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1. Introduction 

One of the most important goals for software 
providers is to deliver high quality software to 
customers, especially if the software is 
embedded in a real-time, a control system or a 
safety critical system. Software quality 
involves many processes like software testing 
[1], [3], [5] and software metrics collection and 
analysis, according to [14]. 

Software testing processes target the study of 
software stability as a systemic approach. The 
management of these processes is influenced 
by various factors, and it is very important to 
identify the processes that can be optimized and 
have a better control over them. 

The software embedded in control systems is 
implemented using algorithms with different 
levels of complexity. Regardless of their 
complexity, the software has to be tested 
applying several strategies. 

Every control system requires a rigorous 
testing. The software embedded in a control 
system has to be tested thoroughly before going 
in production. One important step in testing is 
test data generation. 

Test data generators (TDG) work based on the 
internal structure of the software under test. 
TDGs require source code access or code 
execution results supplied by instrumentation 
and execute the software in a simulator or on 
the device. Data set generation processes are 
time consuming, even these processes are 

automated. A possible solution that optimizes 
these processes involves the use of genetic 
algorithms (GA) in test data generators. By 
using GA the required level of coverage for 
code execution or states activation can be 
achieved having a better control using the 
input parameters. 

Usually, TDGs use the associated control flow 
graph (CFG), control flow diagram (CFD) or 
tree of the program in order to produce test 
data. Software metrics are strongly related to 
analysis of test data generators in order to 
improve them and to find better solutions. 

Test data generators are built so large variations 
of input data sets will influence in a similar 
way the program behavioral characteristics 
(duration, number of segment covered etc.).   
The stability and predictability of TDG are very 
important for testing system control. That 
means that we could approximate the duration 
of test data generation process based on the 
inputs (programs, CFG, CFD, constraints etc.). 

The objective of this paper is to highlight the 
benefits of our proposed solution that can be 
implemented for any control system. 

The paper is structured as follows. 

The section Software Testing Process and Test 
Data Generation presents the main software 
testing strategies, focusing on structural 
testing. Also, in this section test data 
generators are analyzed. 
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The GA-TDG Solution section deals with the 
description of the dedicated module within the 
system based on genetic algorithm. The section 
analyzes the fitness function and details the 
practical implementation of our genetic 
algorithm. Here are presented the resulted 
solution GA-TDG and the solution used for 
random test generation, RND-TDG. 

These sections include references to previous 
works in approached areas. 

In the Experimental Results section, we present 
data collected after several runs of the GA-
TDG compared with the results collected from 
the RND-TDG. 

Discussions section analyzes the results of 
our algorithm. 

The paper ends with conclusions and future 
work for this current research. 

2. Software Testing Process and 
Test Data Generation 

The objective of software testing is to find 
errors. Software testing involves planning, tests 
design, tests running, measurement and data 
collection. There are two main software 
strategies [1], [5], [6]: functional testing and 
structural testing. 

Functional testing or black box testing does 
not require knowledge about the internal 
structure of program but it requires the 
existence of program specifications. Based 
on the specifications, it can be determined if 
the output of a program is correct for the 
given input data. Functional testing includes 
boundary value analysis and equivalence 
class methodologies. 

Structural testing or white-box testing is based 
on internal structure of the program and is done 
at code level. Structural testing is focused on 
program coverage at required levels: 
statements, branches, paths, blocks, data flows 
or functions. Structural testing is adequate for 
unit testing due to code complexity. 

The main input of the system is the software 
under test. The output is tested software, with 
identified errors fixed and associated reports 
and metrics. The feedback loop is essential in 
order to have a system under control. 

Every program has associated a Control Flow 
Graph (CFG) structure. This is represented as a 

graph but could be transformed in a tree 
structure. The transformation implies a 
multiplication of nodes within the CFG. 

The nodes from CFG correspond to statements, 
or sequence of statements or functions. The 
correspondence is given by the required degree 
of detail.  

