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1. Introduction 

The problem of Economic environmental 
dispatch (EED) is an important optimization 
task in fossil fuel fired power plant operation 
for allocating generation among the committed 
units. It aims at optimizing two conflicted 
objectives of fuel cost and emission level, 
simultaneously while satisfying all operational 
system constraints [1-3].  

The EED problem is a large-scale highly non-
linear constrained optimization problem 
characterized by complex and nonlinear with 
heavy equality and inequality constraints 
characteristics [4]. 

Traditionally, electric power systems aim at 
operating in such a way that the total fuel cost 
is minimized regardless of the emission 
produced in the system. An increased public 
awareness regarding the harmful effects of 
atmospheric pollutants on the environment has 
been noticed with concentrating on the 
importance of environmental protection and the 
passage of the Clean Air Act Amendments of 
1990 has forced the utilities to adapt their 
design and operational strategies in order to 
reduce pollution and atmospheric emissions of 
the thermal power plants [5].  

Many algorithms are developed to alleviate the 
effects of emission as installation of pollutant 
cleaning equipment, switching to low emission 

fuels, replacement of the aged fuel-burners with 
cleaner ones, and emission dispatching. The 
fourth option is the recent interested costless 
option compared to the first three options. That 
option is not any installing or modifying the 
exited pollution equipment. Then, the problem 
that has attracted much attention is pollution 
minimization due to the pressing public 
demand for clean air [4-6].  

As the concern of environmental pollution has 
been increased in recent decades as well as the 
dramatic growing of fuel costs assure the 
continuous necessity of improvement of 
optimization methodologies for efficiently 
solving EED problems.  

Classical methods such as the lambda iteration 
method and gradient method have been applied 
to solve the EED problems. But unfortunately, 
these methods are not feasible in practical 
power systems owing to the non-linear 
characteristics of the generators and non-
smooth cost functions. Consequently, many 
powerful mathematical optimization techniques 
that are fast and reliable, such as non-linear 
programming and dynamic programming have 
been employed to solve the EED problems. But 
due to the non-differential and non-convex 
characteristics of the cost functions, these 
methods are also unable to locate the global 
optima [1, 3]. 
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In recent years, modern search-based 
optimization techniques were developed as 
efficient alternative practical tools for non-
linear optimization problems. A wide range of 
improved techniques is used to tackle both 
EED objectives simultaneously as competing 
objectives. The salient search based methods 
are [4-8], niched Pareto genetic algorithm [4], 
differential evolution [6] fuzzy model with 
adaptive genetic algorithm [7] and Real-Coded 
Genetic Algorithm [8]. 

Fuzzy sets can also be applied for decision 
making in multiple objectives including various 
constraints, therefore, an interactive fuzzy 
satisfying method is suggested to solve 
ED/EED problems [7, 9-10], particle swarm 
optimization technique [11-13], Biogeography-
based algorithm for solving different economic 
load dispatch problems [14-15], differential 
evolution assisted by interior point algorithm 
[16] ant colony optimization (ACO) [17], 
seeker optimization algorithm [18] firefly 
algorithm [19], non-dominated sorting genetic 
algorithm (NSGA) [20], niched Pareto genetic 
algorithm (NPGA) [20], strength Pareto 
evolutionary algorithm (SPEA) [20] and 
multiobjective fuzzy based on particle swarm 
optimization algorithm [11], multiobjective 
bacteria foraging [21], Modified Shuffled Frog 
Leaping Algorithm (MSFLA) [22], and fuzzy 
ranking based real coded genetic algorithm 
(FR-RCGA) [42].  

The binary GA solves many optimization 
problems that stump traditional techniques. 
When the variables are naturally quantized, the 
binary GA fits nicely. However, when the 
variables are continuous it is more logical to 
represent them by floating-point numbers    
[23-27].  

