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1. Introduction 

Control and management of erbium-doped fiber 
amplifiers (EDFAs) is an important design 
problem in the evolution towards a dynamic 
optical network [1]. As wavelength- division -
multiplexed networks increase in complexity, 
there remain a number of challenges, such as 
dealing with disturbances related to intrinsic 
network characteristics. The power level of 
each channel in WDM networks should be 
unchanged when channel add/drops or active 
rearrangements of network occur. Keeping the 
signal powers to a constant value is more 
important when the signals are amplified 
through EDFAs. At the EDFA, the change of 
the number of signals causes the change of the 
amplifier gain of each signal due to the cross 
gain saturation effect [2, 3, 4] which results in 
gain-related errors at the receivers.  

To avoid this effect, several control methods 
have been developed [5-9]. One of them uses 
EDFA output as a feedback signal in an optical 
feedback control loop [5]. The all-optical 
scheme has a drawback; the frequency of 
channel add/drop should be less than that of the 
relaxation oscillation frequency of EDFA, 
which is several hundred Hz. On the other hand, 
the mostly used one is an electrical scheme 
which controls the pump laser output 
electrically according to EDFA output signal 
level [9, 10]. 

Based on H control theory, a systematic 
design approach has been introduced in [9] 
and some robustness has been also analyzed 
therein. However, most systems adopt 
traditional proportional, integral, derivative 

(PID) control, or need feed-forward perfect 
cancellation algorithms for gain control. As 
mentioned in [9], there have been no formal 
attempts to analyze the performance 
theoretically and systematically.  

In this paper, theoretical performance analysis 
of EDFA gain control algorithm is carried out 
based on a mathematical EDFA model. As a 
nominal controller, a proportional-,integral 
controller is considered and a disturbance 
observer is considered as feed-forward control. 
To our knowledge, this is the first attempt to 
theoretically analyze the performance of PI and 
feed forward control algorithm in EDFA 
control literature.   

Singular perturbation approach [11] reduces the 
mathematical model to two level equation and 
disturbance observer technique[12,13] is 
adopted to compensate channel add/drop 
effects in this two-level model. The asymptotic 
performance is proven theoretically using 
Lyapunov method and through simulation 
results, the feasibility of the proposed algorithm 
is verified.  

2. Mathematical Model of EDFA 

In order to design an EDFA gain controller, the 
following three-level model is considered [14]. 
The energy level of EDFA is shown in Fig.1 
and the equations for three-level process are 
derived as follows. 
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where s, p are photon flux densities per 
second of a signal and a pump, e

s, a
s, e

p, a
p 

are absorption and emission cross section of a 
signal and a pump (T=e+a). N1, N2, and N3 

are the number of erbium-ions at each energy 
level (N=N1+N2 +N3 =1). 
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Ps and Pp are respectively the power of the 
signal and the pump,  is an erbium density, 
and s and p are respectively the geometric 
correction factor for the overlap between the 
power and the erbium-ions.  

Define a reservoir r(t) that represents the 
number of excited erbium-ions at each level 
and the EDFA gain of k-th channel as follows. 
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where L is the length of the erbium-doped fiber 
and A is the cross-section area of erbium-doped 
fiber core. By integrating (6) along the whole 
length of EDF, we can obtain the following 
equation. From the definitions of reservoir r(t) 
and Gk(t) = ln(Pk

out/Pk
in), equations (1)-(5) are 

changed into the following equations. 
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From (8) and (9), three-level EDFA model 
equations are obtained as follows. 
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Generally, 32  is very large compared with 21 , 
so three-level model can be reduced to the 
following two-level model equation by singular 
perturbation method[10]. 
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Figure 1. Models of EDFA: 

3. Design and Analysis of EDFA 
Gain Control 

3.1 Nominal controller design 

Two-level model (14) can be rewritten as    the 
followings. 
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where we define a d(t) as follows, which is 
considered as a disturbance.  
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In general, the variation of d(t) means channel 
add/drops. The transfer function from a pump 
input to a channel gain, P(s) represents the 
nominal EDFA plant model with no 
disturbance.  
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where L[.] is a laplace transform. Since the 
nominal plant (18) is a first-order linear system, 
we adopt a nominal controller with a PI control 
as follows in order to stabilize EDFA channel 
gains.  
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PI controller can achieve the set-point tracking 
and arbitrary pole-placement for the system 
(18). So, if channel add/drops do not exist, the 
performance of closed-loop control system can 
be controlled as much as we want. 