The following nodes can be identified in a tree 
or graph structure associated to a program: 

- a root (entry) node corresponding to the 
first statement of the program; 

- intermediate nodes corresponding to 
statements within the program; 

- leave nodes (exits) corresponding to 
statements at the end of a path within      
the program. 

A path within a program is characterized by an 
entry node, intermediary nodes and an exit 
node. The number of paths within a program 
depends on the number of decision blocks (if-
then-else, switch) and loops (while, do-while, 
for). The number of paths within a function can 
be very large because every loop or decision 
block increases the number of paths. Even a 
function with several lines of code can have an 
infinite number of paths when it contains loops, 
so an exhaustive testing of all paths within a 
function is usually impossible [7]. The minimal 
number of independent paths that can be used 
for path coverage is given by the cyclomatic 
complexity coverage. The McCabe’s 
cyclomatic number of a function with 
associated graph G is given by [13]: 

p n + V(G) = e - 2  (1) 

where:  

e – number of edges from the graph G; 

n – number of nodes from the graph G; 

p – number of connected components. 

V(G) represents the number of linearly 
independent paths through a function or 
program. These paths can be combined to 
generate all possible paths within the function 
or program. A smaller number of paths than the 
cyclomatic complexity number will lead to 
uncovered paths within the program or function 
under test. The cyclomatic complexity is 
independent of the programming language and 
it measures the number of decision points in a 
software unit [13]. 
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Test data is generated manually or using 
dedicated software. It is difficult to generate 
large sets of data manually and test data 
generators (TDG) are used instead. TDG are 
programs that based on specific criteria, 
generate test data for software under test 
(SUT). TDG can generate data from simple 
values to complex ones (arrays, linked lists, 
trees, objects, files etc.). 

TDGs produce random or conducted data based 
on program specifications or based on program 
structure. TDGs based on program structure use 
the associated program’s CFG in order to 
generate test data. 

3. GA-TDG Solution 

An automatic control of test data generation 
leads to improved software testing processes. 
Our proposed system based on genetic 
algorithm includes two modules: the source 
code analyzer and instrumentation (SUT 
analyzer) and the test data generator based on 
genetic algorithm (GA-TDG). 

Genetic algorithms are optimization techniques 
that involve searches of a large solution space 
for an optimal solution to the given problem 
based on natural selection [11], [12], and [19].  

Genetic algorithms (GA) are used in various 
domains, including software testing, especially 
on automatic test data generation.  

The use of genetic algorithms for test data 
generation has been the subject of many 
research papers, like [2], [4], [9], [10], [16] and 
[18]. The authors propose different fitness 
functions and compare the results of theirs 
algorithms with other evolutionary algorithms 
or with random test generators.  

The input of the genetic algorithm is the 
instrumented function that will return the 
covered path with current solution and a list of 
paths that need to be covered. The output is the 
set of generated test data.  

Figure 1 depicts the architecture of our 
proposed system that helps to control and to 
manage test data generation processes. 

The type and the constraints of the input 
parameters of the SUT have to be identified 
correctly in order to encode them into a 
chromosome. 

 

Figure 1. The technology of a GA-based system for 
automatic control of test data generation 

In order to choose a representative population 
size, the McCabe’s cyclomatic number could 
be a good start. Based on the cyclomatic 
number, that gives the minimum independent 
path within a CFG, the population size can be 
selected as a multiple of this metric.  

The solution of our algorithm is a set of 
chromosomes that represents the input 
parameters for the SUT. 

The steps of the proposed genetic algorithm for 
test data generation are: 

S1. Initiate chromosome population with 
random values; 

S2. Create an empty solution set (S); 

S3. While (termination condition is not true) 

a) Run SUT for every chromosome (test 
data) and collect coverage metrics; 

b) Add chromosomes not already included 
to the solution set S; if the solution is 
complete (all required path have been 
covered) then stop;  

M2: GA-TDG 

Software under test 
(original source code) 

Software under test  
(Injected source code) 

M1: Source Code 
Analyzer 

Generated test data 
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c) Evaluate the current population by 
calculating the fitness for each 
individual; 

d) Select the best chromosomes for the 
next population based on their fitness; 

e) Generate the new population by 
applying crossover and mutation. 

