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1. Introduction 

Over the past few decades, the pairwise 
comparison technique, originally proposed by 
Thurstone [1], is extensively used to deal with 
tangible and intangible criteria in multi-criteria 
decision making (MCDM) methods, especially 
in the Analytical Hierarchy Process (AHP) and 
the Analytical Network Process (ANP) [2-9]. 
All results of n numbers of being compared 
criteria or alternatives are arranged in a 
comparison matrix A=(aij)n×n, where aij>0, aij 
=1/aji and popularly termed pairwise 
comparison matrix (PCM hereinafter) in 
literature. The PCM is built to assign criteria 
weights or scores of alternatives, and is 
composed of data expressed on a numerical 
scale (e.g. Saaty’s fundamental 9-point scale) 
and given by decision makers or surveyed 
experts based on their experiences and 
expertise. A PCM is said to be perfectly 
consistent if the expression aij=aikakj holds for 
all i, j and k. However, as the surveyed experts 
are often biased in their subjective comparisons, 
a PCM is usually difficult to satisfy the 
perfectly consistency condition, indicating that 
the inconsistent comparisons of preference 
judgment may exist in a PCM. Therefore, the 
inconsistency issue in a PCM has been widely 
studied, and a number of approaches and 
models are proposed and developed [10-15]. 

Currently, the consistency ratio (CR) proposed 
by Saaty [16] is widely used to test the 
consistency of a PCM.  

If CR<0.1, then the PCM is said to be of 
acceptable consistency, otherwise, the 
inconsistent entries should be revised.  

In addition to the inconsistent issue, a PCM 
could also be incomplete due to the large 
number of criteria being compared (or 
alternatives), time pressure, lack of the 
expertise or incomplete information as well as 
the complexity nature of the decision problem 
[17]. Therefore, the issue of processing missing 
data in a PCM has been another hot research 
topic in the study of multi-criteria decision 
making (MCDM), and many models are 
proposed to handle this issue [18-20] 

To identify the inconsistent elements simply 
and accurately while preserving most of the 
original comparison information in the PCM, 
an induced bias matrix (IBM) model, which is 
only based on the original comparison matrix, 
is proposed in [15].  Ergu and Kou [17] 
extended the IBM model to process the missing 
data in a PCM. In this paper, we borrow the 
concept of the IBM model and propose an 
arithmetic mean induced bias matrix (AMIBM) 
model to identify and adjust the most 
inconsistent elements. Different from the IBM 
model proposed in [15] and [17], the most 
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inconsistent data can easily be identified by 
observing the largest negative entry in the 
AMIBM C. Again, we also extend the proposed 
AMIBM to process the missing data in a PCM, 
and the missing data are estimated by 
optimization method.  

The rest of this paper is organized as follows. 
In Section 2, the theorems and corollaries of 
AMIBM model for inconsistency is proposed 
and proved mathematically. The theorem of 
AMIBM is extended to estimate the missing 
data. The processes of inconsistency 
identification and the procedures of missing 
data estimation are further proposed in this 
section. Two numerical examples are used to 
illustrate the proposed method for 
inconsistency identification and missing 
comparisons estimation in Section 3. A brief 
conclusion is presented in Section 4. 

2. Arithmetic Mean Induced Bias 
Matrix (AMIBM) Model 

2.1 The theorem of AMIBM 

In [15], a bias matrix is induced to amplify the 
most inconsistent entry of a PCM, and the 
largest value of the absolute bias data is 
employed to identify the most inconsistent data. 
To make the concept of inducing bias matrix 
more clearly, an arithmetic mean bias matrix is 
induced to reflect the differences between the 
arithmetic mean of the indirect judgments aikakj 
and the direct judgment aij. And the most 
inconsistent data can be identified by observing 
the largest negative entry of the induced bias 
matrix C. The proposed theorem is described in 
more-depth below. 

Theorem 1:  The arithmetic mean induced bias 
matrix (AMIBM) should be (or close to) zero 
matrix if the pairwise comparison matrix (PCM) 
is perfectly (or approximately) consistent.  
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where A represents a PCM, n denotes the order 
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bias entry located at the ith row and jth column 
of the arithmetic mean induced bias matrix C. 

Proof: According to the consistency condition, 
the expression aij=aikakj holds for all i, j, k if the 
PCM is perfectly consistent, then we have, 
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Obviously, the approximately consistent case 
can easily be proved by replacing the equality 
symbol “=” with the approximated symbol “ ”. 

Corollary 1: The induced arithmetic mean bias 
matrix C can not be a zero matrix if matrix A is 
inconsistent. More precisely, there is one entry 
in thi row or column of matrix C greater than 0. 

Proof: If matrix A is inconsistent, Saaty [16] 

proved that for the maximal eigenvalue max  of 

A, the inequality nmax holds. In addition, 

the corresponding unique eigenvector max  is a 

positive vector.  

Applying the following equation to matrix C 
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Since n>max , maxC  is a positive vector. 