A novel real-coded GA will be developed that 
has a lot of features that makes it improved 
algorithm; rarely stuck in local optima. These 
features include Biased Initialization, Elitism, 
and Dynamic parameter setting. It has been 
widely confirmed that real-number encoding 
performs better than binary or Gray encoding 
for function optimizations and constrained 
optimizations for many reasons include:  

 Binary encoding for function optimization 
problems is known to have severe 
drawbacks due to the existence of 
Hamming cliffs, pair of encodings having a 
large Hamming distance while belonging to 
points of minimal distance in phenotype 

space. For example, the pair 01111111111 
and 10000000000 belongs to neighboring 
points in phenotype space (points of 
minimal Euclidean distance) but have 
maximum Hamming distance in genotype 
space [24] 

 As the topological structure of the genotype 
space for real-number encoding is identical 
to that of the phenotype space, it is easy to 
form effective genetic operators by 
borrowing useful techniques from 
conventional ones [23].  

 Also, the binary GA has its precision 
limited by the binary representation of 
variables; using floating point numbers 
instead easily allows representation to the 
machine precision [25]. 

 Real-coded GA also has the advantage of 
requiring less storage than the binary GA 
because a single floating-point number 
represents the variable instead of Nbits 
integers [23, 26]. 

This paper proposes Multiobjective real coded 
genetic algorithm (MO-RCGA) for 
simultaneously optimizing both economic and 
environmental objectives while achieving the 
operating system constraints. This EED 
problem is formulated as a nonlinear 
constrained optimization problem. In order to 
show the effectiveness of the proposed 
approach, problem solving is applied on 
standard IEEE 30 bus system.  

2. Problem Formulation 

The nonlinear optimization problem can be 
expressed in the form of a constrained 
optimization problem as: 

Min    f x   (1) 

Subject to: 

 
 

0  

0

g x

h x

 



 (2) 

where, f(x) is the objective function such as 
generators fuel costs, transmission line losses, 
etc, g(x) represents the equality constraints, 
h(x) represents the inequality constraints, and x 
is the vector of the controlled variables that 
may be generator real power outputs, generator 
voltages, switchable reactive power, and 
transformer tap setting.  
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The combined economic-environmental 
dispatch issue is multidimensional, non-linear, 
non-convex and highly constrained problem. It 
involves multiple and often conflicting 
optimization criteria for which no unique 
optimal solution can be determined with 
respect to all criteria [5].  

The economic-environmental power dispatch 
problem can be stated as finding the thermal 
unit generation and corresponding water release 
from each reservoir throughout all planning 
time intervals, so as to minimize the total cost 
of fuel and pollutants emission while satisfying 
load balance, thermal, and hydraulic constraints. 
The objectives and constraints considered in 
the formulation of the combined economic 
emission power dispatch problem are addressed 
in this section. The derivation of the optimal 
solution is based on the weighted- sum method 
of the two objective functions is considered.  

In this paper, the objective functions are  

The first one is the non-linear fuel cost of 
generators. The generators cost curves are 
represented by quadratic functions with sine 
components. The superimposed sine 
components represent the rippling effects 
produced by the steam admission valve 
openings. The total $/h fuel cost can be 
expressed as: 
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Where,  
 Fi: is the non-linear objective function 

defining the total power generation cost of 
the system.  

 ai, bi, ci, di and ei are the coefficients of 
power generation cost function.  

 NG: is the number of generation buses, and 
min. denotes to minimum value of the 
objective function. 

The second objective aims at minimizing the 
emission effects. The atmospheric pollutants 
such as sulpher oxides and nitrogen oxides 
caused by fossil fueled thermal units can be 
modeled separately. However, for comparison 
purposes, the total ton/h emission of these 
pollutants can be expressed as [2-4] as: 
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Where, αi, βi, γi, ξi and λi are the coefficients of 
power generation cost function.  

The objective functions in (3) and (4) are 
subjected to the following constraints: 

2.1 Equality constraints 

Two types of equality constraints are 
considered: one is to simulate the total power 
balance for the network and the other for 
representing the power balance at each bus.   

Active / reactive power balance constraints 

The generators real and reactive power outputs 
should be equal to the total load demand and 
transmission line losses, this constraint can be 
expressed as: 
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Where, PGi is the power generation at bus i, 
PDj is the load demand at load bus j, NL is the 
number of load buses and PL is the total power 
losses in the system.  

