
Studies in Informatics and Control, Vol. 21, No. 4, December 2012 http://www.sic.ici.ro 403

1. Introduction 

Robotic mobile agents have a wide range of 
applications in different areas [3], such as: 
access dangerous areas to humans, underwater 
explorations, monitoring the environment, 
painting and de-painting applications [26]. In 
our research, as mobile agent a robotic mobile 
agent is considered. The main properties of the 
mobile agent are: the intelligence in operation, 
autonomy, reactivity and mobility. Many 
scientists are working on finding new solutions 
for different subsections of robotic mobile 
agent and multi-agent [4] applications such as 
[3] navigation, localization, optimal path 
planning, path following [5] object detection, 
movement and modelling [6] of the mobile 
robots with multiple implementation solutions 
[7]. In this paper we will focus on path 
planning optimization of the mobile agent 
using neural networks. 

We will give solutions for: 

- a TSP and a modified TSP problem solving 
when the agent does not have to get back to 
the starting point.  

- Finding a closely optimal path from the 
resolved TSP. For solving the TSP a 
Kohonen map was used with a proposed 
cost function in the winner neuron’s 
selection. In the following sections, the 
TSP problem, the network structure and 
training, and results with the resolved TSP 
with Kohonen map and optimization of 
path planning between a starting node and 
a target node on the map will be presented. 

The paper is organized as follows: Section 2 
discuss the problem that we intend to solve and 
presents some existent solutions for TSP 
solving; in Section 3 our proposal for path 
finding is presented with preliminaries of self-
organizing map architecture, a modified 
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Figure 1. (a) represents the map, the agent finishes the work at the starting node; (b) the agent finishes the work 
at the end node.  
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solution for TSP solving, and the optimal path 
finding; Section 4 presents the conclusions of 
the research and the future research direction. 

2. TSP Problem Formulation 

In our research the following two tasks for a 
mobile agent were taken into consideration: In 
the first case the mobile agent has to cover 
(supervise) an area and to move back to the 
starting node (Figure 1. (a)). In the second case 
the mobile agent has to cover an area starting 
from one node and finishing the work in the 
end node (Figure 1.(b)). The second application 
can be used if we have a large area 
discomposed in subareas, and for each subarea 
the entering and finishing nodes are defined. 
The agent has to visit each node (marked in the 
figure with a white square) avoiding the 
obstacles and move back to the starting 
respectively to finish the task in the ending 
node. Each node must be visited only one time. 

Solutions for TSP solving  

Many algorithms for solving TSP were 
developed, like: combinatorial algorithms 
[2],[8],[9], branches and bounds [10], an 
efficient algorithm proposed by Clark and 
Wright [11], ant colony optimization 
algorithms [12], [13], particle swarm 
optimization algorithms [10], genetic 
algorithms [14].  

There are also several artificial intelligence 
based solutions for solving the TSP in mobile 
robots path planning such as genetic algorithms 
[14], [15], solutions based on artificial 
recurrent networks [16], [17], fuzzy clustering 
algorithms [18] etc. 

3.  Our Proposal for Path 
Finding Optimization 

Preliminaries  

A Kohonen map (self-organizing map - SOM) 
is an artificial neural network that uses an 
unsupervised training algorithm [19]. The 
output of a Kohonen map is processed as a 
linear combination of the network weights and 
the network inputs (equation (1)). The general 
structure of the network is presented in the 
Figure 2 (a), (b), and (c). 

The network output is composed in general 
accordingly to the equation (1), but according to 

specific optimization applications, the network 
output can be processed using a cost function. 

 

(a) Grid topology 

 

(b) Ring topology 

 

(c) Neurons placed along a line 

Figure 2. The general structure of the network 
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where yi represents the network’s i-th output, 
wi,j-the network weight between the i-th 
processing element and the j-th input, N the 
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number of the network’s processing elements 
respectively M the number of inputs of the 
network. The self-organizing map uses a 
neighbourhood function to preserve the 
topological properties of the input space. The 
neurons of the self-organizing map are placed 
based on a topology. The topology can be 
linear, hexagonal, a two or three-dimensional 
grid type or also a random type topology 
(Figure 2). The selection of the most suitable 
topology corresponding to the input space is 
very important. To teach the organizing map, 
generally, an unsupervised learning algorithm 
is used. After processing the network’s output, 
based on a criteria function, the winner 
processing element will be defined. The 
weights of the winner processing element and 
the ones of the processing elements in the 
neighbourhood of the winner are trained based 
on the Hebb (or anti Hebb) rule.  

