
Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 219

1. Introduction

One of the most important goals for software
providers is to deliver high quality software to
customers, especially if the software is
embedded in a real-time, a control system or a
safety critical system. Software quality
involves many processes like software testing
[1], [3], [5] and software metrics collection and
analysis, according to [14].

Software testing processes target the study of
software stability as a systemic approach. The
management of these processes is influenced
by various factors, and it is very important to
identify the processes that can be optimized and
have a better control over them.

The software embedded in control systems is
implemented using algorithms with different
levels of complexity. Regardless of their
complexity, the software has to be tested
applying several strategies.

Every control system requires a rigorous
testing. The software embedded in a control
system has to be tested thoroughly before going
in production. One important step in testing is
test data generation.

Test data generators (TDG) work based on the
internal structure of the software under test.
TDGs require source code access or code
execution results supplied by instrumentation
and execute the software in a simulator or on
the device. Data set generation processes are
time consuming, even these processes are

automated. A possible solution that optimizes
these processes involves the use of genetic
algorithms (GA) in test data generators. By
using GA the required level of coverage for
code execution or states activation can be
achieved having a better control using the
input parameters.

Usually, TDGs use the associated control flow
graph (CFG), control flow diagram (CFD) or
tree of the program in order to produce test
data. Software metrics are strongly related to
analysis of test data generators in order to
improve them and to find better solutions.

Test data generators are built so large variations
of input data sets will influence in a similar
way the program behavioral characteristics
(duration, number of segment covered etc.).
The stability and predictability of TDG are very
important for testing system control. That
means that we could approximate the duration
of test data generation process based on the
inputs (programs, CFG, CFD, constraints etc.).

The objective of this paper is to highlight the
benefits of our proposed solution that can be
implemented for any control system.

The paper is structured as follows.

The section Software Testing Process and Test
Data Generation presents the main software
testing strategies, focusing on structural
testing. Also, in this section test data
generators are analyzed.

A Genetic Algorithm-based System for
Automatic Control of Test Data Generation

Paul POCATILU, Ion IVAN

Bucharest University of Economic Studies,
6, Piata Romana, Bucharest, Romania,
ppaul@ase.ro, ionivan@ase.ro

Abstract: Software testing is an important process that helps to develop high quality software. This process is more time
consuming when applied to control systems. This involves the use of several testing strategies, techniques and
methodologies. At the module level one of test technique is to assure as much as possible code coverage. This is
accomplished using several methods, one of them being automatic test data generation. Test data generation can be done
manually, randomly or using combinatorial optimizing techniques. Another technique involves the use of genetic
algorithm (GA). The paper presents a system that involves an automatic control of test data generation. It also provides
implementation details of a test data generator (TDG) based on GA that uses a specific fitness function called Inverse
Similarity of Coverage (ISC). The test data generator is a module of the proposed system. The results show that the
proposed solution, GA-TDG, has far better results in many relevant situations than random test generators regarding the
number of software under test (SUT) runs.

Keywords: software testing process, control system, genetic algorithm, test data generation, fitness function, code
coverage, random data generation, control decision.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 220

The GA-TDG Solution section deals with the
description of the dedicated module within the
system based on genetic algorithm. The section
analyzes the fitness function and details the
practical implementation of our genetic
algorithm. Here are presented the resulted
solution GA-TDG and the solution used for
random test generation, RND-TDG.

These sections include references to previous
works in approached areas.

In the Experimental Results section, we present
data collected after several runs of the GA-
TDG compared with the results collected from
the RND-TDG.

Discussions section analyzes the results of
our algorithm.

The paper ends with conclusions and future
work for this current research.

2. Software Testing Process and
Test Data Generation

The objective of software testing is to find
errors. Software testing involves planning, tests
design, tests running, measurement and data
collection. There are two main software
strategies [1], [5], [6]: functional testing and
structural testing.

