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Abstract: A common challenge in the theory of portfolio selection is that certain assets have shorter return histories than
others. Consequently, historical data of the returns have missing data. This paper deals with portfolio selection models of
mean-variance type in which missing data exist. Two simple methods for constructing a vector and a matrix starting from
a matrix of rate of returns are presented. One considers a standard minimum variance model in which the vector and the
matrix built replace the vector of means and the matrix of covariance. Several numerical experiments are made and the
effect of missing data on the efficient frontiers associated to the minimum variance models is investigated. 
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1. Introduction 

The last decades witnessed a growing amount 
of attention given to the topic of missing data. 
Several research papers and books were written 
on this important subject. Most PhD students in 
Statistics now claim “missing data” as an area 
of interest or expertise. Missing data are 
important to consider, because they may lead to 
substantial biases in analyses. On the other 
hand, missing data is often harmless beyond 
reducing statistical power. 

For a complete treatment of the issue of missing 
data the books written by Little and Rubin [5] 
and Schafer [15] are excellent choices. A shorter 
treatment can be found in Allison [1] and a 
gentle one in McNight et al [8]. Perhaps the 
nicest treatment of modern approaches can be 
found in Barladi & Enders [2]. 

There are some traditional treatments for 
missing data. The simplest approach is called 
listwise deletion or complete case analysis. It 
consists in deleting those cases with missing 
data and continuing analyses on what remains. 
For example if we want to compute the  

arithmetic mean of n numbers 1 2, ,..., na a a  but 
only the numbers 

1 2
, ,...,

ki i ia a a are known then 

we shall consider that the arithmetic mean of 
the numbers 1 2, ,..., na a a  is equal to  

1 2
...

ki i i
m

a a a

k

  
   

Another simple approach is to replace all 
missing data with the arithmetic mean of all 

known data. If 
1 2
, ,...,

n kj j ja a a


are the unknown 

terms of the sequence 1 2, ,..., na a a  we shall put 

1 2
...

n kj j j ma a a


    . Then one can easily 

note that the arithmetic mean of the numbers 

1 2, ,..., na a a  is equal to m.   

Although the listwise deletion approach often is 
applied for analyses with small sample size, it 
does have important advantages. In particular, 
under the assumption that data are missing 
completely at random, it leads to unbiased 
parameter estimates.  

Other simple methods for treatment are: 
pairwise deletion, mean substitution, averaging 
the available variables, regression-based single 
imputation. Recommended methods for 
handling missing data fall into two general 
categories: model-based procedures and data-
based procedures. Model-based approaches 
rewrite the statistical algorithms so as to handle 
the missing data and estimate parameters all in 
a single step. Data-based approaches, on the 
other hand, handle the missing data in one step, 
and then perform the parameter estimation in a 
second, distinct, step. 

Software modules for handling problems with 
missing data are included in the following 
software packages: IBM SPSS, SAS STAT, 
MATLAB, SOLAS, AMELIA. 

The IBM SPSS Missing Values software may be 
used by survey researchers, social scientists, data 
miners, market researchers and others to validate 
data. It uses statistical algorithms and allows the 
users to examine data, to uncover missing data 
patterns, then to estimate summary statistics and 
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to impute missing values. The SPSS Missing 
Values software allows the imputation of 
missing data, draw valid conclusions and 
remove hidden bias. It quickly diagnose missing 
data imputation problems using diagnostic 
reports, it replaces missing data values with 
estimates using a multiple imputation model, 
display and analyze patterns to gain insight and 
improve data management.  

SAS STAT® software offers the MI and 
MIANALYZE procedures for creating and 
analyzing multiply imputed data sets for 
incomplete multivariate data. Multiple 
imputation provides a useful strategy for 
dealing with data sets with missing values. 
Instead of filling in a single value for each 
missing value, multiple imputation procedure 
(Rubin [13]) replaces each missing value with a 
set of plausible values that represent the 
uncertainty about the right value to impute. 
These multiply imputed data sets are then 
analyzed by using standard procedures for 
complete data and combining the results from 
this analysis. No matter which complete-data 
analysis is used, the process of combining 
results from different imputed data sets is 
essentially the same. This results in statistically 
valid inferences that properly reflect the 
uncertainty due to missing values.  