Each individual (potential solution) covers a 
path of the program CFG. The solution set S is 
generated by encouraging chromosomes to 
cover paths that have the maximum length and 
minimum similarity characteristics. By using 
this fitness functions, the chromosome 
selection process will provide individuals that 
assure maximum degree of coverage. The 
fitness of an individual is proportional with 
the length of the traversal path generated by 
the individual. 

For each generation, fitness function evaluates 
every solution focusing on covered path. 
Based on their fitness function, solutions are 
selected and genetic operators are used to 
generate new solutions. For example, in [2] is 
defined the fitness function Last Block 
Traversal Probability with Bonus (LBTPB). 
The fitness bonus helps the genetic algorithm 
to search for unexplored paths of the SUT. 
The LBTPB fitness function is compared with 
another fitness function Inverse Path 
Probability (IPP). In [9] the fitness function is 
defined based on the number of predicates 
(decisions, loops) on the evaluated path. In 
[20] the fitness function is based on test data 
available for a path. As the number of data 
increases, the fitness value will decrease.  

Our fitness function f(a), initially presented in 
[8], named Inverse Similarity of Coverage 
(ISC), applied to chromosome under evaluation  
a is given by:  

)(

)(
)(

asym

alen
af  , ** R :f N  (2) 

In (2), len(a) is the length of the path given by 
the chromosome a. The number of nodes in the 
path gives the length of the path. 

The similarity function sym(a) is given by:  

))(share(a,isym(a)
Pi

 max  (3) 

where a is the chromosome under evaluation, i 
is a chromosome within the population P and 
share(a, i)  is the function that returns the 

shared path of two chromosomes. As it can be 
seen, chromosome similarity is defined as the 
longest shared path among chromosomes from 
the current population, which is the number of 
common tree nodes. 

The idea behind the sym(a) function is that the 
closer to the tree root a chromosome branches 
from all previously discovered chromosomes 
the higher the probability to increase coverage 
and discover an error [8].   

 

Figure 2. Example of tree structure 

As example, we will consider the tree structure 
depicted in Figure 2 that is based on a part of a 
CFG associated to a SUT. Let’s suppose that at 
a given iteration within the population there are 
four chromosomes that return the paths: 
ABCDE, ABCG, AHI, and AHJK. Based on 
the calculated fitness, presented in Table 1, the 
chromosomes 4 and 1 have a higher chance to 
be chosen for the next generation in order to 
find the best solution. 

To summarize, the GA searches for 
individuals that can increase the solution 
coverage by including nodes closer to the tree 
root. This will increase the chances to 
discover unexplored paths. 

Table 1. Example results 

Chromosome Path len sym fitness 

1 ABCDE 5 3 1.66 

2 ABCG 4 3 1.33 

3 AHI 3 2 1.5 

4 AHJK 4 2 2 



Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 223

Our TDG using GA was implemented for .Net 
platform using C# programming language as 
GAT_G class. The Chromosome class was 
defined. Population is implemented as a set of 
chromosome in a class named ChromosomeSet. 

For simplicity all input parameters have the 
same type, sbyte. They are encoded as sbyte 
arrays. Consequently, for a function with three 
parameters, the associate chromosome will 
include an array with three elements. The 
boundary values of the parameters can be 
controlled by giving the lower and upper limits. 

All functions under test were implemented in a 
class (named SUT) as static methods. The 
functions were manually injected with calls to a 
trace function that appends the covered path for 
the current input parameters. 

In order to compare the results, a random test 
generator (class RND_G) was created. This 
runs the function under test using random 
generated data and records the covered path. 

Figure 3 depicts the classes implemented for 
this solution. The class Program contains the 
main entry point that handles the test setup 
and running. 

The parameters of the genetic algorithm are 
population size, crossover and mutation 
probabilities. The Chromosome class properties 
control the number of encoded parameters and 
the value limits. 

