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1. Introduction 

The inventory costs occupy an important share 
in total cost. Replenishment, shipment 
consolidation/coordination policies, different 
inventory allocation methods and effective 
utilization of information are among the most 
important supply chain management issues 
today. Optimizing inventory management can 
make the company agile in the market, 
maintaining high customer service. On the 
other hand, the adoption of Just in Time (JIT) 
has caused a change in the ordering practice 
(Also, JIT principles have led to supply 
networks with relatively few direct suppliers, 
with each of them jointly delivering several 
items.) Therefore, order processing costs have 
been reduced through the use of long-term 
supply contracts, electronic ordering and joint 
replenishment. Consequently, the transportation 
costs have been strongly influenced by the joint 
replenishment practice. Joint replenishment 
inventory can lower the average cost of the 
inventory, enlarging the ordering item amount, 
which make companies more efficient in 
transport operations. In industry, the spare parts 
management plays a critical role in searching 
for a long term efficiency, availability and 
customer service. Some authors have 
highlighted the importance of spare 
management and the impact that causes to 
logistics. Spudic et al. [1] addressed the supply 

management of spare parts in military vehicles. 
Propadalo [2] presented an application of 
reliability-based spare parts management in the 
airspace industry. This paper presents the 
definition and solution of the Joint 
Replenishment Problem in a Consumable Spare 
parts system operating with suppliers offering 
quantity discounts, using techniques based on 
the Particle Swarm Optimization (PSO) and a 
Genetic Algorithm (GA). Section 2 presents a 
literature review and section 3, presents the 
experimental design and the problem 
definition. Section 4 and 5 present details about 
the two metaheuristics used in optimization of 
the model, respectively. Section 6 shows 
numerical examples; performance comparisons 
are included. Finally, conclusions are reported 
in section 7. 

2. Literature Review 

The joint replenishment problem (JRP) deals 
with the problem of coordinating the 
replenishment of a group of consumable spare 
parts that may be jointly ordered from a single 
supplier. The JRP is an NP-hard problem, as 
Arkin et al. [3] proved in 1989 .Goyal [4] 
presented a heuristics to solve the Joint 
Replenishment Problem. After these two 
works, numerous articles have dealt with the 
problem using different approaches. A 
thorough review of the literature by late 
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eighties may be found in Goyal and Satir [5]. 
As it was mentioned before, JRP is a NP hard 
problem, and it is unlikely that it will be solved 
by polynomial-time algorithms, therefore, few 
studies deal with exact optimisation 
procedures. The main assumptions mentioned 
in the literature to approach the JRP involve the 
grouping type item being direct (Direct 
Grouping Strategy – DGS) and indirect 
(Indirect Grouping Strategy – IGS). Other 
variant forms of the JRP problem consider the 
demand behaviour; therefore there are solution 
efforts for the constant, stochastic and dynamic 
demand, respectively. One of the classical 
heuristics for the problem is known as RAND 
(Kaspi and Rosenblatt [6]). Johansen and 
Melchiors [7] consider a periodical 
replenishment policy and a “can-order” policy. 
Regarding dynamic demand, Boctor [8] shows 
a procedure combining different heuristics with 
excellent results. Other works for special JRP 
cases are presented by Klein and Ventura [9], 
who solved the replenishment problem with 
discrete time. Khouja et al. [10] approached the 
problem with continuous reduction of the 
unitary costs of the items. Chan et al. [11] 
developed a solution model for scheduling 
deliveries from a supplier to different 
customers using the JRP. Some works point at 
the JRP with certain restrictions: Hoque [12], 
for instance, has approached the JRP with 
budget restrictions, defining the storage and 
transportation capacity; Moon and Cha [13], on 
the other hand, have considered resource 
restrictions. Bayindir et al. [14] have included 
variable production costs to the JRP. Other 
authors incorporate obsolescence aspects to the 
JRP (Goyal and Giri, [15]). The general JRP 
model assumes that the unit cost is independent 
of the quantity ordered. However, frequently 
suppliers attempt to influence their customers 
to place larger orders by offering quantity 
discounts. So far, only one work has been 
published on the JRP with quantity discounts 
(JRP+QD).Cha and Moon [16] solved the 
JRP+QD using simple heuristics and a 
modified RAND algorithm. The algorithms 
efficiency was proven in 1,600 randomly 
developed problems. One difficulty is observed 
in the proposed solving strategies: the run-time 
increases dramatically with the problem size 
(number of items), and often only small or 
moderately sized problem can be practically 
solved to provable optimality. In this case, the 
only possibility for larger instances is to trade 
optimality for run-time, yielding heuristic 