Functional testing or black box testing does
not require knowledge about the internal
structure of program but it requires the
existence of program specifications. Based
on the specifications, it can be determined if
the output of a program is correct for the
given input data. Functional testing includes
boundary value analysis and equivalence
class methodologies.

Structural testing or white-box testing is based
on internal structure of the program and is done
at code level. Structural testing is focused on
program coverage at required levels:
statements, branches, paths, blocks, data flows
or functions. Structural testing is adequate for
unit testing due to code complexity.

The main input of the system is the software
under test. The output is tested software, with
identified errors fixed and associated reports
and metrics. The feedback loop is essential in
order to have a system under control.

Every program has associated a Control Flow
Graph (CFG) structure. This is represented as a

graph but could be transformed in a tree
structure. The transformation implies a
multiplication of nodes within the CFG.

The nodes from CFG correspond to statements,
or sequence of statements or functions. The
correspondence is given by the required degree
of detail.

The following nodes can be identified in a tree
or graph structure associated to a program:

- a root (entry) node corresponding to the
first statement of the program;

- intermediate nodes corresponding to
statements within the program;

- leave nodes (exits) corresponding to
statements at the end of a path within
the program.

A path within a program is characterized by an
entry node, intermediary nodes and an exit
node. The number of paths within a program
depends on the number of decision blocks (if-
then-else, switch) and loops (while, do-while,
for). The number of paths within a function can
be very large because every loop or decision
block increases the number of paths. Even a
function with several lines of code can have an
infinite number of paths when it contains loops,
so an exhaustive testing of all paths within a
function is usually impossible [7]. The minimal
number of independent paths that can be used
for path coverage is given by the cyclomatic
complexity coverage. The McCabe’s
cyclomatic number of a function with
associated graph G is given by [13]:

p n + V(G) = e - 2 (1)

where:

e – number of edges from the graph G;

n – number of nodes from the graph G;

p – number of connected components.

V(G) represents the number of linearly
independent paths through a function or
program. These paths can be combined to
generate all possible paths within the function
or program. A smaller number of paths than the
cyclomatic complexity number will lead to
uncovered paths within the program or function
under test. The cyclomatic complexity is
independent of the programming language and
it measures the number of decision points in a
software unit [13].

Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 221

Test data is generated manually or using
dedicated software. It is difficult to generate
large sets of data manually and test data
generators (TDG) are used instead. TDG are
programs that based on specific criteria,
generate test data for software under test
(SUT). TDG can generate data from simple
values to complex ones (arrays, linked lists,
trees, objects, files etc.).

TDGs produce random or conducted data based
on program specifications or based on program
structure. TDGs based on program structure use
the associated program’s CFG in order to
generate test data.

3. GA-TDG Solution

An automatic control of test data generation
leads to improved software testing processes.
Our proposed system based on genetic
algorithm includes two modules: the source
code analyzer and instrumentation (SUT
analyzer) and the test data generator based on
genetic algorithm (GA-TDG).

Genetic algorithms are optimization techniques
that involve searches of a large solution space
for an optimal solution to the given problem
based on natural selection [11], [12], and [19].

Genetic algorithms (GA) are used in various
domains, including software testing, especially
on automatic test data generation.

The use of genetic algorithms for test data
generation has been the subject of many
research papers, like [2], [4], [9], [10], [16] and
[18]. The authors propose different fitness
functions and compare the results of theirs
algorithms with other evolutionary algorithms
or with random test generators.

The input of the genetic algorithm is the
instrumented function that will return the
covered path with current solution and a list of
paths that need to be covered. The output is the
set of generated test data.

Figure 1 depicts the architecture of our
proposed system that helps to control and to
manage test data generation processes.

The type and the constraints of the input
parameters of the SUT have to be identified
correctly in order to encode them into a
chromosome.

Figure 1. The technology of a GA-based system for
automatic control of test data generation

In order to choose a representative population
size, the McCabe’s cyclomatic number could
be a good start. Based on the cyclomatic
number, that gives the minimum independent
path within a CFG, the population size can be
selected as a multiple of this metric.