Consequently, C cannot have any row 
containing only zeros. More precisely, any row 
of C must contain at least one positive element. 

Corollary 2: The corresponding bias entry cij of 
matrix C is less than zero if the inconsistent 
entry aij of matrix A is larger than it’s 
theoretically correct value.  

Proof: Assume aij is the most inconsistent 
entry of matrix A, and is larger than it’s 
theoretically correct value, i.e.  
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Adding all the inequalities together in the 
system of inequalities (4), we get 
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Similarly, if the inconsistent entry aij  of matrix 
A is smaller than it’s theoretically correct value, 
then its reciprocal entry aji  of matrix A will be 
larger than it’s theoretically correct value, and 
the corresponding bias entry cji  of matrix C will 
also be less than zero.  

2.2 The processes of inconsistency 
identification and adjustment 

For inconsistency identification, some 
researchers regarded the largest absolute 
value(s) in their models as the most 
inconsistent element [5, 16, 21]. In [15], the 
most inconsistent entry is also determined by 
analyzing the absolute largest value in the 
induced bias matrix C. According to Corollary 
2, if the most inconsistent entry aij of matrix A 
is larger (or smaller) than it’s theoretically 
correct value, the value of the corresponding 
bias entry cij  (or cji) of matrix C will be 
negative, indicating the average mean of the 
indirect judgment aij=aikakj is less than the 
value of direct judgment aij. Therefore, we can 
define the entry with the largest negative value 
in the arithmetic mean induced bias matrix 
(AMIBM) C as the most inconsistent entry of 
the original matrix A.  The specific steps of 
inconsistency identification can be summarized 
as follows: 

Step 1: Construct the AMIBM C by eq. (1).  

Step 2: Identify the largest bias values with 
minus signs max

ijc  in matrix C. 

Step 3: Determine the corresponding entry aij 

of matrix A as the most inconsistent entry. 

Step 4: Estimate aij using the estimation         
eq. (12). 

Step 5: Test the consistency of the revised 
matrix A.   

If the revised matrix A fails to consistency test, 
then go back to Step 1 above or continue to  
select the following second, the third largest 
values with minus sign in matrix C one by one 
to revise the matrix A until it meets the 
consistency condition.   

Once the most inconsistent entry is determined, 
it should be effectively estimated and adjusted. 
According to [22], the arithmetic mean 
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to the following formula,  
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2.3 AMIBM for missing data  

In a pairwise comparison matrix A=(aij)n×n, 
there are n(n-1)/2 pairwise comparisons 
required to be completed. However, when the 
number of alternatives is large, it is difficult to 
fill in all n(n-1)/2 pairwise comparisons 
because of time pressure, lack of related 
information or preference conflicts, 
unwillingness to make a direct comparisons 
between alternatives or being unsure of some 
of the comparisons, even purposely skip some 
direct comparisons to make fast decision [17, 
22]. To estimate the missing comparisons in 
an incomplete matrix, the following theorem 
is proposed. 

Theorem 2:  The arithmetic mean induced bias 
matrix (AMIBM)  should be equal (or close) 
to a zero matrix if the pairwise comparsion 
matrix A is perfectly (or approximately) 
consistent,i.e., 
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where A(x) represents the revised ‘complete’ 
matrix A with unknown variables x1 and 1/x1; x2 
and 1/x2, etc, respectively; while 
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Based on Theorem 2, we can define the 
following optimization problem as the missing 
data estimation problem. That is, estimate the 
missing data by minimizing the average sum of 
least square error of deviation matrix .     
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Therefore, the processes of estimating the 
missing data in a PCM can be summarized    
as follows: 

Step 1: Complete the missing comparisons with 
unknown variables x1 and 1/x1; x2 and 1/x2; etc. 

Step 2: Establish the arithmetic mean induced 
bias matrix (AMIBM)  by eq. (13).  

Step 3: Construct the optimization problems by 
eq.(14) and solve the optimization problem.  

Step 4: Test the revised comparison matrix A 
by replacing the missing comparisons with the 
estimated values. 

3. Illustrative Examples 

3.1 Inconsistency identification by AMIBM 

Ergu et al. [15] effectively identified the most 
inconsistent entries a23 and a93 in the Example 4 
by the proposed seven steps, especially the 
method of matrix order reduction, and the 
consistency ratio has been improved from 
0.2328 to 0.0732. In this section, the Example 4 
used in [15] is introduced to illustrate the 
proposed AMIBM model and demonstrate the 
processes of inconsistency identification and 
adjustment proposed above.  

Example 1. The 99 pairwise comparison 
matrix A used in [15] is inconsistent with 
CR=0.2328>0.1.  
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Apply the proposed AMIBM model to above 
PCM and detail the AMIBM-based 
inconsistency identification and adjustment 
process below. 

Step I: Inconsistency identification 

Step 1: Construct the AMIBM C using eq. (1), 
we have,  
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Step 2: Identify the largest bias values with 
minus signs max

ijc  in matrix C. Here,  

1323.4max
79 c . 

