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Abstract: In this paper, we describe an interactive approach to design mobile sensor networks. The node-mobility 
aspect requires an online or interactive algorithm to determine the optimal network-coverage solution for a given area 
of interest. Hence, we develop a real-time genetic algorithm to find the suitable direction of node locomotion,
considering either coverage of the target area or estimation of the optimum energy consumption. The main purpose is
to provide a solution that can extend the network lifetime. The simulation results indicate that the proposed fitness
function achieves our objectives. 

Keywords: Mobile Sensor Networks, WSN, Genetic Algorithm, Network Life time, Optimum Energy Consumption. 

1. Introduction 

Wireless sensor networks (WSNs) include 
numerous unsupervised devices capable of 
sensing, computation and communication. 
These energy-restrained devices are expected to 
be used for many different kinds of applications 
[1]. For instance, WSNs can be used for 
environment and habitat monitoring, traffic 
measurement on roads, vehicle tracking and 
personnel tracking inside buildings. Even 
though WSNs have a variety of applications, 
their deployment usually has two common 
objectives: (a) obtaining the maximum area 
coverage for a specific number of nodes and (b) 
prolonging the operational life of the individual 
nodes [2]. 

A mobile sensor network is a WSN with 
locomotion capabilities, consisting of several 
nodes with sensing, computation and 
communication functions [1]. This mobility 
aspect presents a design challenge in unknown 
environments. A genetic algorithm (GA) could 
be an innovative approach to simultaneously 
optimise coverage and lifetime problems. 
Network lifetime could be defined as the period 
of time it takes for the first node, or a fraction 
of all the nodes in the network, to be depleted 
of their energy. 

The aforementioned GA method is applicable 
for the optimisation of both dynamic 
environments and dynamic network topologies 
[3]. In this paper, we develop a real-time GA in 
order to design a network with maximum 
coverage and minimum energy consumption, 
which results in extended network lifetime. In 
most cases, a basic sensor node consists of five 
main components: (a) a power supply that is 
considered to be the only energy source, (b) a 
controller with memory, (c) a sensing device, 

(d) a communications system and (e) a mobile 
platform for mobile wireless sensor nodes. All 
these constituent parts of the architecture 
consume energy; especially during the 
spreading procedure of mobile sensor nodes, 
which adjusts node position with a trade-off 
between area coverage and energy usage [4]. 

A GA is a heuristic search technique that is 
used to automatically find optimal solutions, 
while trying to avoid local maxima [5]. This 
method is inspired from nature and has 
numerous applications in model checking [3]. 
Also, it is suitable for solving non-linear 
optimisation problems and for finding the 
probable global optimisation value of a fitness 
function. Fundamentally, a GA comprises three 
important components: recombination, 
mutation and a fitness function. Many 
researchers have concentrated on the fitness 
function, which operates on chromosomes. In 
our paper, as in [6], we also propose a fitness 
function (the main procedure of GAs) to 
estimate an optimal solution. The optimal 
solution(s) is selected according to two 
important parameters. Energy consumption is 
one the most important parameters for 
measuring the efficiency of network 
positioning and can be divided into three parts: 
the energy usage of transmission for each node, 
receiving packets by cluster head and data 
transmission from cluster head to sink. In this 
paper, we assume that the energy consumption 
of transmission for each node represents the 
energy usage. Network coverage is another 
important parameter to consider in measuring 
the size of a chromosome. In this work, the size 
of a chromosome depends on its energy 
consumption and network coverage [7]. 

The remainder of this paper is organised as 
follows: (a) Section 2 reviews related work, (b) 
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Section 3 shows our contribution, (c) in Section 
4 we propose a solution and elaborate on 
details of our algorithm, (d) Section 5 presents 
our simulation and an analysis of our results 
and (e) Section 6 summarises the conclusions. 

2. Related Work 
In this section, we describe some examples of 
previous research on network coverage 
optimisation problems. One of the first research 
works on the coverage optimisation problem 
was presented by Gage [8] in 1992. He 
proposed a blanket coverage method to achieve 
a statistical arrangement of sensor nodes 
leading to an extended coverage of an area, 
similar to that of interest in the current work. 

Howard et al. [9] presented a GA-based 
approach that used a repulsive behaviour to 
spread the nodes throughout the resource. Here, 
a virtual “force” algorithm was utilised for 
node placement in order to avoid the problem 
of local-optimum solutions encountered by 
many researchers [10, 12]. They considered a 
complete model network in which only offline 
planning is required for deployment. 

Kalpakis et al. [10] proposed the Maximum 
Lifetime Data gathering Algorithm (MLDA), 
which is able to maximise the lifetime of a 
network with fixed locations of the nodes and 
the base station. This algorithm finds the edge 
capacities that allow maximum transmission 
flow by running a linear program. 