The solution of our algorithm is a set of
chromosomes that represents the input
parameters for the SUT.

The steps of the proposed genetic algorithm for
test data generation are:

S1. Initiate chromosome population with
random values;

S2. Create an empty solution set (S);

S3. While (termination condition is not true)

a) Run SUT for every chromosome (test
data) and collect coverage metrics;

b) Add chromosomes not already included
to the solution set S; if the solution is
complete (all required path have been
covered) then stop;

M2: GA-TDG

Software under test
(original source code)

Software under test
(Injected source code)

M1: Source Code
Analyzer

Generated test data

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 222

c) Evaluate the current population by
calculating the fitness for each
individual;

d) Select the best chromosomes for the
next population based on their fitness;

e) Generate the new population by
applying crossover and mutation.

Each individual (potential solution) covers a
path of the program CFG. The solution set S is
generated by encouraging chromosomes to
cover paths that have the maximum length and
minimum similarity characteristics. By using
this fitness functions, the chromosome
selection process will provide individuals that
assure maximum degree of coverage. The
fitness of an individual is proportional with
the length of the traversal path generated by
the individual.

For each generation, fitness function evaluates
every solution focusing on covered path.
Based on their fitness function, solutions are
selected and genetic operators are used to
generate new solutions. For example, in [2] is
defined the fitness function Last Block
Traversal Probability with Bonus (LBTPB).
The fitness bonus helps the genetic algorithm
to search for unexplored paths of the SUT.
The LBTPB fitness function is compared with
another fitness function Inverse Path
Probability (IPP). In [9] the fitness function is
defined based on the number of predicates
(decisions, loops) on the evaluated path. In
[20] the fitness function is based on test data
available for a path. As the number of data
increases, the fitness value will decrease.

Our fitness function f(a), initially presented in
[8], named Inverse Similarity of Coverage
(ISC), applied to chromosome under evaluation
a is given by:

)(

)(
)(

asym

alen
af  , ** R :f N (2)

In (2), len(a) is the length of the path given by
the chromosome a. The number of nodes in the
path gives the length of the path.

The similarity function sym(a) is given by:

))(share(a,isym(a)
Pi

 max (3)

where a is the chromosome under evaluation, i
is a chromosome within the population P and
share(a, i) is the function that returns the

shared path of two chromosomes. As it can be
seen, chromosome similarity is defined as the
longest shared path among chromosomes from
the current population, which is the number of
common tree nodes.

The idea behind the sym(a) function is that the
closer to the tree root a chromosome branches
from all previously discovered chromosomes
the higher the probability to increase coverage
and discover an error [8].

Figure 2. Example of tree structure

As example, we will consider the tree structure
depicted in Figure 2 that is based on a part of a
CFG associated to a SUT. Let’s suppose that at
a given iteration within the population there are
four chromosomes that return the paths:
ABCDE, ABCG, AHI, and AHJK. Based on
the calculated fitness, presented in Table 1, the
chromosomes 4 and 1 have a higher chance to
be chosen for the next generation in order to
find the best solution.

To summarize, the GA searches for
individuals that can increase the solution
coverage by including nodes closer to the tree
root. This will increase the chances to
discover unexplored paths.

Table 1. Example results

Chromosome Path len sym fitness

1 ABCDE 5 3 1.66

2 ABCG 4 3 1.33

3 AHI 3 2 1.5

4 AHJK 4 2 2

Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 223

Our TDG using GA was implemented for .Net
platform using C# programming language as
GAT_G class. The Chromosome class was
defined. Population is implemented as a set of
chromosome in a class named ChromosomeSet.

For simplicity all input parameters have the
same type, sbyte. They are encoded as sbyte
arrays. Consequently, for a function with three
parameters, the associate chromosome will
include an array with three elements. The
boundary values of the parameters can be
controlled by giving the lower and upper limits.

All functions under test were implemented in a
class (named SUT) as static methods. The
functions were manually injected with calls to a
trace function that appends the covered path for
the current input parameters.