The representation of missing or unavailable 
data values in MATLAB® code is made with 
the special value, NaN which stands for Not-a-
Number. When the data is plotted on a time-
plot that contains missing values, gaps appear 

on the plot where missing data exists. In order 
to estimate missing values one can use the 
command misdata. This command linearly 
interpolates missing values to estimate the 
first model. Then, it uses this model to 
estimate the missing data as parameters by 
minimizing the output prediction errors 
obtained from the reconstructed data. The 
model structure is specified by the user in the 
argument of the command misdate. 
Alternatively a default-order model using the 
n4sid method will be estimated. 

An interesting paper which contains a survey 
on the software for missing data is Hox [3]. A 
study of the efficient frontier of portfolio 
selection models with missing data, using 
MATLAB can be found in Taylor [14]. 

In our paper we show that to each matrix R 
containing missing data one corresponds a 
binary matrix B having the same dimension 
with the matrix R, that describes the location of 
missing data in the matrix R. Thus the arrays of 
matrix B are equal to zero in the corresponding 
location of matrix R where there is a missing 
data and are equal to one where in the 
corresponding location of matrix R there exist 
an array whose value is known. 

Vice-versa if we have a complete matrix R 
(that is all its arrays are known values) and a 
binary matrix B having the same dimension 
with the matrix R then we can treat the matrix 
R as a matrix with missing data, the locations 
of missing data in matrix R being those 
corresponding to the locations where the arrays 

 

Figure 1. Assets with various rate of return history 
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of matrix B are equal to zero. Two simple 
methods for constructing a vector and a matrix 
starting from a matrix of rate of returns are 
presented. The vector and the matrix built will 
replace the vector of means and the matrix of 
covariance in a standard minimum variance 
model. Several experiments are made and the 
effect of missing data on the efficient frontiers 
associated to the minimum variance models is 
investigated. The purpose of the paper is to 
consider some numerical examples in order to 
show how diverse, the impact of increasing the 
proportions of missing data, on efficient 
frontiers can be. 

2. The NaN - Vector of Means and 
the NaN - Covariance Matrix 

The mean-variance portfolio optimization 
theory of Markowitz [6], [7] is widely regarded 
as one of the major theories in financial 
economics. It is a single-period theory on the 
choice of portfolio weights that provide optimal 
tradeoff between the mean and the variance of 
the portfolio return. Mean-variance theory is an 
important model of investments based on 
decision theory. It is the simplest model of 
investments that is sufficiently rich to be 
directly useful in applied problems. There exist 
many applications of mean-variance theory to 
domains that do not imply finance such as 
agriculture, sire selection, forestry, 
biodiversity, aquaculture, energy, sustainable 
production planning etc. For supplementary 
references regarding applications of portfolio 
theory to non-financial areas see Radulescu 
[10]-[12]. 

In order to use the mean-variance theory it is 
necessary to estimate the covariance matrix of a 
random vector. 

Estimation of the covariance matrix is a basic 
problem in multivariate statistics. It arises in 
various applications such as financial 
mathematics, pattern recognition, genomics, 
functional analysis, computational geometry 
etc. A good reference for the estimation of the 
covariance matrix of the stock returns with 
application to portfolio selection is the paper   

Ledoit and Wolf [4]. Another approach to 
portfolio selection models with missing data 
can be found in Page [9]. 

A classical and the simplest estimator of the 
covariance matrix is the sample covariance 

matrix. Consider a m n matrix  tirR  where 

each column represents m observations of a 
random variable and each row observations at a 
particular time. That is tir  is the t-th 
observation of the i-th random variable. Denote 
by μ  the vector of means, by C the sample  

covariance matrix and by me the m-dimensional 
vector having all components equal to one. 
Then 

1 T
mm

μ R e
 

1 1T
m m m

T

m m
 
 
 

C R I - e e R
 

Note that the following inequality holds:  

rank(C)   rank
1

m m m
T

m
 
 
 
I - e e =m-1 

Hence when nm-1 the matrix C is rank 
deficient, that is rank(C)=0. Intuitively the data 
do not contain enough information to estimate 
the covariance matrix. 