algorithms. In other words, the guarantee of 
finding optimal solutions is sacrificed for the 
sake of getting good solutions in a limited time. 
Therefore, the heuristics and resolution 
methods proposed thus far are better suited 
tothose problems where a little number of items 
are considered; this situation is not sufficiently 
realistic, however. There are some attempts to 
apply evolutionary algorithms for the solution 
of the JRP. We can mention Hong and Kim 
[17], who developed a genetic algorithm to 
solve the JRP problem not taking into account 
the restriction that the replenishment cycle has 
to be a multiple of the replenish cycle with the 
highest frequency among all items. Leung et al. 
[18] have presented an extension of the 
classical multi-customer and multi-item JRP 
problem; they applied a hybrid algorithm 
(simulated annealing and genetic algorithm) 
called SAGA. Chan et al. [11]applied a Genetic 
Algorithm to an extension of the classical 
multi-customer and multi-item JRP. Khouja 
[10] compared the performance of a genetic 
algorithm with JRP with the RAND 
performance. Olsen [19] used a genetic 
algorithm for the JR problem, using the direct 
grouping concept, which exceeds the traditional 
algorithm (RAND) in situations where the 
quotient between the fixed cost of order and the 
variable cost of order is considered high. In 
2008, Olsen [20] explored the application of 
Genetic Algorithms for the JRP, where minor 
ordering costs depend on other items to be 
jointly replenished (inter-dependant costs). Dye 
and Hsieh [21] tested the efficiency of using 
another evolutionary algorithm, the Particle 
Swarm Optimization in a JR problem. 
Publications on the application of Particle 
Swarm Optimization in JRP with quantity 
discounts have not yet been issued. 

3. Experimental Design 

The main hypothesis of this work is that 
metaheuristics are able to quickly find near 
optimal solutions for the joint replenishment 
problem, with quantity discounts, when the 
number of spare parts is large. Based on this 
hypothesis, an optimization model was defined. 
Through experimentation and, using randomly 
generated data, the model was optimized using 
Particle Swarm Optimization and a Genetic 
Algorithm to respond to the following 
investigation question: Is it possible to optimize 
the inventory cost in systems with joint 
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replenishment using optimization techniques 
based on metaheuristics, in situations where 
quantity discounts are applied by the supplier? 

The main objective of this work is: To solve an 
inventory optimization problem considering the 
joint replenishment (JRP), with suppliers 
applying quantity discounts. In addition, as a 
second objective, two evolutionary algorithms 
are applied to solve the problem. Finally, the 
values of a set of performance metrics were 
computed considering the results of both 
techniques. Comparisons and comments are 
also provided. 

Problem Definition 

The problem consists of searching for the 
minimum cost in a system operating with joint 
replenishment and quantity discounts for a 
large quantity of n spare parts. The problem 
involves a set of decision variables showing the 
replenishment schedule for each item. First, a 
model for such situation was established and 
the following assumptions were defined: 

 Known and constant purchase period. 

 Known and constant demand rate for all 
spare parts. 

 No delay in the delivery. 

 Only one supplier for each item exists. 

 Finite analysis horizon. 

 An item is replenished as the stock goes     
to zero. 

 Each item involves a specific order cost.  

If ki represents the replenishment schedule of 
item i. As one of the assumptions indicates, the 
inventory level of any item goes to zero every 
ki*T period, just when it is replenished again. 
That means that the inventory of all spare parts 
will go simultaneously to zero after m * T 
periods, where m is the least common multiple 
of all ki. Then, the decision variable 
corresponds to a vector (of dimension n 
)composed by the ki values. Here, it is assumed 
that T is the time step that corresponds to a unit 
time. Once the optimization model for joint 
replenishment with quantity discounts has been 
defined, the metaheuristics will be able to find 
the values of ki assuring the lowest global cost 
of inventory management. 

As shown in Figure 1, the stock level of item 
“1” (blue line) lasts for 2 periods of time (2T); 
therefore, k1 equals 2. The stock level of the 

item “2” (red line) lasts for 3 periods of time 
(3T), so k2is equal to 3. The stock level of item 
“3” (green line) lasts for 4 periods of time (4T), 
thus k3 equals 4.As was commented before, the 
inventory levels of all spare parts will go 
simultaneously to zero after m * T periods, 
where m is the least common multiple of all ki. 
In this example, m corresponds to12 periods. 