In order to compare the results, a random test
generator (class RND_G) was created. This
runs the function under test using random
generated data and records the covered path.

Figure 3 depicts the classes implemented for
this solution. The class Program contains the
main entry point that handles the test setup
and running.

The parameters of the genetic algorithm are
population size, crossover and mutation
probabilities. The Chromosome class properties
control the number of encoded parameters and
the value limits.

The best individuals are selected for the next
generation based on their fitness using the
roulette wheel selection.

The results are presented in the next section.

4. Experimental Results

In order to test the algorithm, four well known
functions were used as SUT:

1. Determines the solutions for quadratic
equation. The function has three signed
parameters;

2. Sort three numbers. The function has three
signed parameters;

3. Triangle classification. The function has
three signed parameters. The function
validates against negative values;

4. Calculate GCD using Euclid's algorithm.
The function has two positive parameters.
The function includes a loop.

Two metrics (line of codes and cyclomatic
number) of the functions under test are
presented in Table 2.

Table 2. SUT information

SUT LOC CC
1 16 4
2 20 5
3 24 5
4 18 3

Figure 3. Proposed solution classes

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 224

Table 3 presents the evolution of several
generations for the SUT 1 (to determine the
solutions for quadratic equation). The
population size was of 8 chromosomes, there
were four paths to be covered. In Table 3 data
set represents the generated input data, f is the
value of fitness function, p is chromosome
probability based on its fitness and cp
represents the cumulative probability. Path
represents path covered by the chromosome.

Table 3. Example of genetic algorithm evolution

Generation: 1, initial population
Data set f p cp Path

-84, 93, 87 1.0 0.1155 0.1155 ACEFH
-12, 113, 39 1.0 0.1155 0.2309 ACEFH
 43, 19, -10 1.0 0.1155 0.3464 ACEFH
 14, 122, 62 1.0 0.1155 0.4619 ACEFH
 78, 70, -119 1.0 0.1155 0.5774 ACEFH
126, -89, -36 1.0 0.1155 0.6928 ACEFH
 27, 36, -75 1.0 0.1155 0.8083 ACEFH
-99, -65, -125 1.66 0.1917 1.0000 ACEGH
Generation: 704

Data set f p cp Path
 64, -113, 58 1.0 0.1111 0.1111 ACEGH
110, -20, 58 1.0 0.1111 0.2222 ACEGH
 67, -17, -21 1.0 0.1111 0.3333 ACEFH
 66, -85, -23 1.0 0.1111 0.4444 ACEFH
 66, -85, -21 1.0 0.1111 0.5556 ACEFH
-62, -20, 58 1.0 0.1111 0.6667 ACEFH
102, -113, 58 1.0 0.1111 0.7778 ACEGH
 0, -113, 58 2.0 0.2222 1.0000 ACDH
Generation: 3405, last population

Data set f p cp Path
 64, 33, 40 ACEGH
-64, 11, -1 ACEGH
 86, -96, 126 ACEGH
 0, 32, 126 ACDH
118, 33, 126 ACEGH
 0, 0, -2 3 - - ABH
 0, 32, 126 ACDH
 0, 34, 126 ACDH

The highlighted lines in Table 3 (bold)
represent the chromosome included in solution.
The solutions were found in first generation
(two), generation 704 (one) and the last one on
the generation 3405.

The results for 100 runs of both genetic (GA-
TDG) and random data generator (RND-TDG)
are presented in Table 4. The GA-TDG was set
up with the following parameters:

- Population size: 100

- Mutation probability: 0.8

- Crossover probability 0.1

- Number of tests: 100

The columns from Table 4 have the following
meanings: SUT is the function under test, then,
number of paths to be covered, and, for each
type of TDG (GA and Random) are included
average duration and the number of runs
(average, minimum and maximum).

The averages were calculated for 100 runs of
each generator.

As it can be seen, the number of paths is greater
or equal to cyclomatic complexity number.

