 1970. 

9. LEUNG, M. T., H. DAOUK, A. S. CHEN, 
Using Investment Portfolio Return to 
Combine Forecasts: a Multiobjective 
Approach. European J. of Op. Res., vol. 
134, 2001, pp. 84-102. 

10. LI, D., Zero Duality Gap for a Class of 
Nonconvex Optimization Problems. 
Journal of Optimization Theory and 
Applications, vol. 85, 1995, pp. 309-324. 

11. LI, D., Saddle-Point Generation in 
Nonlinear Nonconvex Optimization. 
Nonlinear Analysis, Theory, Methods and 
Applications, vol. 30, 1997, pp. 4339-4344. 

12. LIU, S. C., S. Y. WANG, W. H. QIU, A 
Mean-Variance-Skewness Model for 
Portfolio Selection with Transaction 
Costs. International Journal of Systems 
Sciences, vol. 34(4), 2003, pp. 255-262. 

13. LUENBERGER, D. G., Linear and 
Nonlinear Programming, 2nd ed., Addison-
Wesley, Reading, Massachusetts, 1984. 

14. MARINGER, D., P. PARPAS, Global 
Optimization of Higher Order Moments 
in Portfolio Selection. J. of Global 
Optimization., vol. 43, 2009, pp. 219-230. 

15. MARKOWITZ, H. M. Portfolio Selection, 
Journal of Finance, vol. 7, 1952, pp. 77-91. 

16. MARKOWITZ, H. M. Portfolio Selection. 
Efficient Diversification of Investments. 
John Wiley & Sons, Inc., New York, 1959. 

17. RĂDULESCU, M., C. Z. RĂDULESCU, M. 
TUREK RAHOVEANU, G. ZBĂGANU, A 
Portfolio Theory Approach to Fishery 
Management, Studies in Informatics and 
Control, vol. 19(3), 2010, pp. 285-294. 

18. RĂDULESCU, C. Z., M. TUREK 
RAHOVEANU, A Multi-Criteria Evaluation 
Framework for Fish Farms, Studies in 
Informatics and Control, vol. 20(2), 2011, 
pp. 181-186. 

19. RĂDULESCU, C. Z., M. RĂDULESCU, 
A Decision Support Tool Based on a 
Portfolio Selection Model for Crop 
Planning under Risk, Studies in 
Informatics and Control, ISSN 1220-1766, 
vol. 21(4), 2012, pp. 377-382. 

20. SCHOTTLE, K., R. WERNER, Improving 
the Most General Methodology to Create 
a Valid Correlation Matrix, Transactions 
of the Wessex Institute, Risk Analysis IV, 
Eds: C. A. Brebbia, 2004, pp. 701-710, 
DOI: 10.2495/RISK040641. 

21. XU, Z. K., Local Saddle Points and 
Convexification for Nonconvex 
Optimization Problems. Journal of 
Optimization Theory and Applications, vol. 
94, 1997, pp. 736-746. 

22. JAECKEL, P., R. REBONATO, The Most 
General Methodology for Creating a 
Valid Correlation Matrix for Risk 
Management and Option Pricing 
Purposes. Journal of Risk, vol. 2(2), 2000. 