Consider n assets and historical data on the rate 
of return for the assets for m periods. Let tir  be 
the rate of return of asset i at moment t. Let 

 tirR be the rate of returns matrix.  R is a 

m n  matrix.  We consider that t=1 is the 
present and t=m is the earliest moment taken 
into account. Some elements of the matrix 

 tirR may be unknown. These elements will 

be called missing data and in their places we 
shall fill with the label NaN (MATLAB 
convention for Not a Number). Starting from 
the matrix  tirR  we shall define the 

matrices  tirR   and  tibB ,  

    
 

,  

0, if is not known (NaN)

otherwise
ti

ti

ti

r
r

r


 


 

,  

,

0 if is not known (NaN)

1,  otherwise
ti

ti

r
b


 


 

Note that  tibB is a binary matrix, that is all 

its elements are zero and one. If the binary 
m n  matrix  tibB has  the property that for 

every    , 1,2, ,i j n  there is at least 

 1,...,t m  such that both 1ti tjb b   we can 

define the NaN vector of means 
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 1 2, ,..., n  μ and the NaN covariance 

matrix  
1 ,ij i j n

c
 

C  


1

1

,

m

ti ti
t

i m

ti
t

r b

b
 







 (1) 

  
1

1

,

m

ti tjti tj i j
t

ij m

ti tj
k

b b r r
c

b b

 




 





 

 (2) 

In case of financial historical data the time 
series of assets may have various lengths. The 
columns of the rate of returns matrix R 
correspond to historical data of the assets. One 
column may contain NaN entries for the period 
before the moment the asset begin to be 
publicly traded followed by known values of 
assets until the most recent moment. 

Let    : 1,2,..., 1,2,...,n m  ,  i   the 

moment the asset i begin to be          
publicly traded.  

Then  

0tib  if  t i , 1tib  if  1 it    

In the following two sections we shall 
consider two methods for the treatment of 
missing data from the historical data on the 
rate of returns. The first method replaces the 
missing data for the asset with the mean of the 
known data for the rate of returns of the asset. 
The second method follows the listwise 
approach and ignores the missing data. All 
computations are made only with the data that 
have known values.  

3. The First Method for Treatment 
of Missing Data 

We consider a matrix R whose arrays describe 
historical data on the rate of return of n assets 
for m periods. Each column of R corresponds 
to an asset and each row corresponds to the rate 
of return of the assets. Note that historical data 
of the assets have variable lengths since the 
assets started to be publicly traded at various 
moments in time. Consequently the matrix R 
contains missing data.  We shall consider the 
corresponding binary matrix B that describes 
the location of missing data in the matrix R.  
We shall denote matrix R by R0 . That is R0=R.  

Let i be the asset for which the historical data 
have minimum length. Denote by k be the 
length of historical data for asset i. Delete from 
matrix R the last s rows (s=0,1,…,n-k). Denote 
by Rs the matrix obtained as a result of the 
deletion.  

Replace the missing data from the matrices Rs 
with the mean of the known values of the return 
of the assets from the column. At this moment 
all the matrices Rs become complete matrices, 
that is, all the values of their arrays are known. 
One can formulate a minimum variance model 
starting from the vector of means and the 
covariance matrix obtained from the matrices 
Rs. For each of these minimum variance 
models we plot the efficient frontier. 

We consider a numerical example in which the 
matrix R has m=112 rows and n=14 columns. 
The historical data for six assets have 
maximum length, that is 112. The historical 
data for the asset i=11 have minimum length, 
that is 5. By successive deletion of rows from 
matrix R and by replacing the missing data 
with the mean of the known values of the rate 
of return of the assets from the column we 
obtain matrices Rs (s=0,1,…,107). We consider 
the minimum variance models starting from the 
vector of means sμ  and the covariance matrix 

sC obtained from the matrices Rs.  

1

0

min T
s

T
s

T

W

   
 

 
 

x C x

μ x

e x
x

 

The efficient frontiers of the minimum variance 
models are displayed in Figure 2. One of the 
axes from the horizontal plane represents the 
percent of the missing data. In fact it 
corresponds to parameter s. If the parameter s 
increases then the percent of the missing data in 
the matrix Rs decreases. The other axis from 
the horizontal plane represents the lower limit 
for the mean expected return (parameter W). 
The vertical axis represents the optimal value 
of the minimum variance model (defined for 
the parameter W and parameter s). 