The transmission active power losses equal to 
the sum of the injected powers at all system 
buses. The active power injected can be 
calculated from Equ. (6) as: 
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i  n, where, i is set of numbers of buses except 
swing Bus, Vi is voltage magnitude of bus i, θi 

is voltage phase angle of bus i, θij is phase 
angle difference between buses i and j,  

Gij is mutual conductance between buses i and j, 
and Bij is mutual susceptance between buses i 
and j, 

Network constraints at each bus  

The power balance defined by equation (5) 
doesn't ensure satisfying the power balance at 
each bus. So additional network constraints 
must be added at each bus i as: 
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,for i=1, 2 …NB.   (7) 
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Where, nci represents no of lines connected 
with the bus i, PDi is the load demand at load 
bus i and PFik is the active power flow in lines 
connected between buses i and k, respectively. 

2.2 Inequality constraints 

Generation Constraints 

The generation hard constraints include 
generator voltages, real power outputs, these 
constraints are defined as hard constraints as 
they are restricted by their physical lower and 
upper limits. The generation constraints can be 
simulated as:   

maxmin
iii PGPGPG    (8) 

Where, PGi
max and PGi

min are the maximum and 
minimum of power generation at bus i 
respectively. 

Ramp rate Constraints 

Additional generation hard constraints are 
restricted by their physical ramp rate limits. 
The ramp rate constraints can be simulated as:   

  max0min
iiii URGPGPGDRG     (9) 

Where, DRGi
max and URGi

min are the maximum 
and minimum of ramp rate for power 
generation at bus i respectively. These rates are 
considered around 10 % around the initial 
generation outputs (PGi). 

Network Constraints 

To keep system more secure voltages at load 
buses and transmission line loadings should be 
kept in permissible limits and this can be 
expressed as: 

max
ii SlSl  ,i=1,2…,nl (10) 

Where, VL is load bus voltages, Sl is 
transmission line loading in MVA, NL is 
number of load buses, and nl is number of 
system lines. 

3.  Improved Real-Coded  
Genetic Algorithm  

In this paper an efficient MO-RCGA operator 
is proposed to solve the ED/Emission problem 
considering system constraints. Here, a brief 
summary of the genetic operators of the 
proposed MO-RCGA is presented. The 
performance of the proposed real-coded GA is 
an enhanced real-coded GA using biased 

Initialization, adaptive parameter setting, and 
elitism is carried out.  

3.1 Biased initialization  

Here, it used what so called Biased 
Initialization. The algorithm cannot continue 
for evolving if the average fitness of the 
population does not exceed certain limit, so, at 
that moment you are sure somehow about the 
quality of the initial seed. Through different 
trials, it has been decided to set this threshold 
to be 30%. 

3.2 Selection and replacement scheme 

There are two things to keep in mind during the 
selection of the parents, elitism and diversity. 
Elitism is the process of selecting the better 
individuals, or more to the point, selecting 
individual with a bias towards the better ones. 
Elitism is important since it allows the 
solutions to get better over time. If you pick 
only the few best parents, and replace always 
the worst, the population will converge quicker. 
This means that all the individuals will more or 
less all be the same. Contrarily to general belief, 
the solution will not necessarily be optimal. On 
the contrary, it can be pretty much guaranteed 
that it will be sub-optimal, or if you're lucky, 
near-optimal. This approach is fine for small 
problems, and small population sizes. For 
bigger problems, you need more diversity. This 
allows the genetic algorithm to search through 
a wider variety of solutions, and thereby not get 
stuck in local maxima (solutions that seem 
good locally, but are not in the grand scheme  
of things).  

3.3 Crossover 

Several genetic operators have been proposed 
for real-number coding, which can roughly be 
put into four classes [24], conventional 
operators, arithmetical operators, direction-
based operators, and stochastic operators. Here 
the suggested algorithm uses Arithmetical 
crossover. The weighted average of two vectors

1x  and 2x  is calculated as follows: 

2211 xx    (11) 

If the multipliers are restricted as 

0,0,1 2121    (12) 
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Similarly, arithmetic crossover is defined as the 
combination of two vectors (chromosomes)    
as follows: 

22111 xxx     (13) 

12212 xxx     (14) 