3.2 Compensation of channel add/drop 
effect: disturbance observer technique 

In order to cope with channel add/drop effect, 
the variation of d(t) defined by (17) should be 
estimated and compensated. Disturbance 
observer technique can be applied to the 
estimation and compensation of d(t). 

From (19), define a control input  
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Figure 2 shows the closed-loop system of 
EDFA control system with PI control and DOB. 

 

Figure 2. Closed-loop control system  

As you can see, kĜ  is a channel gain estimate 

when no d(t) exist and kk GG ˆ  contains the 

information of a disturbance d(t) . Thus, the 

estimate d̂  can be achieved by properly 
filtering this. This filter Q(s) is designed to 

make d̂  to be a loss-pass filtered signal of d(t). 
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where )(ˆ sd  and )(sd are respectively Laplace 

transform of )(ˆ td  and )(td . So, the filter Q(s) 
should be designed so that it satisfies the 
following equation.  

)(

)(
)( 21

AsB

sA
sQ

k 


  (22) 

Using (21) and (22), a disturbance observer is 

implemented to estimate )(ˆ td  which 
compensate d(t) in (16).  

3.3 Stability analysis 

From (16), (20), and (21), the closed-loop 
system equations are described as follows.  
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If we choose the observer time constant A  as 
large as we can and apply singular  perturbation 
method,  

dd  ˆ0  (25) 

Then, we have the following reduced dynamic 
equation of EDFA.  
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From (27) and (28), (26) can be rewritten as 
follows.  
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The input–output response given by (28) is 
described by the following typical second-order 
linear system response which is stable. 
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Suppose that the following assumption       is 
satisfied.  

(A1) Control gains pK  and IK are chosen such 

that the following characteristic equation has 
roots with negative real parts. 
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The assumption (A1) and (28) imply that there 
exist positive constants G , I and   satisfying 
the following inequality.  
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In order to analyze the performance of the 
proposed controller, we define error dynamics. 
Define error variables as follows.  
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Then, we have the following error equations 
using (16), (17), (20) and (28). 
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Since the length of EDF is finite, the reservoir 

2r  is bounded and also )(tGn  is bounded. So, 
there is a positive constant K such that  
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The assumption (A1) implies that there exist a 
positive definite matrix 1P  and 1Q  satisfying the 
following Lyapunov equation.  
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Now, we have the following theorem for the 
stability of the proposed control system. 

Theorem 1.  

Assume that the following matrix inequality 
holds for design parameters pK , IK  and A . 
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Then, the error dynamics described in (34) is 
asymptotically stable.                     

The proof of Theorem 1 is given in Appendix. 
From Theorem 1, the error variable 

kk GGe 2  goes to 0 and this with (32) finally 

guarantees that the EDFA gain kG  is 
asymptotically converges to the desired gain 

C
kG  .  

In order to design a gain controller, we first 
choose PI controller gains pK and IK  such that 

1A is stable. Then, choose DOB gain A  
satisfying (38) or (39). 
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4. Simulation Results 

In simulations, the wavelength of the pump 
Laser is 980nm and its maximum output power 
is 200mW. As signals, two channel signals with 
1550nm and 1560nm wavelengths are applied 
to the system. Through simulations, we 
compare the performance of the proposed DOB 
based control algorithm to conventional PI 
control algorithm.  

In the simulations, the desired channel 1 signal 
gain is set to 6dB. In order to compare the 
responses, we consider two cases depending on 
the PI control parameter values. The control 
parameters pK  and IK  are chosen such that the 

following equation holds for desired damping 
ratios   and natural frequencies 

n .  
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In both cases, damping ratios  is chosen to be 
0.7 which causes a small overshoot to speed up 
the response a little bit. In order to compare the 
responses, we consider two natural frequencies 

100000n  (rad/sec) and 300000n  

(rad/sec). The disturbance observer gain A  is 
also chosen to be 4000000 for both cases which 
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is at least ten times larger than the natural 
frequency of desired system.  

For the performance analysis, 3.5mW channel 
2 signal drop occurs at 200usec and 2mW 
channel 2 signal add takes place at 600usec.  