Figure 4 shows a part of a profiler report generated
within the Visual Studio for our program.

Figure 4. Profiler results

The most time consuming function is sym()
that calculates the degree of similitude within
the current population.

The GA-TDG results were recorded on a
computer with the following configuration:
Windows 8 64 bits operating system, Intel Core
i7 processor and 4 GB or RAM.

Table 4. Program results

SUT No.
of

paths

GA Random

Avg.
duration
(sec.)

Avg.
runs

Min.
runs

Max
runs

Avg.
duration
(sec.)

Avg. runs Min.
runs

Max.
runs

1 4 0.06473 7075 300 42200 0.01328 63790.4 323 370835
2 7 0.00680 664 100 2600 0.00089 490.21 14 2321
3 5 0.23725 27720 200 131400 0.02439 136689.62 911 700044
4 8 0.00103 107 100 300 0.00091 57.75 10 185

Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 225

5. Discussions

As it can be seen, the random data generator
has better results in respect of timing due the
reduced number of computations. On the
other side, the GA performs slower due to
fitness function.

The most important, in most of the tested
cases, the GA-TDG runs the SUT fewer times
than the random test data generator. For
functions with higher complexity and
processing effort, the number of runs is crucial
for the testing performances.

The TDG GA can be tuned to work closer or
even better than de random test generator. The
parameters that can be changed are the
population size and the crossover and
mutation probability. For example, if the GA-
TDG ran 100 times with a population of 8
chromosomes and the mutation probability 0.1
and the results were:

- average duration: 0.1653 seconds;

- average runs: 461.52;

- minimum runs: 16;

- maximum runs: 1528.

This shows that the results are slightly better
than the similar results presented in Table 4, for
the second SUT.

First generation is initialized randomly, so the
GA-TDG is comparable as behavior with
RND-TDG for a number of steps equals with
the population size.

As depicted in Figure 5, for the first SUT, the
GA-TDG was six times slower than the RND-
TDG (0.06 sec. vs. 0.01 sec.). The ratio is high,
but is the GA-TDG is still very fast.

Figure 5. Compared results for average runs and
duration

Regarding the runs, on average, the GA-TDG
called the SUT 82 time less than the Random TDG

(7075 runs vs. 63790 runs). This could impact the
test duration for complex programs: a higher
number of calls will lead to a longer duration.

The algorithm can be easily adapted for arrays
and other complex structures. Also, even the
functions under test have a lower complexity
due to need to manually generate injection we
are confident that the GA-TDG will behave
well for complex functions.

In order to have a high usable system and avoid
all associated risks as presented in [15] and
[17], the proposed system further
implementation has to take into account user-
interface response time and user messages.

6. Conclusions and Future Work

Computer programs work as systems and their
setting and control is preceded by software
testing processes.

Genetic algorithms are successfully
implemented for test data generator. Their
performances are, in many situations, very
good compared with random data generation.

The proposed solution presented in this paper
helps to control and automate test data
generation. The control is made by tuning the
genetic algorithm parameters.

The paper presents the results of a test data
generator module implemented using genetic
algorithms. The module is part of a system that
assures automatic control of test data
generation. The presented GA-TDG finds
solutions that cover all feasible target paths. As
it can be seen, our test data generator has good
performances reported to random TDG. The
solution can be applied for practical projects,
and is not only for experimental tests.

GA-TDG solution is suitable also for agile
development, where unit testing has a very
important role in these types of software
development process. Also, this solution can be
applied for larger projects, by generating data
both for functions and the integrated modules.

The source code analyzer module has to be
completed in order to automatically inject the
SUT. Also, it will include a component that
generates tree state transformations from CFG
or SUT source code.

We will continue our research in order to
improve the fitness function. Also, the research
will aim to compare the results with other TDG

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 226

based on genetic algorithms. Due the fact that
other authors use different software under tests,
we plan to implement several solutions (fitness
functions) and to use them against our solutions.