3.4 Non-uniform mutation 

Since genetic algorithms are inspired from the 
idea of evolution, it is natural to expect that the 
adaptation is used not only for finding solutions 
to a given problem, but also for tuning genetic 
algorithms to the particular problem. It is 
designed for fine-tuning capabilities aimed at 
achieving high precision. For a given parent x , 
if the element kx  of it is selected for mutation, 

the resultant offspring is ),...,,...,( 1 kk xxxx  , 

where kx  is randomly selected from the 

following two possible choices [30, 34, 35]: 

),( k
U
kkk xxtxx   if a random bit is 0(15) 

),( L
kkk k

xxtxx   if a random bit is 1(16) 

The function ),( yt  returns a value in the 

range ],0[ y  such that the value of ),( yt  

approaches 0 as t increases ( t  is the generation 
number). This property causes the operator to 
search the space uniformly initially (when t is 
small), and very locally at later stages. The 
function ),( yt  is given as: 

1

( , ) .

b
t

Tt y y r
  
    (17) 

Where, r  is a random number from [0,1], T the 
maximum generation number, and b a 
parameter determining the degree of non-
uniformity. It is possible for the operator to 
generate an offspring that is not feasible. In 
such a case, we can reduce the value of random 
number r. As binary coded GA has severe 
drawbacks due to the existence of Hamming 
Cliff, phenotype and genotype are different, 
precision is limited by the binary representation 
of variables, and the low speed comparable to 
Real-coded GA, the thesis uses the Real-coded 
GA and develops it by adding some features 
which help in not stuck in the local minima.  

3.5 Handling of constraints  

The proposed MO-RCGA deals efficiently with 
the inequality constraints. The equality 

constraints are treated as close to inequality 
constraints as given below: 

gP Load Losses Є     (18) 

Where, Є refers to the convergence degree 

3.6 Handling of conflicting objectives 

The typical optimal EED problem can be 
formulated as a bi-criteria optimization model. 
The two conflicting objectives, i.e., fuel cost 
and pollutants emission, should be minimized 
simultaneously while fulfilling certain system 
constraints. The EED problem has two 
objective functions fuel cost minimization and 
emission minimization. These two objectives 
are conflicted in nature. The mathematical 
formulation of multiobjective EED problem 
minimizes both non smooth fuel cost function 
(Equ. 3) and emission (Equ. 4) while satisfying 
system operating constraints presented in Equs. 
(5)-(10). The weighted-sum method transforms 
a set of objectives into a single objective by 
pre-multiplying each objective with user-
supplied weight.  The weight of an objective is 
usually chosen in proportion to the objective’s 
relative importance to the problem. It is likely 
that each objective function takes different 
magnitude as in the combined economic- 
environmental power dispatch. Therefore, 
setting up an appropriate weight factor depends 
on the scaling of each objective function.  It is 
the usual practice to choose weights such that 
their sum is equal to one. The combined EED 
problem can be formulated as follows: 

1 1 2 2( ) ( )F w F Fuel w F Emission     (19) 

Where, F refers to the combined objective 
function involves fuel cost and emission; w1 
and w2 is the weighing factors of the two 
objective functions.  

4. Case Studies 

4.1 Test systems 

In order to show the effectiveness of the 
proposed approach to solve EED problems 
using an MO-RCGA, Simulations were 
performed on the standard IEEE 30-bus 6-
generator test system [28]. The Six generators 
located at buses 25-30 as shown in the single 
line diagram presented in Figure 1. The power 
system is interconnected by 41 transmission 
lines and the total system demand for the 21 
load buses is 283.4 MW. Fuel cost and 
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emission coefficients are given in Tables 1 and 
2 respectively as [20]. 

Table 1. Generator fuel cost coefficients  

Generator 
Min 
MW 

Max 
MW 

a 
$ 

b 
($/MW) 

c 
($/MW2) 