Step 3: Determine the corresponding entry a79 

of matrix A as the most inconsistent entry. 

Step II: Inconsistency adjustment 

Step 4: Calculate the inconsistent entry a79 

using eq. (12). (see§2.2) 
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Step 5: Test the consistency of the revised 
matrix A by replacing the a79 and a97 with 
1.6871 and 1/1.6871. We can get that 
max=10.7326, and CR=0.1483. Although the 
CR has been improved from 0.2328 to 0.1483,  
the revised matrix A still failed to the 
consistency, thus continue to adjust the second 
largest value with minus sign, here 

2334.3max2
59  ndc . By eq. (12), we can get 

8299.1~
59 a . Similar to Step 5, the 

corresponding max and CR of the second 
revised matrix A2 can be calculated and are 
10.3425 and 0.1149, respectively. It failed to 
the consistency test. Continue to adjust matrix 
A by the third largest value with minus sign, 
here 1601.3max3

93  rdc . By eq. (12), we have 

9371.2~
93 a . The corresponding max and CR 

of the third revised matrix A3 are 10.1228 and 
0.0961, respectively. Although the calculated 
CR is already less than 0.1, the difference is 
very small. Therefore, we can continue to test 
the consistency by the fourth largest value with 
minus sign, here, 75.2max4

23  thc , thus we can 

derive that 4643.0~
23 a . The max and CR of 

the fourth revised matrix A4 are 9.3013 and 
0.0258, respectively. Therefore, the CR has 
been efficiently improved from 0.2328 to 

0.0258. Different from [15], we identified 
another two most inconsistent entries a79 and 
a59 except a93 and a23. The calculated CR 
(0.0258) is also smaller than the CR (0.0732) 
obtained in [15]. For simplicity, we can adjust 
matrix A by calculating

79
~a , 

59
~a , 

93
~a  and 

23
~a  

simultaneously since their corresponding bias 
entries  in the AMIBM C are negative and close 
to each other.  

3.2 Estimating the missing data by AMIBM 

To illustrate the proposed AMIBM model for 
estimating the missing data in a PCM, let us 
assume the following 5-by-5 incomplete matrix 
A with four missing comparisons, where 
missing comparisons are denoted by ‘’. 
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Apply the proposed AMIBM model to 
estimate the missing data in matrix A. Details 
are as follows. 

Step 1: Complete the missing comparisons with 
unknown variables x1 and 1/x1; x2 and 1/x2; x3 
and 1/x3; x4 and 1/x4, we have,  
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Step 2: Establish the arithmetic mean induced 
bias matrix (AMIBM)  by eq. (13). 
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Step 3: Construct the optimization problems by 
eq. (14),  
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Apply the nonlinear constrained optimization 
function fmincon in Matlab software to solve 
the above optimization problem, the detailed 
values of objective function f(x) in each 
iteration and the estimated optimal values of 
four variables are shown in Table 1 and plotted 
in Figure 1.   

Figure 1 shows that the value of objective 
function f(x) almost remains stable after the 
7th iteration. It can be seen from Table 1 that 
the value of objective function changes at 
the second decimal fraction part. The 
estimated optimal values of four missing 
comparisons are x1=8.8834, x2=0.8834, 
x3=0.1240 and x4= 1.4770.  

Table 1 The results of optimization by AMIBM 

Iter f(x) Iter f(x) variables  Estimated 
value 

0 1.62875 7 0.28325 x1 8.8834 

1 1.01686 8 0.27078 x2 0.8834 

2 0.86772 9 0.26543 x3 0.1240 

3 0.81077 10 0.26382 x4 1.4770 

4 0.60542 11 0.26175   

5 0.46349 12 0.26168           

6 0.42253 13 0.26166   

Step 4: Test the revised comparison matrix A 
by replacing the four missing comparisons in 
matrix A with these estimated values, we get 
max=5.1534 and CR=0.0342. Therefore, the 
revised pairwise comparison matrix A passes 
the consistency test, and it can be used to make 
a decision.  

4. Conclusions 

In this paper, an arithmetic mean induced bias 
matrix (AMIBM) is proposed and proved 
mathematically, which is easier to be used in 
practice than the existing IBMM model. The 
inconsistent entries can be identified by 
determining the largest values with negative 
sign in the arithmetic mean induced bias matrix 
C. Then an adjusting formula is proposed. The 
proposed AMIBM for inconsistency is further 
extended to process the missing data in an 

 

Figure 1. Iteration optimization by AMIBM  
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incomplete matrix. The proposed AMIBM can 
deal with the inconsistency issue and the 
incompleteness issue in a pairwise comparison 
decision matrix simultaneously. Although the 
results of two numerical examples show the 
effectiveness and accuracies of the proposed 
model, more complicated examples in real-
world decision making problem need to be used 
to test the proposed AMIBM model in future.   
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