The PEGASIS protocol, an extension of the 
LEACH algorithm, in which every node 
transmits aggregated data to its nearest 
neighbour and the transmission is repeated until 
the data packet is delivered to the base 
station[13]. The PEGASIS method provides an 
advantage over LEACH in its robustness to node 
failure. Pan et al. [14] subsequently presented a 
two-tiered structure that improves energy 
efficiency by local hierarchical clustering. 

Later, Hussain et al. [12] proposed an approach 
using a GA method to obtain an optimum 
solution, including energy consumptions, 
transmission schedule, etc. Qu et al. [2] 
introduced a sensor relocation method based on 
a multi-objective GA. These objectives were to 
maximise coverage area and minimise energy 
usage within the network.  

3. The Proposed Approach 
The nature of sensor nodes and special 
properties of a dynamic environment challenge 

the optimisation problem because of two main 
limitations for mobile sensor networks. First, 
the offline design of network topology based on 
a static map is not appropriate for a dynamic 
environment with changing geographical 
features. Second, energy consumption is a more 
significant issue in dynamic networks due to 
the mobility of sensor nodes. The sensor nodes 
have limited energy for monitoring the resource 
and thus, in communicating with each other for 
long periods and moving from one place to 
another, a minimum energy consumption 
approach is highly desirable. To solve these 
problems, we instigated a real-time genetic 
algorithm, because: firstly, a real-time or more 
exactly, interactive GA can facilitate 
optimisation solutions of the dynamic 
environment; secondly, the algorithm takes 
power consumption into account when nodes 
are selected for movement and/or monitoring 
activities; and thirdly, the GA operates 
randomly at different levels, yielding a 
convergence close to the static global optimum 
in coverage. 

3.1. Assumptions 

In this work, we aim to propose a fitness 
function that is adapted for a real-time GA. 
This function operates on chromosomes that 
present different network topologies. A 
network of n nodes is represented by a 
chromosome of n bits or gens. Nodes of a 
network are represented as bits (gens) of a 
chromosome. Each chromosome in a 
population represents a possible solution of 
network topology. Chromosomes permute 
information by crossover and generate new 
chromosomes. In a GA, fitness is assessed by 
the function defining our desire goal(s). 
Moreover, the chance of an individual 
chromosome surviving in a crossover depends 
on its fitness value. The chance of survival is 
higher for better fitness values. The fitness of a 
chromosome is defined by several parameters, 
such as speed, energy consumption and single 
hop delay. A population includes several 
chromosomes. The fittest chromosomes will be 
chosen to produce the next population. Also, 
the initial population is a large number of 
random network topologies. The fitness 
function evaluates members of the current 
population to choose those most suitable to be 
transformed into the future generation. A new 
population is produced by replacing some 
members of the population [1]. 
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In general, a GA retains a certain number of the 
best individuals from each generation and 
mixes them up to form the new generation. 
Therefore, the new generation will have some 
of the individuals from previous populations 
and others that have evolved through the 
crossover and mutation functions [1]. 
Sometimes, a couple of parent chromosomes 
are dropped, even though they have high 
priorities, due to an incompatible crossover, 
which leads to the production of a bad 
chromosome. In this case, such parents          
are marked with a tag field for use in               
other crossovers.  

In this work, we will introduce an interactive 
genetic algorithm. To run this algorithm, a 
powerful processor is required, which can be 
installed in the base station. Moreover, the base 
station needs to know the location of each 
sensor. Then, the base station runs the 
optimisation algorithm in order to decide in 
which direction the sensors should move. 
Furthermore, in this research, a case in which 
each node has a scanning laser range-finder 
sensor and an omnidirectional camera to 
monitor its distance from nearby nodes and 
obstacles is considered. 

The sensor network assumptions are listed in 
the following. In addition, both the sensing and 
multi-objective GA models are described. 

3.2 Network assumption 

The following assumptions are assumed for 
network sensors: 

1. All sensors can communicate with the base 
station directly or by multi-hopping. 

2.  Sensors’ coverage is defined as a circle 
centred on this sensor. 

3.  All sensors have GPS or other location 
devices. They can move to any position 
(with known coordinates) within their 
mobility range. 