d 
$ 

e 
MW-1 

G1 5 50 100 200 10 32.4 0.047 

G2 5 60 120 150 10 32.4 0.047 

G3 5 100 40 180 20 32.4 0.063 

G4 5 120 60 100 10 23.4 0.063 

G5 5 100 40 180 20 24 0.063 

G6 5 60 100 150 10 24 0.063 

Table 2. Generator emission coefficients  

Coefficient   G1  G2  G3  G4  G5  G6 

   4.091  2.543  4.258  5.326  4.258  6.131 

   ‐5.554  ‐6.047 ‐5.094  ‐3.550  ‐5.094  ‐5.555 

   6.490  5.638  4.586  3.380  4.586  5.151 

   2.0E‐4  5.0E‐4 1.0E‐6  2.0E‐3  1.0E‐6  1.0E‐5 

   2.857  3.333  8.000  2.000  8.000  6.667 

4.2 Studied cases 

To demonstrate the effectiveness of the 
proposed version of the MO-RCGA, Six 
studied cases are considered for the studied test 
system of the combined EED minimization 
problem. In Case 1, the fuel cost only is 
minimized for lossless network. In Case 2 
while the fuel cost is minimized the 
transmission losses are considered. For Cases 3 
and 4, minimization of emission is considered 
for lossless and lossy networks, respectively. In 
Cases 5 and 6, both objectives are optimized 
simultaneously with equal priority with both 
conditions of transmission losses, respectively.  

4.3 Setting of proposed RCGA parameters 

The proposed MO-RCGA-based approach has 
been developed and implemented using the 
MATLAB software for the studied case. 
Initially, several runs have been done with 
different values of MO-RCGA key parameters 
such as Chromosome numbers (candidate 
solution), Number of parents in selection, size 
of population, Elitism, selection, crossover and 
mutation operators.  

Table 3 presents the simulation parameters of MO-
RCGA considering lossless and lossy network.  

 

Table 3. MO-RCGA parameters for studied cases 

Variables  Lossless Cases Lossy Cases 
No. of runs 50 50 

Chromosome No. 30 60 
Parents no.  26 56 

population No. 30, 40 30- 80 
Elitism 4 4 

Selection Roulette-wheel Roulette-wheel 
Crossover arithmetic crossover arithmetic crossover 
Mutation Non-uniform mutation Non-uniform mutation 

4.4 Results & discussion 

Table 4 shows the EED solution solved through 
the proposed MO-RCGA for Case 1 at two 
population size (30 and 40). As seen, the 
proposed MO-RCGA method gets different 
load dispatch settings. As an operating result, 
the fuel cost is 582.92 $/hr and the pollutant 
emission is 221.21 kg/hr for Case 1 which 
population size equals 30. When the population 
size increased to 40, the fuel cost is 
585.3574 $/hr at the same pollutant emission 
which equals 216.7 kg/hr when the 
transmission losses is neglected. It is cleared 
that, less significant variation is found with 
increased population size. In terms of the 
control variable settings, different security 
levels are obtained for especially for generators 
1, 2 and 3. Also, Table 4 presents the 
evaluation of the proposed MO-RCGA in terms 
of mean, best and worst values for 50 runs and 
the related standard deviation for each 
population size.    

Table 4. EED solution of Case 1 

Variable POP 30 POP 40 
PG1(per unit) 0.1649 0.2334

PG2 0.2317 0.2336
PG3 0.4787 0.5749
PG4 1.0019 0.9400
PG5 0.4874 0.4221
PG6 0.371 0.334

Mean (Fuel cost) $/hr 593.4 591.3457 
Best (Fuel cost) $/hr 582.92 585.3574 

Worst (Fuel cost) $/hr 602.13 602.7309 
Standard-deviation 6.5888 6.1059 

Emission at best fuel costs kg/hr 221.2 216.7 

Considering the transmission losses, for Case 2, 
Table 5 presents the EED solution at three 
population sizes 60, 70 and 80. For all 
population sizes, both fuel cost and pollutant 
emission are increased when the transmission 
losses are noticed. The lowest incremental fuel 
costs and emissions are 615.5482 $/hr and 
228.5 kg/hr, respectively which are occurred at 
60 populations. When the increased population 
size equals 70, significant reduction in the 
emission level to 207.7 kg/hr. The lowest 
standard deviation level in Case 2 is 5.7289 
which is less than the corresponding one in 
Case 1 (6.1059) 
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Table 5. EED solution of Case 2 

Variables POP 60 POP 70 POP 80 
PG1 0.1727 0.2885 0.2311 
PG2 0.3966 0.2688 0.3805 
PG3 0.5679 0.4241 0.5909 
PG4 1.1079 0.8285 0.9374 
PG5 0.2194 0.6143 0.5939 
PG6 0.3949 0.4351 0.1259 
Mean (Fuel cost) $/hr 623.3722 625.4780 626.8446   
Best (Fuel cost) 615.5482 616.2909 618.1290 
Worst (Fuel cost) 634.9026   649.3181 648.0311 
Standard-deviation 5.7289 9.9135 9.2004 
Emission at best Fuel costs kg/hr 228.5 207.7 218.7 

In Table 6, Cases 3 and 4 considers the 
emission minimization only as a single 
objective, the fuel costs are increased to 
643.1819 and 648.5301 $/hr while the pollutant 
emission is reduced to the lowest levels at 
193.2 kg/hr in Case 4.   