During the training process of the network, the 
neurons are organized according to the 
topology so that neurons with similar weights 
will be arranged closely to each other according 
to the topology. The Mexican hat is frequently 
used as a neighbourhood function, but several 
times the Gaussian function is considered. 

In this paper multiple cost functions have been 
tested according to equations (2) and (3). In 
equation (2) the Euclidian distance is processed 
between the network input and the weights of 
the network. The network with the minimal 
value will be selected as the winner neuron. In 
the eq. (3) the cost function was extended with 
a penalization member. Parameter  determines 
the extent to which prevails one or the other 
part of the cost function. Two other types of 
cost functions have been tested. The equations 
are not presented here, but can be deduced very 
simply by changing the Euclidian norm with 
the Manhattan norm. 

For resolving the TSP problem with the self-
organizing network, the structure of the 
network is presented in Figure 2(b). The 
network neurons represent the nodes that the 
agent visits. A topology has to be defined so 
that it corresponds to the expectations of the 
TSP task. Each neuron can have two and only 
two neighbouring nodes. One is from which the 
agent arrives and the other is where the agent 
will be in the next step. If the agent needs to get 
back to the starting point, this means that the 
first and the last neuron are the same. It can 

easily be concluded that this is equivalent to a 
ring-type topology. 

As mentioned, the neuron represents a node 
where the agent arrives, and the weights of the 
network represent the position of the node on to 
the navigation map of the agent. The network 
structure for the TSP in Figure 2(b) is 
presented. The TSP is resolved based on the 
classification of the inputs of the network. 
According to the normalized Hebb rule used for 
network training equation (4), weights are 
shifted towards the network current inputs. The 
neurons will be rearranged corresponding to the 
ring topology.  

The neighbourhood function defines/influences 
weights for which neurons will be updated. The 
neighbourhood function value for the neuron 
close to the winner has a significant value close 
to 1 and the value of the neighbourhood 
function for neurons far from the winner will 
have an insignificant value close to zero, and 
will block the update of weights for these 
neurons. As neighbourhood function the 
Gaussian function was used, with the centre 
point of the function at the winner neuron index 
on the topology map. r and r* represent the 
neuron positions on the topology map for the 
neuron for which the weight update is 
processed, respectively for the winner neuron 
(equation 4). 

Modified TSP solving  

A modified task of the TSP considered in this 
paper is when the agent does not have to move 
back to the starting point, the target point is 
previously defined on the map, where the agent 
has to finish the task (Figure 1(b)). The 
question is to solve this problem using the self-
organizing map.  

If the agent does not have to move back to the 
starting point, the ring type topology is not 
suitable. For solving the problem, a one 
dimensional topology is proposed to be used. The 
neurons are placed along a line (Figure 2 (c)).  

Unlike as it was expected, the starting and 
destination node of the solution do not coincide 
with the initially specified starting and target 
nodes. From the path resulted with the self-
organizing map the starting and destination 
points should be searched for. The result of the 
self-organizing map, the order of going through 
all off the nodes, is a vector with network 
weights. By finding the starting node and the 
target node index from the vector, the path 
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from the starting node to the target node is 
solved, and from the starting node all of the 
nodes can be reached. In case of the ring type 
topology two paths exist to the target node. In 
case of the linear topology only a single path 
exists. These paths are not optimal, but with a 
simple searching algorithm a closely optimal 
solution can be found. In our research we have 
considered the cost function as the length of the 
path (the number of nodes). 

The problem to be resolved is that the first 
neuron weights to converge to the starting node 
coordinates respectively the last neuron weights 
to converge to the destination node coordinates. 
The solution lies in the training algorithm. The 
proposed solution in this paper is to not update 
the first and last neuron weights and 
overwriting the first and last neuron weights 
with the starting and destination node 
coordinates. This simple amendment will result 
in that, that the starting and destination nodes 
of the solution will coincide with the initially 
specified start and target nodes. 