4.  Sensors cannot sense through or move 
across boundaries and obstacles that are 
considered as walls. 

3.3 Sensing model 

The first objective considered in our algorithm 
is coverage. The assumed sensing model is a 
binary model, which is supposed to be covered 
as much as possible. This means that the area 
within a certain distance from a sensor can be 

counted as 100% covered and the area beyond 
the sensing range will be set at less than 50% 
covered, because it cannot be covered by this 
sensor [1]. The sensing field is considered to 
be a grid. The coverage of the whole area is 
proportional to the grid points that can be 
covered. Considering the grid points (x,y) and 
(xi,yi), the possibility that they can be sensed 
by a sensor node Asi(xi,yi) can be described by 
Equation 1. Asi(xi,yi) means node A is located 
at (xi,yi). Rs is the number of sensor nodes in 
the network. 
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Relation 1: Possibility of sensing points (x, y) and 
(xi, yi) by node Asi 

Another objective of the function is to save the 
sensor’s energy by minimising the distance 
travelled by. For a sensor network with Rs 
sensor nodes, the average distance travelled is 
equal to: 
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Relation 2: Average distance travelled 

Where G(x, y) and ' ( ' , ' )i i iG X Y  are the 
corresponding initial and final points of a 
sensor node; hence, this is the distance between 
grid points (x,y) and (x’i,y’i). To manage all 
sensor nodes, we designate a selected subset of 
association nodes. Initially, all sensor nodes are 
grouped into the set called cluster, which in 
turn is managed by association nodes called 
Cluster Heads (CHs). The developed algorithm 
comprises five steps, as explained in Algorithm 
1. This algorithm summarises the GA-based 
process for dynamic environmental monitoring. 
All nodes transmit aggregated data to the 
common Base Station (BS) through their 
corresponding CHs. The base station is a 
constantly powered resource that processes the 
algorithm and transmits the results to all nodes. 

3.4 Initialisation 

Initialisation is the first step of the algorithm, at 
which the value of ti is set to initialise the 
algorithm. Nodes are clustered and CHs are 
determined. Due to the locomotion of the 
sensor nodes in a mobile network, we utilise 
the concept of the Direction Vector (DV) to 
specify the situation of each node, as done in 
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previous studies [3]. The DV is an n-
dimensional vector ( n ) scaled to the 
interval [0, 1]. This value indicates the 
probability of nodes moving in different 
directions. Clearly, the summation of this 
dimension is 1.0. 

 
Algorithm 1. Proposed GA-based algorithm for 

mobile sensor network 

Simultaneously, the GA explores node 
movement using the DV and the locations of 
the CHs. Cluster heads must know the status of 
each node, including its remaining power level. 
Therefore, we introduce a concept called the 
Member Vector (MV), which consists of a 
member-node identifier (ID) and its energy 
level. After monitoring the environment and 
collecting data from the nodes, every sensor 
member periodically transmits its aggregated 
data to the corresponding CH and then the MV 
will be updated. Any CH has a set of MVi (i   
Number of member nodes), which allows the 
real-time GA to calculate the energy required to 
deliver the optimum network coverage. 

3.5 Aggregation data 

Consider Algorithm 1, step 2. This part shows 
the interactive or real-time property of our 
algorithm. Moreover, when the algorithm is 
processing, at each round, new information 
regarding the nodes and network is collected to 

consider the most up-dated variables for the 
fitness function. Therefore, the scores that are 
assigned to the chromosomes are based on 
updated variables, including MVi. 

3.6 Selection 

During each successive generation, a new 
population is selected for mating from among 
the current members based on fitness. Fitter 
individuals are similarly rated, leading to the 
preferential selection of the best solution. Most 
of the fitness functions are designed with a 
stochastic part to choose some smaller, less fit 
members, in order to help maintain the 
diversity of the population [15]. Among several 
available selection methods, the Roulette 
Wheel was chosen to distinguish appropriate 
individuals, with a probability given by:  
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Relation 3. Selection method of proposed algorithm 

Where Fi and n are the chromosomal fitness and 
population size, respectively. According to the 
Roulette Wheel, each assigned value in the 
continuous numerical interval is between 0 and 1.  

3.7 Fitness function 

The fitness function is one of the most essential 
components of a GA. Using this function, a 
score can be assigned to any chromosome to 
distinguish those that are fittest among the 
population. Individuals of high quality survive 
for the next generation. Also, along with a 
small group of low-value members, they are the 
parents of subsequent generations. In our case, 
the score awarded by the fitness function is 
dependent on two different objectives. The first 
is the coverage criterion, which acts to increase 
the score and the second is the amount of 
energy spent in order to cover and monitor the 
area. Higher energy consumption decreases the 
total fitness value; therefore, the fittest 
members are those that are able to make an 
appropriate trade-off between the two 
objectives. The proposed fitness function based 
on the coverage and energy criteria is given as: 

Fitness(x) = n
j=1 (coverage x,j,e – coveragex,j,e-1) 

 – (energy x,j,e – energyx,j,e-1) –energy CH*p (4) 