Table 6. EED solution of Cases 3 and 4 at  
Pop.Size =30 

Variables Case 3 Case 4 
POP 30 POP 30 

 

0.3875 0.3969 

 

0.5103 0.4566 

 

0.4776 0.6015 

 

0.4773 0.3853 

 

0.51 0.5366 

 

0.5166 0.5064 
Mean (Emission) 0.2029 0.2018 
Best (Emission) 0.1934 0.1932 

Worst (Emission) 0.2152 0.2194 
Standard-deviation 0.0052 0.0056 

Fuel cost (without valve effect) 643.1819 648.5301 
Fuel cost (with valve effect) 681.7049 691.3766 

Table 7 show the compromised EED solution 
solved using the proposed MO-RCGA for Cases 
5 and 6, respectively for varied population size 30, 
40 and 50. As seen in Table 7, the proposed MO-
RCGA method gets different load dispatch level 
for each population size. As an operating result, 
the fuel cost has the lowest level (582.41 $/hr) 
when the population size equals 30. The pollutant 
emission is 220 kg/hr for Case 5 which 
population size equals 30. When the population 
size equals 40, the fuel cost is increased by 0.086 
$/hr at pollutant emission is reduced by 0.8 kg/hr.  

It is cleared that, less significant variation is found 
with increased population size. In terms of the 
control variable settings, different security levels are 
obtained for generators 1, 2 and 3. 

Table 7. Compromised EED solution (Cases 5 and 6) 

Variable Case 5 Case 6 
POP30 POP 40 POP50 POP30 POP40 POP50

PG1 0.1461 0.1439 0.1847 0.1964 0.1468 0.138 
PG2 0.2795 0.3148 0.3099 0.2512 0.2715 0.2714 
PG3 0.4714 0.5446 0.5172 0.4399 0.5046 0.5399 
PG4 0.9783 0.9776 0.9691 0.9134 0.9461 1.0308 
PG5 0.5448 0.3943 0.4782 0.5566 0.5711 0.4398 
PG6 0.315 0.3588 0.2753 0.4089 0.3252 0.347 

(Fuel cost) 582.41 582.496 583.17 591.05 589.31 589.42 
Emission 

kg/hr 
220 219.2  218.5  214.2 218 223.4 

Considering the transmission losses, for Case 6, 
Table 8 presents the compromised EED 
solution. For all population sizes, both fuel 
costs and pollutant emission are increased 
when the transmission losses are considered as 
presented in Table 8. The lowest fuel costs and 
emissions are 589.31 $/hr and 218 kg/hr, 
respectively which are occurred at the 
population size equals 40.  

5. Evaluation Criteria of MO-RCGA  

5.1 Numerical comparative study  

The proposed MO-RCGA is compared with the 
results obtained with multi-objective evolutionary 
algorithms like non-dominated sorting genetic 
algorithm (NSGA) [20], niched Pareto genetic 
algorithm (NPGA) [20], strength Pareto 
evolutionary algorithm (SPEA) [20] and 
multiobjective fuzzy based on particle swarm 
optimization algorithm [10], and Modified 
Shuffled Frog Leaping Algorithm (MSFLA) [22].  

Tables 9 shows the comparison between EED 
solutions solved through the proposed MO-
RCGA against several optimization techniques 
for Cases 1 and 3. The use of the proposed 
MO-RCGA leads to more economical solutions 
compared to other techniques.  