 

Figure 1. Purchase cycle and duration of each 
inventory 

Optimization model 

We introduce the following notations to discuss 
the JRP considering the quantity discounts: 
Ci = Ordering cost of item i ($/order) 
i = Index of item (i = 1, 2, 3…, n). 
Di = Demand rate of item i (unit/time) 
Pi = Price of item i ($/unit). 
Qi = Quantity of item i(unit). 
T =Basic cycle time (time). 
ki = Integer number that determines the 

 replenishment schedule of item i
 (Decision Variable). 

௜ߝ  = Discount rate applied to Pi in 
function of Qi (−). 

j = Index indicating the discount interval 
 for Qi (i= 1, 2, 3…, n). 

m = Integer number representing the total 
 duration of a purchasing cycle (−). 

Cfo = Global ordering cost ($/order). 
Qiy = Quantity of item I triggering the y

 price break. 
߬௜ = Inventory holding cost of item I 

 ($/unit/time). 

According to the above assumptions and 
definitions, the total cost per unit time to be 
minimized is as follows: 

ܥܶ ൌ ݋݂ܥ ൅ ∑ ቀ ௜ܲ כ ௜ܦ כ ݉ כ ܶ ௡כ
௜ୀଵ

 (1) ݉ݑ  ݅݇݉כ݅ܥ2൅1൅ܶכ݅݇כ݅߬

However, as such cost represents the total cost 
of a particular cycle (which duration depends on 
the values ki) this cannot be compared to the cost 
of another cycle. For different ki we obtain a 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 4, December 2013 322

different m (representing the total duration – in 
periods T – of the cycle). Then, TC values 
cannot be compared. A way to eliminate the 
problem is to consider the unitary cost per 
period, dividing the total cost TC by the quantity 
of m periods that the cycle lasts, as follows: 

ܿݐ ൌ
்஼

௠
ቂ ௨௠

௨ ௣௘௥௜௢ௗ
ቃ (2) 

ܿݐ ൌ
ଵ

௠
כ ቂ݋݂ܥ כ ݇_ܽݐ݈݁݀ ൅ ∑ ቀ ௜ܲ כ ௜ܦ כ ݉ ௡כ

௜ୀଵ

 (3) ݅݇݉כ݅ܥ2൅1൅ܶכ݅݇כ݅߬כܶ

Where Pi is the unit cost function of item i. 
This is a step function of T and ki. For the all-
units quantity discount, the corresponding price 
of the itemPi is represented as follows: 

௜ܲ ൌ   ௜ܲሺ1 െ ε௜ሻ, ௜ܳ ݎ݋݂  ൑  ௜݇௜ܶܦ  ൏  ଵሺ௬ାଵሻݍ

Where ܦ௜݇௜ܶ is the order quantity ܳ௜ of item i, 
and y is the price break position. Therefore, 
without considering the values ofki, this cost 
can be compared and, thus, minimized. In the 
model, the factor, delta_k, represents the 
fraction of non-void replenishments during the 
m periods. This factor may be calculated using: 

݇_ܽݐ݈݁݀

ൌ෍ሺെ1ሻ௜ାଵ ෍ ሺ݈ܿ݉ሺ݇ןଵ,… ,
ሼؿןሼଵ,…,௡ሽ:|ן|ୀ௜ሽ

௡

௜ୀଵ

 ௜ሻሻିଵן݇

ൌ ∑ 1/݇݅௡
௜ୀଵ െ ∑ 1/ሺ݈ܿ݉ሺ݇௜, ௝݇ሻ൛ሺ௜,௝ሻؿሼଵ,…,௡ሽൟ ൅

 ∑ 1/൛ሺ௜,௝,௞ሻؿሼଵ,…,௡ሽൟ

ሺ݈ܿ݉ሺ݇݅,݆݇,݇݇ሻെ  ..  ൅െ1݊൅1ሺ1ሺ݈ܿ݉ሺ݇݅,..,݇݊ሻሻ 
(4) 
Where lcm represents the least common 
multiple of ሺ݇௜, . . , ݇௡ሻ 

Figure 2 shows the total cost function for a case 
with two different spare parts. The horizontal 
axes show the variations of k1 and k2. It may be 
observed that this function has a large number 
of local minimum, thus representing a hard 
global optimization problem. 