Figure 3 shows the gain response results when 
100000n  (rad/sec). As shown in the graph, 

figure (a) says that the gain response of the 
proposed algorithm (solid line) is stabilized 
faster than conventional PI controller without 
DOB(dotted line). Figure (b) shows the 
transient response and it is known that the 
characteristics of the response (solid line) 
converge to the desired second order system 
response (dotted line). From the figure, the 
settling times are 100usec in case of PI control 
without DOB and about 50usec in case of the 
proposed algorithm.  
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(b) Transient response of channel 1 

Figure 3. Gain Response of Channel 1  in case of 

channel 2 signal add/drop ( 100000n ) 

Figure 4 and Figure 5 shows the response of 
control algorithms when 300000n  

(rad/sec). From (a) of Fig.4, the performance of 
the proposed DOB based PI control algorithm 
(solid line) is much better than conventional PI 

control algorithm without DOB (dotted line). 
The settling time of channel 1 signal gain for the 
PI control without DOB is about 50 usec. On the 
other hand, the settling time of channel 1 signal 
gain for the proposed control algorithm is less 
than 10usec which is 5 times faster. When DOB 
is adopted, the gain fluctuation due to signal 
adds is also improved 90% rather than PI control. 
As theoretically analyzed in section 3.3, figure 
(b) of Figure4 shows that the gain response of 
the proposed algorithm (solid line) rapidly 
converges to the response of desired second 
order system (dash-dotted line) derived as a 
reduced system after transient response decays. 
Figure (c) of Figure 4 is the result of channel 
add/drop signal estimation using DOB. Since 
DOB has been designed based on simplified 
two-level EDFA model, the estimation result 
showed some oscillations even though the 
overall DOB input-output characteristics from 
channel add/drop input to its estimation output 
are represented by a first-order linear system. It 
is because of the controller design based on 
simplified model and this ignored dynamics 
would cause oscillations.  
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(c) Add/Drop Signal Estimation 

Figure 4. Gain Response of Channel 1  in case of 
3.5 mW channel 2 signal addition ( 300000n ) 

Figure 5 shows the response when 3.5mW 
channel 2 signal is dropped. The response 
characteristics are the same as in Figure 4 that 
the settling time is less than 10usec for the 
proposed algorithm.  
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(b) Add/Drop Signal Estimation 

Figure 5. Gain Response of Channel 1 in case of 
3.5mW channel 2 signal drop ( 300000n ) 

Figure 6 summarizes the comparison between 
the responses when 300000n  (rad/sec) and 

100000n  (rad/sec). Since the natural 

frequency 300000n  (rad/sec) of the desired 

system is more than 3 times larger than the case 
of 100000n  (rad/sec), the gain response is 

stabilized 3 times faster than the case of 
100000n  (rad/sec). On the other hand, the 

transient overshoots are almost the same for both 
cases since the DOB gain and damping ratio 
were chosen the same for both cases.  
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Figure 6. Comparison of Gain Responses between 
the cases of 100000n  and 300000n  

5. Conclusions 

In this paper, the performance analysis has 
been carried out for the proposed DOB based 
PI control algorithm for EDFA gain control. 
By introducing DOB to compensate gain 
fluctuations due to channel add/drops, the 
transient responses are stabilized much faster 
than PI controller without DOB. The 
proposed gain controller is composed of a 
disturbance observer and a PI controller. We 
have applied a disturbance observer 
technique to detect channel add/drop signals 
and theoretically proven the performance of 
the proposed method.  

Since the channel add/drops are estimated by 
DOB and subtracted it feed forwardly, the gain 
responses are theoretically shown to rapidly 
converge to desired system responses after the 
transient responses decay to zero. Theoretical 
analysis has been done based on two-level 
EDFA model. 

Simulation results showed that DOB can 
suppress large fluctuations in the beginning of 
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channel add/drops and result in faster settling to 
desired channel gains.  

As mentioned in Simulations section, we 
should consider the exact EDFA model in order 
to enhance the performance of DOB but the 
exact three-level model does not satisfy 
matching condition and then conventional DOB 
technique cannot be directly applied.  
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Appendix  

Proof of Theorem 1 

We define Lyapunov function as follows. 

PEEV T  (A.1)

where  

    3221121 ,, eEeeEEEE TT  . (A.2)

Then, we have the following equations from (34) and (35). 
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The time derivative of Lyapunov function V is satisfying the following inequalities using (31), (32),
(34), (36), (37) and (38). 
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 (A.4)

where 
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(A.4) can be rewritten as follows.  
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From (A.5) and comparison principle [15], we have the following.  
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where  
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From (A.6) and (A.1), the error variables asymptotically converge to zero.  