One can note that if the proportion of missing 
data is greater than 5% then the efficient 
frontiers are very distinct from those with  the 
proportion of missing data smaler than 5%. 
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4. The Second Method for 
Treatment of Missing Data 

The second method for treatment of missing 
data is based on the listwise deletion approach. 
Consider a matrix R whose arrays describe 
historical data on the rate of return of n assets 
for m periods. Each column of R corresponds 
to an asset and each row corresponds to the rate 
of return of the assets. We consider that matrix 
R is complete, that is, all its arrays are known. 
We consider a set of binary matrices B that 
describe fictitious locations of missing data in 
the matrix R. For each binary matrix B from B 
we consider the matrix R(B) which contain 
missing data at locations corresponding to 
arrays that have values equal to zero in matrix 
B. For each matrix R(B) we build the NaN - 
vector of means and the NaN-covariance 
matrix. The efficient frontiers the minimum 
variance models formulated with the NaN 
vector of means and the NaN-covariance 
matrices are displayed in Figure 2. 

One can formulate a minimum variance model 
starting from the NaN vector of means 

 1 2, ,..., n  μ and the NaN covariance 

matrix  
1 ,ij i j n

c
 

C  

1

0

min T

T

T

W

   
 



 

x Cx

μ x

e x
x

 

The problem is that the NaN covariance matrix 
C may fail to be semi-positive definite. This 
will imply that the objective function may fail 
to be convex.  

But the restriction of the objective function to 
the set of feasible solutions may be convex.  

If the volume of missing data is sufficiently 
large it is possible that even the restriction of 
the objective function to the set of feasible 
solutions fail to be convex. 

This will imply difficulties in solving the 
optimization problem since a function which 
is not convex may attain its minimum at 
several points. In this situation standard 
algorithms for convex problems may not 
apply. Of course if the volume of missing data 
is sufficiently large the effects can result in 
significantly different results.  

We consider a numerical example in which the 
matrix  tirR  has m=112 rows and n=14 

columns. Each column in the matrix R 
corresponds to historical data of the rate of 
returns for a specific asset. All historical data of 
the assets have full length. We consider a set of 

 

Figure 2. The efficient frontiers of the minimum variance models 
when the first method for treating missing data is applied 
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binary matrices   : 0,1,..., 5s s m B B= . 

Each matrix   s
s tibB  is a m n  matrix. 

  1s
tib   for      , 1, 2,..., 1, 2t i m  and for 

     , 1,2,..., 3,4,...,t i m s n   .   0s
tib  for 

     , 1, 2,..., 3,4,...,t i m s m s m n      . 

Denote by sμ  the NaN vector of means and 

with  sC  the NaN covariance matrix 
corresponding to the couple of matrices 
 s,R B Recall that by the couple  s,R B  we 

understand a matrix   s
s tirR  

  if 1

NaN if 0
ti tis

ti
ti

r b
r

b


  

 

Consider the minimum variance models 
starting from the vector of means sμ  and from 

the covariance matrix sC .   

We define the missing data percent of a matrix 
as being the ratio between the number of NaN 
arrays and the total number of arrays. 

The missing data percent of the matrix 
  s

s tirR is equal to the number of zero 

elements from the matrix   s
s tibB divided by 

mn. In Figure 3 are displayed three efficient 
frontiers of the minimum-variance model with 
missing data. One can easily see that  

 All three graphs are very close each other 
for W in the range  [0.01;0.038]. 

 The efficient frontier graph for the missing 
data percent 75% starts to move away from 
the two other graphs starting from 
W=0.038.  

 

 

 

 

Figure 3. Efficient frontiers of the minimum variance models 
for various missing data percents 
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In Figure 4 is displayed the minimum risk as a 
function of the percent of missing data for two 
values of the parameter W (W1=0.036 and 
W2=0.02). One can note that the behavior of the 
two graphs is random.  

In Figure 5 are displayed efficient frontiers of 
the minimum variance models for various 
missing data percents. One can see that the 
shape of the efficient frontiers varies very 
much. For the models considered a missing 
data percent under 10% seems to be acceptable. 

 

Figure 4. The graph of risk versus the missing data percent 
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Figure 5. The efficient frontiers of the minimum variance models 
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5. Conclusions 

The problem of treating the missing data in 
portfolio selection problems is very important 
in real applications. Our research has been 
focused on the study of the impact of the 
presence of missing data in the efficient 
frontiers of the minimum-variance models. 
Two methods for treating the missing data are 
used in order to build a vector and a matrix. 
Starting from this vector and from the matrix 
one considers minimum-variance models in 
which the vector replaces the vector of means 
and the matrix replaces the covariance matrix. 
Numerical cases are considered and efficient 
frontiers of the minimum variance models are 
displayed and the results are analyzed. The 
programs are written in MATLAB.  
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