Figure 2. Total cost for two different spare parts. 

4. Genetic Algorithms 

Genetic Algorithms correspond to 
evolutionary methods that may be used to 
solve searching and optimization problems 
[22]. They are based on the genetic process 
of living organisms where, through 
generations, populations evolve according to 
the principles of natural selection and 
survival of the fittest. Through the imitation 
of this process, Genetic Algorithms are able 
to find solutions for real world problems. The 
power of Genetic Algorithms lies in their 
ability to exploit a complex, vast and, in 
some cases, discontinuous solution space, 
and their ability to successfully deal with a 
wide variety of problems from different 
areas, including those where other methods 
find difficulties. The evolution usually starts 
from a population of randomly generated 
individuals. Each individual in the population 
represents a solution to the problem and it is 
codified as a string of n genes. There are two 
basic types of representations: integer and 
binary. See Figure 3. 

Figure 3. Chromosome representation: a) binary 
representation; b) integer representation. 

In order to evolve to even more adapted 
populations, it is necessary to establish the 
aptitude of the individuals, i.e. it is possible to 
evaluate–through a fitness function- each 
individual and compare it with the rest of the 
population. Usually the fitness function 
represents the objective function of the 
optimization problem. Individuals who 
participate in the genetic process are 
previously chosen according to their fitness 
values. The population is processed and 
combined through a series of genetic 
operators. Through the use of some operators, 
it is possible to obtain new specimens which 
inherit some of the characteristics of their 
predecessors. As stated before, an important 
phase of genetic algorithms is the selection of 
the candidates who will pass to the 
reproduction stage. The selection process is 
usually probabilistic. Among the most 
common selection techniques are the selection 
by roulette, hierarchical, tournament, etc. The 
selection process itself does not introduce 
genetic variability to the population of the 

k1 
k2 

tc ($) 
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subsequent generation, but increases the 
presence of better gifted individuals. The 
combination of genetic information is done by 
the crossover operator, while a random 
variation is made through the mutation 
operator. The selection process combined with 
the crossover operator allows for transmission 
of genetic information from one generation to 
the next. The algorithm is repeated until some 
termination criteria are met. 

5. Swarm Optimization 

The flocking birds have inspired the algorithm 
called Particle Swarm Optimization (PSO). 
PSO is considered an evolutionary computation 
(EC) method [23].It has been applied to many 
different areas, including manufacturing, 
logistics, maintenance, etc. PSO is initialized 
with a population of random solutions, where 
this initial population evolves over iterations to 
find optimal solutions. In PSO, each particle in 
population is represented by a position and has 
a velocity, which enables them to fly through 
the search space instead of dying or mutating. 
The modification of the particle position is 
carried out by using the information about its 
previous position and its current velocity. The 
algorithm has the information about the best 
position of each particle of the swarm (personal 
best) so far and the best position achieved in 
the swarm (group best) considering all the 
personal bests. These principles can be 
represented as follows: 

௜ݒ
௟ାଵ ൌ ௜ݒݓ

௟ ൅ ܿଵݎଵ൫ݐݏܾ݁݌௜
௟ െ ௜ݔ

௟൯ ൅

 ܿଶݎଶ൫ܾ݃݁ݐݏ௚௟ െ ௜ݔ
௟൯   (5) 

௜ݔ
௟ାଵ ൌ ௜ݔ

௟ ൅ ௜ݒ 
௟ାଵ   (6) 

where: 

 w is inertia factor;  

 c1 and c2 are two positive values, known as 
cognitive and social parameters, 
respectively;  

 i = 1,2,. . . ,S 

 S is the swarm size;  

 r1andr2 are random numbers uniformly 
distributed in [0, 1];  

 l = 1,2,. . . ; I, iteration number;  

 Iis the maximum number of iterations.  

The second term on the right hand side of Eq. 
(6) is the velocity that the particle had at the 
previous iteration. That velocity allows the 

particle to travel along the search space. The rest 
of the terms of the right side of the equation are 
used to change the particle velocity according to 
pbest and gbest. In general PSO executes the 
following series of phases: evaluation, 
comparison and imitation. Evaluation phase 
aims at measuring the potential of each particle 
in solving the optimization problem; the next 
phase, the comparison one, identifies the best 
particles; the following phase, that is called the 
imitation phase, generates new position and 
velocity vectors for each one of the particle in 
the swarm using the information of best particles 
found in the previous iteration. All the 
aforementioned phases are looped several times 
until meeting a given ending criterion. The main 
objective is finding a particle that constitutes the 
best solution of the target problem. 