Optimal path finding 

All three forms of the network resolve the task 
to reach all the nodes on the map. The route 
from the starting node to the target node is 
resolved, but the solution is not optimal or 
close to the optimal. The proposed algorithm 
for finding a closely optimal route between the 
starting and the ending node is presented in the 
following: 

Algorithm Route Finding 
Input: W {weight vector resulted after network training} 
Output: path {Closely Optimal Path} 
N ← length(W) 
W_new(1) ←W(1) 
p←0 
Step 1:  deleting duplicate nodes 
for k in 2 to N   
if dist(W(k)-W(k-1)) > , then 

W_new(k) ← W(k) 
p:=p+1 

end if 
end for 
Step 2: finding start and end node indexes 
Min_value=0; 
For i in 1 to P 
If min_value<dist(start_node_index-W_new(i)) Then 
Min_value←dist(start_node_index-W_new(i)) 
 Start_nodex_index<-i 
End if 
End for 
For i in 1 to p  
If min_value<dist(end_node_index-W_new(i)) 
Min_value← dist(start_end_index-W_new(i)) 
end_node_index←i 
End if 

End for 
Step 3: finding neighborhood nodes with lower cost to 
taget 
Create table intermediar_table with records 
current_node_index, neighborhood_node_index, 
cost_from_start_to_current_node, 
cost_from_neighborhoud_node_to_end_node 
k:=1 
for i in start_node_index to end_node_index 
for j in  range neighborhood_node(i) 

if cost(j,end)<cost(i,end) then 
intermediar_table(k,1) ←i 
intermediar_table(k,2) ←j 
intermediar_table(k,3) ← 

cost(start_node_index,i) 
intermediar_table(k,4) ←- 

cost(j,end_node_index) 
k=k+1 

end if 
end for 
end for 
Step 4: ordering the intermediate_table 
order intermediar_table by column(3) asccending; 
Step 5: deleting overlapped sections 
for i in 1 to length(intermediar_table) 
for j in i+1 to length(intermediar_table) 
if 
overlap(range(intermediar_table(i,1),intermediar_table(i,
2)) range(intermediar_table(j,1),intermediar_table(j,2)) 
then  
delete intermediate_table_row(j) 
end if 
end for  
end for 
Step 6: extracting the route 
j:=1; 
for i in 1 to length(intermediate_table) 
for k in intermediate_table(i,1) to intermadiate_table(i,2)
path(j) ←W_new(k) 
j:=j+1 
end for; 
end for; 
return path 
EndRouteFinding 

In the first step the duplicate nodes were deleted. 
If the number of neurons is equal to the number 
of nodes on the map, the network does not find 
the solution, because a set of neurons will not be 
active during the network training process. 

Finding the indices from the resulted weight 
vector with the starting and ending nodes is 
realized in step two. The vector values which 
correspond to node coordinates on the map are 
compared with start and end node positions. 

In step three are found the nodes for which a 
neighbourhood node with a lower cost to the 
target node exists. 

Calculating the cost from the start to the end node 
and from the neighbourhood nodes to the end 
node for each node found in the previous step and 
storing the results in a table with the following 
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fields: current node index, neighbourhood node 
index, and the calculated costs. 

Ordering the table in ascending order according 
to the cost column (column number three) is 
realized in the next step of the algorithm. 

The rows from the table for which the detected 
section with a higher cost overlaps the section 
with a lower cost are deleted. 

In the final step the closely optimal path from 
the start to the end point is extracted. 

Figures 3, 4 and 5 are present results of the 
self-organizing map training for solving the 
TSP and modified TSP . 