The best individuals are selected for the next 
generation based on their fitness using the 
roulette wheel selection. 

The results are presented in the next section. 

4. Experimental Results 

In order to test the algorithm, four well known 
functions were used as SUT: 

1. Determines the solutions for quadratic 
equation. The function has three signed 
parameters; 

2. Sort three numbers. The function has three 
signed parameters; 

3. Triangle classification. The function has 
three signed parameters. The function 
validates against negative values; 

4. Calculate GCD using Euclid's algorithm. 
The function has two positive parameters. 
The function includes a loop.  

Two metrics (line of codes and cyclomatic 
number) of the functions under test are 
presented in Table 2. 

Table 2. SUT information 

SUT LOC CC 
1 16 4 
2 20 5 
3 24 5 
4 18 3 

 

Figure 3. Proposed solution classes 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 224

Table 3 presents the evolution of several 
generations for the SUT 1 (to determine the 
solutions for quadratic equation). The 
population size was of 8 chromosomes, there 
were four paths to be covered. In Table 3 data 
set represents the generated input data, f is the 
value of fitness function, p is chromosome 
probability based on its fitness and cp 
represents the cumulative probability. Path 
represents path covered by the chromosome.  

Table 3. Example of genetic algorithm evolution 

Generation: 1, initial population 
Data set f p cp Path 

-84,   93,   87 1.0 0.1155 0.1155 ACEFH 
-12,  113,    39 1.0 0.1155 0.2309 ACEFH 
 43,   19,  -10 1.0 0.1155 0.3464 ACEFH 
 14,  122,   62 1.0 0.1155 0.4619 ACEFH 
 78,   70, -119 1.0 0.1155 0.5774 ACEFH 
126,  -89,  -36 1.0 0.1155 0.6928 ACEFH 
 27,   36,  -75 1.0 0.1155 0.8083 ACEFH 
-99,  -65, -125 1.66 0.1917 1.0000 ACEGH 
Generation: 704 

Data set f p cp Path 
 64, -113,   58 1.0 0.1111 0.1111 ACEGH 
110,  -20,   58 1.0 0.1111 0.2222 ACEGH 
 67,  -17,  -21 1.0 0.1111 0.3333 ACEFH 
 66,  -85,  -23 1.0 0.1111 0.4444 ACEFH 
 66,  -85,  -21 1.0 0.1111 0.5556 ACEFH 
-62,  -20,   58 1.0 0.1111 0.6667 ACEFH 
102, -113,   58 1.0 0.1111 0.7778 ACEGH 
  0, -113,   58 2.0 0.2222 1.0000 ACDH 
Generation: 3405, last population  

Data set f p cp Path 
 64,   33,   40       ACEGH 
-64,   11,   -1       ACEGH 
 86,  -96,  126       ACEGH 
  0,   32,  126       ACDH 
118,   33,  126       ACEGH 
  0,    0,   -2 3 - - ABH 
  0,   32,  126       ACDH 
  0,   34,  126       ACDH 

The highlighted lines in Table 3 (bold) 
represent the chromosome included in solution. 
The solutions were found in first generation 
(two), generation 704 (one) and the last one on 
the generation 3405. 

The results for 100 runs of both genetic (GA-
TDG) and random data generator (RND-TDG) 
are presented in Table 4. The GA-TDG was set 
up with the following parameters: 

- Population size: 100 

- Mutation probability: 0.8 

- Crossover probability 0.1 

- Number of tests: 100 

The columns from Table 4 have the following 
meanings: SUT is the function under test, then, 
number of paths to be covered, and, for each 
type of TDG (GA and Random) are included 
average duration and the number of runs 
(average, minimum and maximum). 

The averages were calculated for 100 runs of 
each generator.  

As it can be seen, the number of paths is greater 
or equal to cyclomatic complexity number.  

Figure 4 shows a part of a profiler report generated 
within the Visual Studio for our program. 

 

Figure 4. Profiler results 

The most time consuming function is sym() 
that calculates the degree of similitude within 
the current population. 