Modified PSO Algorithm 

The main difference between the traditional 
PSO technique and the one used in this work is 
that the latter does not use the velocity vector in 
a traditional manner. Here, a mechanism 
adapted from Correa et al. [24] (proportional 
likelihood) has been especially designed to be 
used with discrete values in the PSO. As 
previously mentioned, the proposed algorithm 
deals with discrete values. Letn be the number 
of spare parts. Each position in the particle 
(vector) takes an integer value less or equal to k 
that represents the replenishment schedule for 
each item. X(i,j)is a vector that represents the 
position of the i particle. B(i,j)is the position in 
where the particle ihad its best result so far the 
during the iteration process. The algorithm also 
records, in a vector called G, the best position 
ever attained by any particle of the swarm 
during the entire iteration process. The 
definition of the initial population is performed 
by generating random integer values within in 
the interval [l, k]. Possible solutions (particles) 
are encoded as fixed length discrete vectors, as 
is shown below: 

X(i,j) = (x(i; 1); x(i; 2); … ; x(i; n)) 

where x(i, j) 1 א, … , k;  

i = 1, 2, … ,S 
 j = 1, 2, … ,n 

For instance, let the maximum number of 
replenishment periods = 3 and the swarm size S 
= 4, a swarm could look like this: 
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X(1,j)= (2 1 3 1 2 1) 

X(2,j)= (1 1 2 1 2 3) 

X(3,j)= (1 2 3 2 1 3) 

X(4,j)= (1 2 2 3 1 3) 

Therefore, the first particle X (1,j) = (2 1 3 1 2 
1)corresponds to a candidate where spare parts 
1 and 5 will be replenished every 2periods, 
while spare parts 2,4 and 6 will be replenished 
every period. Finally, spare parts 5 will be 
replenished every two periods. After the initial 
generation of the population, the estimation of 
the fitness function is done (in this case, the 
estimation of the cost with each of the solutions 
suggested by the members of the swarm). 
During the imitation phasethe difference 
between two positions can be considered as the 
possible movement of a given particle. As it 
can be noted, the difference (X(i,j) - B(i,j)) 
represents the “distance” from the position of 
(X(i,j)) to the position ofB(i,j).Likewise (X(i,j)-
G)represents the “distance” from the position 
of (X(i,j)) to the position of the second term 
G.For instance, if we have the following values 
of X(i,j) and B(i,j): 

X(i,j)=  (1 3 3 2 1 3) 

B(i,j)=  (1 1 3 3 2 3) 

The difference between X(i,j) and B(i,j), called 
ΔXB, represents the modifications that may be 
required to move the particle Xinto the position 
of particle B. The difference vector will have 
values equal to and different from zero. If 
ΔXB≠0, there is the possibility of changing the 
position with a potential enhancement in its 
fitness value. If the difference between a given 
element of X(i,j) and B(i,j) is not null, there is a 
potential of movement from the position 
X(i,j)to the position B(i,j) applied he operations 
described in the following. After the 
computation ofΔXB, a new vector is obtained, 
which records the positions where the elements 
X(i,j) and B(i,j) are not equal. Letµ the number 
of elements in ΔXB which are different from 0. 
And a random generated numberβ(βא[0,µ]) 
represents the number of alterations that may 
be applied to X(i,j),based on the difference 
between X(i,j) and B(i,j).Then, a vector called ψ 
with β binary numbers is generated. If the 
binary number is 1, the modification is made; 

otherwise, the change is not performed. Let us 
assume the following situation to illustrate this: 

X(i,j) - B(i,j) = 1-1 3-1 3-3 2-3 1-2 3-3 

 
= 0 2 0 -1 -1 0 

A new vector P(i,j)= (2 4 5 ) is generated. Then 
μ= 3.Ifβ =2 and ψ= (0,1,1), positions 4 and 5 
will be replaced in X(i,j) by the elements of 
B(i,j) (in the same positions). Position 2 will 
remain unaltered.  

X´(i,j)= 1 3 3 3 2 3 

This process will be repeated with the new 
position of X´(i,j) and computing the 
differences with respect to G. After that, it will 
be obtained the new position for each particle 
in the swarm. If one of the applied movements 
involves the same position with respect to B(i,j) 
and G, the modification with respect to the 
global best position, G, (the second operation in 
our algorithm), has the priority. 