 

Figure 3. Network training results using a  
ring type topology 

 

Figure 4. Results using linear type placement 

 

Figure 5. Results using linear type placement with 
overwriting of the first and last neuron weights with 

the start and end node coordinates 

In Figure 3 as network topology a ring-type 
topology was used. The neurons were 
positioned on a circle. In Figure 4 and Figure 5 
a linear placement was used and in Figure 5 the 
first and last neuron’s weights were forced 
(overwritten) with the start and end node 
coordinates, as the result is how it was 
expected. In Figures 6, 7 and 8 the evolution of 
the training process is presented in different 
training cycles. A neighbourhood degree was 
gradually decreased during the training cycles. 
In the first phase a large scale rearrangement of 
the neuron was allowed, finally reducing to the 
immediate vicinity of the winner. 

 

Figure 6. Network training results using a  
ring type topology 

 

Figure 7. Example of one-column width figure 

 

Figure 8. Example of one-column width figure 
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For 167 input nodes, for all of three variants of 
network topology (Figure. 2) a number of 1000 
neurons were used. The weight update was 
processed based on the normalized Hebb rule. 
For the presented experiment a value of 0.7 of 
the training factor and as neighbouring function 
the Gaussian were used. The standard deviation 
of the Gaussian function was gradually 
decreased narrowing the weight update to the 
closely neighbour of the winner neuron. 

In the following figures the evolution of certain 
weights corresponding to the first input (Figure. 
9) and the second input (Figure 10) during 
network training results for ring type topology 
respectively in Figure 12 and Figure 13 for line 
type topology with fixed start and end node are 
presented. From the evolution of the weight the 
advancement of the training process can be 
concluded. On the figures, for 10 of the 1000 
neurons the weight values are plotted. In case 
of supervised learning, the training process can 
be stopped based on the advancement of the 
training error. In case of unsupervised training 
the error cannot be calculated. A criteria 
function for detecting the end of the network 
training process, which characterizes the 
evolution of the training, is presented in 
equations 5 and 6. In equation 5 the criteria for 
the weight corresponding to the first and 
second input of the network are processed 
separately. According to the criteria values, 
when the criteria value is close to zero the 
training of the network can be stopped. 

 

Figure 9. Evolution of certain weights 
corresponding to the first input during network 

training using a ring type topology 

 

Figure 10. The evolution of certain weights 
corresponding to the second input during network 

training a ring type topology 

 

Figure 11. Criteria function evolution (eq. 5) of the 
weights corresponding to the first and second input 
during network training using a ring type topology 
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Figure 12. Evolution of certain weights 
corresponding to the first input during network 

training using a linear type topology with fixed start 
and end nodes  
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Figure 13. Evolution of certain weights 
corresponding to the second input during network 

training using a linear type topology with fixed start 
and end node 

 

Figure 14. Criteria function evolution (equation 5) 
of the weights corresponding to the first and second 

input during network training using a linear type 
topology with fixed start and end node 

In the tables from the annex the advancement 
of the weights values corresponding to the three 
variants: ring type, linear type and linear type 
with fixed start and end node topology           
are presented. 

In tables 1 and 2 the weight values for the ring 
type topology, in tables 3 and 4 for the linear 
type topology respectively in tables 5 and 6 for 
the linear type topology with fixed start and 
end node are presented. In the first column of 
each table appears the number of training 
cycles, in the other columns every one 
hundredth weight value. In the case of the 
linear type topology with fixed start and end 
node there is a need for more training cycles 
than in the other cases, in the same 
circumstances. Evolution of the weights 
presented in the tables also illustrates the cycle 
when the network training was completed.  

4. Conclusions 

In this paper the TSP problem solving was 
discussed, using the self-organizing map with 
applicability in robotic agents’ application 
which represents a subtask of the mobile robot 
navigation.  

A multiple criteria function was proposed for 
the winner neuron selection. All four used 
criteria functions work well during the training. 
If the penalty part of the cost function prevails, 
the number of learning cycles increases. At the 
tuning phase it must be taken into account that 
the teaching is started with neighbouring values 
high enough. If the neighbouring degree is low, 
most of the nodes will not be part of the 
solution. The calculation of distance with the 
Euclidean and Manhattan norms should be 
completed with the infinite norm and tested in 
the future. Using a simplified cost function, the 
complexity of the output processing is reduced, 
reducing the network output processing time.  

The achieved results are promising in terms of 
solving the path planning subtask of the robotic 
mobile agent navigation. 