Relation 4: Proposed fitness function 

Where coverage is the area covered, energy is 
the sum of the remaining power in the nodes 

Deployment (Mobile Network) 

1. Initialization 
1.1. Determine Direction Vector (DVi); 
1.2. Cluster network; 
1.3. Determine Member Vectors (MVi); 

1.4. Set ti as termination parameter of GA; 
1.5. Calculate current coverage: 
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 2. Aggregation Data 
2.1. Collect monitored data; 
2.2. Update MVi; 
2.3. Consider MVi in coverage(i); 
2.3. Interrupt system when episode is over; 
 
3. Fitness 

3.1. If ett
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i

erageierage arg
1

cov)(cov


 then 

Compute updated coverage(); 
3.2. Assign score according to the new coverage and energy 

consumption; 
4. Selection(); 
5. Crossover(); 
6. Termination 
6.1. If the given ti is over or target coverage is satisfied then 

return final results; 
Else, go to Step 2; 
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and p is the total number of data packets. The 
index n indicates the number of active nodes 
taking part in the transmission of data packets 
and e is the step counter. This function was 
formulated in an attempt to consider all 
conditions and thus, allow a comprehensive 
comparison among the chromosomes. 

3.8 Termination 

Consider Algorithm 1. This algorithm 
interactively (in online fashion) calculates MVi, 
which should yield ti at the maximum. Ti is 
determined by the user (in this algorithm, step 
1.4.) and depends on the desired objectives, i.e., 
further generations could obviously be used to 
estimate a more accurate solution but according 
to the user’s opinion, this value can be 
determined. However, as the network 
locomotion is live, iteration should be limited. 
Sending MVi to the corresponding member 
nodes requires energy to transmit and loads the 
new MV. This task might be done at long 
intervals to conserve energy and thus, extend 
the network lifetime. Finally, the algorithm is 
terminated when a given t value is reached or 
the entire target coverage is obtained.  

4. Implementation 
To implement the algorithm, we utilise a 
network simulator to assess the proposed 
algorithm in two respects. First, the GA-based 
portion can be implemented by a Java editor. In 
this case, the Java Genetic Algorithm Package 
(JPAC) should be installed to test the algorithm 
in a consistent manner. Next, OMNET++ can 
be utilised to trace the movement of the nodes 
in a virtual environment (Figure 1). The 
parameters are summarised in Table 1. 

Figures 2 and 3 show a comparison between 
the proposed algorithm and those using the 
LEACH (Low Energy Adaptive Clustering 
Hierarchy) protocol with respect to network 
energy and lifetime over 200 time units (years). 

In Figure 2, the unified energy consumption by 
the CHs results in a short lifetime in the 

 

Figure 1. Example of virtual environment 

Table 1. Parameters of the tested virtual 
environment 

Network size 100 m × 100 m 

Node numbers = n 200 

Initial energy 2J 

Node energy 50 nJ/bit 

Uncovered area 10 × 10 m2 

BS distance  200 m 

Packet size 200 bits 

 
Figure 2. Energy consumption rate over the lifetime 

of a virtual environment 

 
Figure 3. Comparison of coverage between 

proposed and LEACH algorithms 

LEACH protocol. Also, this figure shows that 
the removal time for the first node (the death of 
the first node), due to its low-energy status, is 
delayed compared with the LEACH protocol. 
Additionally, the network remains in working 
order as long as a minimum number of nodes 
are alive. Generally, due to use of the algorithm 
fitness function that considers the energy status 
of the nodes and the distance between the CHs 
and BS, the remaining individuals yield a 
cluster formation with uniform energy 
consumption that significantly extends the 
lifetime of the network. Figure 3 shows a 
coverage comparison between LEACH and the 
proposed algorithm over time. Moreover, the 
topology discovered by our algorithm covers 
the total environment until round 60. After that, 
the coverage will be gently reduced until round 
180. As shown, the beneficial coverage rounds 
are 100 more than the LEACH algorithm and 
complete coverage lasts until round 60. 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 218

5. Conclusions and Future Work 
In this work, we presented a method that 
utilises an interactive GA. Moreover, an online 
approach is used to direct the locomotion 
sensor nodes to determine optimal locations 
through consideration of the amount of 
remaining power. Finally, the obtained solution 
simultaneously maximises environmental 
coverage and minimises power-consumption 
metrics as objectives. The simulation results 
confirm that the proposed fitness function 
fulfils these objectives. Also, it is shown that 
the network lifetime has been extended and 
coverage improved compared with the LEACH 
protocol. As future work, we plan to investigate 
a GA-based algorithm that requires fewer 
transmitted directions over longer time 
intervals to further reduce energy costs incurred 
by receiving and loading new directions. 
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