Perturbation Process 

Despite the widely use of the basic PSO 
algorithm, it is recommended to use some sort 
of diversification strategy in order to escape of 
local minima [25]. Additionally, in order to add 
more exploratory capacity to the algorithm, the 
development of a sub-group of particle 
perturbation has been incorporated; this 
mechanism is inspired by [26]. The size of such 
sub-group of perturbations is approached as a 
fraction of the swarm size. This operates as a 
mutation mechanism preventing the algorithm 
from tending to a premature stabilization. The 
disturbed sub-group is chosen randomly from 
the complete swarm. 

6. Numerical Examples 

Three problems were randomly generated. The 
first involved 10 spare parts, the second 20 
spare parts and the third problem involved 100 
spare parts. Table 1 shows the data for the 10 
item example. Table 2 presents data for the 
discount schedule for each of the 10 spare 
parts. In all cases, the discount schedules 
consider 4 intervals and four discount factors. 
In these examples, the population size was set 
to 100 particles or individuals. The crossover 
and mutation probabilities were set to 0,7 and 
0,15, respectively for the Genetic Algorithm. 
The ending condition is the number of 
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generations or iterations set to 500. In the PSO 
algorithm, the size of the sub-group of 
perturbations was set to 5% of the population 
or swarm. Both the Genetic Algorithm and 
PSO algorithms were applied for each problem. 
Each technique was applied 30 times to each 
problem. Table 3 is shown for comparison 
purposes, where the following indicators or 
metrics are given: Amplitude ((max-min)/min); 
number of cases under 1% and 5% of 
dispersion and number of successes or the 
number of times that the best result was 
attained by the algorithms. Table 4 shows the 
cost values obtained for each experiment. Table 
5 shows the percentage relative differences 
between the obtained values by both 
techniques. From those results it may be 
observed that both algorithms show an 
adequate repeatability, although the Amplitude 
obtained by the PSO algorithm is lower; the 
results from GA are more adequate in terms of 
the minimum values obtained. In addition, PSO 
showed a little better performance in terms of a 
lower dispersion. Nevertheless, both algorithms 
tend to present similar results when the size of 
the problem is growing. According to the latter, 
and considering the effort to obtain optimal 
values, we believe both algorithms are capable 
of obtaining good solutions in most cases. In 
order to illustrate the significance of the results 
and for comparative purposes, the costs for all 
the spare parts replenished in all periods, along 
with those obtained by the GA and PSO are 
shown in Figure 3. 

Table 1.Parameters for the 10 items problem  

item Di Pi Ci 

1 27,9053 2176,61 1480,84 

2 115,861 5431,84 4703,43 

3 115,971 4059,53 3671,41 

4 32,4078 2695,21 5050,96 

5 118,014 1293,86 401,565 

6 41,6613 1861,46 3195,69 

7 159,83 2618,13 2358,68 

8 113,195 2382,06 6013,94 

9 37,5779 4155,32 2699,72 

10 64,7659 2659,35 3892,24 

 

It may be observed how sensitive the total cost 
is regarding the replenishment schedule. In 
addition, one can see how the application of 
this type of approach, based on metaheuristics, 
can help managers in deciding how and when 
each item should be replenished in order to 
ensure the minimum costs. 

Figure 3. Comparison of the best results obtained 
by GA and PSO, along with the case where all the 

spare parts are replenished in every period 
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7. Conclusions 

This work presented the application of two 
metaheuristics to optimize the Joint 
Replenishment Problem with Quantity 
Discounts. The Joint Replenishment Problem 
with Quantity Discounts combines the 
replenishment of more than one item each time 
that replenishment occurs. In addition, that 
situation was combined with the existence of 
discounts in the unitary costs according to the 
acquired quantity. There is only one work in 
the literature presenting a model for this 
situation, but it is limited to a small quantity of 
spare parts. In addition, a Genetic Algorithm 
and a Swarm Intelligence algorithm were 
applied to a set of simulated problems. Both 
techniques enabled feasible solutions of those 
complex problems. Specifically, the PSO 
algorithm outperformed the GA in terms of 
lower dispersion and better repeatability. On 
the other hand, GA got better cost values than 
PSO in all the studied cases. We believe that 
these techniques offer good and practical 
solutions to the challenges faced by managers 

that purchase spare parts from a series of 
suppliers which offer quantity discounts. 
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