Table 8. Comparison of best solution for fuel cost 
and emission with several algorithms for Case 1 and 

3 (without valve effects) 
 

Case 3 Case 1 Algorithm  

Emission 
(Ton/h) 

Cost 
($/h) 

Emission 
(Ton/h) 

Cost 
($/h) 

0.19436 639.209 0.2228 600.5 72 NSGA[20]  
0.19433 639.180 0.2212 600. 259 NPGA[20]  
0.19421 638.507 0.2215 600.150 SPEA [20]  
0.1942 638.262 0.2222 600.112 FCPSO[10]  
0.1934 643.181 0.2212 598.7426 MO-RCGA  

Table 9. Comparison of different methods for Cases 
2 and 4 considering transmission losses 

 

Case 4 Case 2 Algorithm  

Emission 
(Ton/h) 

Cost 
($/h) 

Emission 
(Ton/h) 

Cost 
($/h) 

0.1946 633.8300 0.2238 600.3100 NSGA[20]  
0.1943 636.0400 0.2206 600.2200 NPGA[20]  
0.1942 640.4200 0.2241 600.3400 SPEA [20]  
0.1942 644.1100 0.2220 605.8900 MOSST[22]  
0.1942 638.3577 0.2223 600.1300 FCPSO [10]  
0.1942 638.24254 0.22215 600.1114 MSFLA[22] 

0.1932 648.5301 0.2285 611.6935 
Proposed MO-

RCGA 

Table 10 shows the comparison between EED 
solutions solved through the proposed MO-
RCGA against several optimization techniques 
for Cases 2 and 4. The use of the proposed 
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MO-RCGA leads to more economical solutions 
compared to other techniques. 

Tables10 shows the comparison between EED 
solutions solved through the proposed MO-
RCGA against several optimization techniques 
for Cases 5 and 6. The use of the proposed 
MO-RCGA leads to more economical solutions 
compared to other techniques. 

Table 10. Comparison of different methods for the 
best compromise solution  

Cost ($/h) Emission (Ton/h) Algorithm  

610.3 0.2004 SPEA [20]  
606.03 0.2041 NSGA [20]  
608.90 0.2015 NPGA [20]  

610.0783 0.2006 MSFLA [22] 
578.8774 0.2159 MO-RCGA for Case 5 
587.0558 0.2186 MO-RCGA for Case 6 

5.2 Convergence criteria for MO-RCGA 

Figures 2-9 show the convergence of objective 
function/s for the studied cases. Figure 2 shows 
the convergence at the best fuel cost for Case 1 
at population number 20 and 30 when the 
transmission losses is not considered where the 
population size equals 30. Figure 3 shows the 
convergence at the best fuel cost for Case 1 at 
population number 30 and 40 when the 
transmission losses is considered where the 
population size equals 40. Figure 4 shows the 
convergence at the best fuel cost for Case 2 at 
population number 50 and 60 when the 
transmission losses is considered where the 
population size equals 60. Figure 5 shows 
convergence of best emission for Case 3 at 
population sizes 30 and 40. The best emission 
for 50 runs is presented in Figure 6. Figure 7 
shows the convergence best emission points at 
population size 20 and 30 for Case 4.  

Figures 8 and 9 show the fuel costs against 
emission for cases 5 and 6 at different 
preference value, respectively.  

 
Figure 2. Convergences for Case 1 at population no 

20 and 30. 

 

 
Figure 3. Convergence for Case 1 at population no 

30 and 40 

 
Figure 4. Convergence for Case 2 at population no 

50 and 60 

 
Figure 5. Convergence for Case 3 at population no 

30 and 40 

 

Figure 6. Best emission levels for 50 runs (Case 4) 

 
Figure 7. Convergence best emission points at 

population size 20 and 30 for Case 4 
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Figure 8. Emission versus fuel costs for Case 5. 

 
Figure 9. Emission versus fuel costs for Case 6 

6. Conclusion 

In this paper, an improved multi-objective real 
coded genetic algorithm has been presented and 
efficiently examined for the combined 
competing economic/environmental objectives 
in power dispatch problem. The multi-objective 
optimization problem was transformed in to 
single objective using the weighted-sum 
method. The proposed RCGA has been 
developed, and successfully tested on the 
standard IEEE 30-bus test system. Several 
studied cases have been considered, the 
simulation results demonstrate the effectiveness 
and robustness of the proposed MO-RCGA 
algorithm.  
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