REFERENCES

1. BEIZER, B., Software Testing
Techniques – Second Edition, Van
Nostrad Reinhold, New York, 1990.

2. BORGELT, K., Software Test Data
Generation from a Genetic Algorithm,
Industrial Applications of Genetic
Algorithms, Ed. By Charles L. Karr and L.
Michael Freeman, CRC Press, Boca
Raton, 1999, pp. 49-68.

3. IVAN, I., P. POCATILU, Testarea
software orientat obiect, Inforec
Publishing House, Bucharest, 1999.

4. MICHAEL, C. C., G. E. MCGRAW, M.
A. SCHATZ, C. C. WALTON, Genetic
Algorithms for Dynamic Test Data
Generation, In Proc. of IEEE
International Automated Software
Engineering Conference (ASE97), Nov. 3-
5, 1997, pp. 307-308.

5. MEYERS, G. J., The Art of Software
Testing, Second Edition, John Wiley &
Sons, New Jersey, 2004.

6. ROPER, M., Software Testing, McGraw-
Hill Book, 1994.

7. POCATILU, P., T. MIHAI, D. CAZAN,
Test Data Generation Using Genetic
Algorithms, Proceeding of the Workshop
on Evolutionary Algorithms,
Bucharest, 2001.

8. POCATILU, P., T. MIHAI, An
Evolutionary Method for Test Data
Generation, Proc. of the Fifth Symposium
on Economic Informatics, May 10-13,
2001, Bucharest, pp. 761-764.

9. PARGAS, R. P., M. J. HARROLD, R. R.
PECK, Test-Data Generation Using
Genetic Algorithms, Software Testing,
Verification And Reliability, vol. 9(4),
1999, pp.263-282.

10. SRIVASTAVA, P. R., T.-H. KIM,
Application of Genetic Algorithm in
Software Testing, International Journal of
Software Engineering and Its
Applications, vol. 3(4), 2009, pp. 87-95.

11. NELSON, R. C., Overview of Genetic
Algorithms, 1999.
http://www.cs.rochester.edu/~nelson/cours
es/csc_173/genetic-algs/algorithm.html

12. VISOIU, A., Deriving Trading Rules
Using Gene Expression Programming,
Informatica Economica, vol. 15(1) 2011,
pp. 22-30.

13. McCABE, J. T., A Complexity Measure,
IEEE Transaction on Software
Engineering, vol. SE-2, no. 4, Dec. 1976,
pp. 308-320.

14. BOJA, C., L. BATAGAN, Analysis of m-
Learning Applications Quality, WSEAS
Transactions on Computers, vol. 8(5),
2009, pp. 767-777.

15. BALOG, A., C. PRIBEANU, Developing
a Measurement Scale for the Evaluation
of AR-Based Educational Systems,
Studies in Informatics and Control, Vol.
18, No. 2, June 2009, pp. 137-148.

16. MALHOTRA, R., M. GARG, An
Adequacy Based Test Data Generation
Technique Using Genetic Algorithms,
Journal of Information Processing
Systems, vol.7(2), 2011, pp. 363-384.

17. SUDUC, A. M., M. BÎZOI, F. G. FILIP,
User Awareness about Information
Systems Usability, Studies in Informatics
and Control, vol. 19(2), 2010, pp. 145-152.

18. KHAMIS, A. M., M. R. GIRGIS, A. S.
GHIDUK, Automatic Software Test
Data Generation for Spanning Sets
Coverage Using Genetic Algorithms,
Computing and Informatics, vol. 26, 2007,
pp. 383-401.

19. HAUPT, R. L., S. E. HAUPT, Practical
Genetic Algorithms, Second Edition,
John Wiley & Sons, Inc., Hoboken, New
Jersey, 2004.

20. SHIMIN, L., L. ZHANGANG, Genetic
Algorithm and its Application in the
Path-oriented Test Data Automatic
Generation, Procedia Engineering, vol.
15, 2011, pp. 1186-1190.