The GA-TDG results were recorded on a 
computer with the following configuration: 
Windows 8 64 bits operating system, Intel Core 
i7 processor and 4 GB or RAM. 

Table 4. Program results 

SUT No. 
of 

paths  

GA Random 

Avg. 
duration 
(sec.) 

Avg. 
runs 

Min. 
runs 

Max 
runs 

Avg. 
duration 
(sec.) 

Avg. runs Min. 
runs 

Max. 
runs 

1 4 0.06473 7075 300 42200 0.01328 63790.4 323 370835 
2 7 0.00680 664 100 2600 0.00089 490.21 14 2321 
3 5 0.23725 27720 200 131400 0.02439 136689.62 911 700044 
4 8 0.00103 107 100 300 0.00091 57.75 10 185 
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5. Discussions 

As it can be seen, the random data generator 
has better results in respect of timing due the 
reduced number of computations. On the 
other side, the GA performs slower due to 
fitness function.  

The most important, in most of the tested 
cases, the GA-TDG runs the SUT fewer times 
than the random test data generator. For 
functions with higher complexity and 
processing effort, the number of runs is crucial 
for the testing performances. 

The TDG GA can be tuned to work closer or 
even better than de random test generator. The 
parameters that can be changed are the 
population size and the crossover and 
mutation probability. For example, if the GA-
TDG ran 100 times with a population of 8 
chromosomes and the mutation probability 0.1 
and the results were: 

- average duration: 0.1653 seconds;  

- average runs: 461.52; 

- minimum runs: 16; 

- maximum runs: 1528. 

This shows that the results are slightly better 
than the similar results presented in Table 4, for 
the second SUT. 

First generation is initialized randomly, so the 
GA-TDG is comparable as behavior with 
RND-TDG for a number of steps equals with 
the population size. 

As depicted in Figure 5, for the first SUT, the 
GA-TDG was six times slower than the RND-
TDG (0.06 sec. vs. 0.01 sec.). The ratio is high, 
but is the GA-TDG is still very fast. 

 

Figure 5. Compared results for average runs and 
duration 

Regarding the runs, on average, the GA-TDG 
called the SUT 82 time less than the Random TDG 

(7075 runs vs. 63790 runs). This could impact the 
test duration for complex programs: a higher 
number of calls will lead to a longer duration. 

The algorithm can be easily adapted for arrays 
and other complex structures. Also, even the 
functions under test have a lower complexity 
due to need to manually generate injection we 
are confident that the GA-TDG will behave 
well for complex functions. 

In order to have a high usable system and avoid 
all associated risks as presented in [15] and 
[17], the proposed system further 
implementation has to take into account user-
interface response time and user messages.   

6. Conclusions and Future Work 

Computer programs work as systems and their 
setting and control is preceded by software 
testing processes. 

Genetic algorithms are successfully 
implemented for test data generator. Their 
performances are, in many situations, very 
good compared with random data generation.   

The proposed solution presented in this paper 
helps to control and automate test data 
generation. The control is made by tuning the 
genetic algorithm parameters. 

The paper presents the results of a test data 
generator module implemented using genetic 
algorithms. The module is part of a system that 
assures automatic control of test data 
generation. The presented GA-TDG finds 
solutions that cover all feasible target paths. As 
it can be seen, our test data generator has good 
performances reported to random TDG. The 
solution can be applied for practical projects, 
and is not only for experimental tests. 

GA-TDG solution is suitable also for agile 
development, where unit testing has a very 
important role in these types of software 
development process. Also, this solution can be 
applied for larger projects, by generating data 
both for functions and the integrated modules. 

The source code analyzer module has to be 
completed in order to automatically inject the 
SUT. Also, it will include a component that 
generates tree state transformations from CFG 
or SUT source code. 

We will continue our research in order to 
improve the fitness function. Also, the research 
will aim to compare the results with other TDG 
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based on genetic algorithms. Due the fact that 
other authors use different software under tests, 
we plan to implement several solutions (fitness 
functions) and to use them against our solutions. 
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