The research results based on the multiple type 
of artificial neural networks (Radial Basis 
Function ANN [20], [21] Cerebellar Model 
Articulation Controller [22], [23], [24]) 
implementation in FPGA circuits [25] can be 
used in the Kohonen network hardware 
implementation. The future research objective 
is the implementation of parallel pipeline 
architecture in hardware with real time 
functionality of the Kohonen network.  
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Annex  

Table 1. Weight evolution corresponding to first input (ring type topology) 

Weights corresponding to first input (ring top) 
Training cycle W1 W100 W200 W300 W400 W500 W600 W700 W800 W900 

1 5.6941 3.7343 10.762 13.7838 9.4586 6.4059 1.8799 11.1667 4.4094 6.7183 
40 4.5134 10.471 6.6255 15.3871 13.6954 6.5042 10.5527 8.1619 3.6613 2.1804 
70 4.5 10.4993 6.5058 14.9292 13.506 6.5 10.5001 8.099 3.5047 2.0993 

100 4.5 10.5 6.5 14.7293 13.5 6.5 10.5 8.0431 3.5 2.0431 
130 4.5 10.5 6.5 14.5943 13.5 6.5 10.5 8.0175 3.5 2.0175 
160 4.5 10.5 6.5 14.5297 13.5 6.5 10.5 8.0088 3.5 2.0088 
190 4.5 10.5 6.5 14.5073 13.5 6.5 10.5 8.0066 3.5 2.0066 
220 4.5 10.5 6.5 14.5014 13.5 6.5 10.5 8.0062 3.5 2.0062 
250 4.5 10.5 6.5 14.5002 13.5 6.5 10.5 8.0061 3.5 2.0061 
280 4.5 10.5 6.5 14.5 13.5 6.5 10.5 8.0061 3.5 2.0061 
310 4.5 10.5 6.5 14.5 13.5 6.5 10.5 8.0061 3.5 2.0061 

Table 2. Weight evolution corresponding to second input (ring type topology) 

Weights corresponding to second input (ring top) 
Training cycle W1 W100 W200 W300 W400 W500 W600 W700 W800 W900 

1 4.786 5.7963 2.0015 9.0381 14.7819 14.3306 5.4672 12.5902 0.4029 9.7687 
40 2.3793 12.3375 15.2857 14.8926 6.0106 7.142 5.1014 1.5368 10.6436 6.4892 
70 2.466 12.4199 15.3459 14.4936 5.8092 7.0536 4.8108 1.5004 10.5046 6.4999 

100 2.4969 12.4812 15.4211 14.4992 5.6229 7.0175 4.6229 1.5 10.5 6.5 
130 2.4999 12.4977 15.4733 14.5 5.5348 7.0091 4.5348 1.5 10.5 6.5 
160 2.5 12.4998 15.4933 14.5 5.5079 7.008 4.5079 1.5 10.5 6.5 
190 2.5 12.5 15.4983 14.5 5.5019 7.0079 4.5019 1.5 10.5 6.5 
220 2.5 12.5 15.4994 14.5 5.5007 7.0079 4.5007 1.5 10.5 6.5 
250 2.5 12.5 15.4996 14.5 5.5004 7.0079 4.5004 1.5 10.5 6.5 
280 2.5 12.5 15.4997 14.5 5.5004 7.0079 4.5004 1.5 10.5 6.5 
310 2.5 12.5 15.4997 14.5 5.5004 7.0079 4.5004 1.5 10.5 6.5 

Table 3. Weight evolution corresponding to first input (linear type topology) 

Weights corresponding to first input linear top 
Training cycle W1 W100 W200 W300 W400 W500 W600 W700 W800 W900 

1 5.6941 3.7343 10.762 13.7838 9.4586 6.4059 1.8799 11.1667 4.4094 6.7183 
40 15.0972 7.6873 2.1464 7.9492 6.8128 2.4596 8.9911 15.0579 7.514 15.2665 
70 15.1727 5.5883 1.9869 8.3534 3.8266 6.5182 3.3603 9.7427 15.3634 14.0279 

100 15.3682 5.8242 2.4851 6.6486 3.715 8.3901 2.4234 5.882 12.4805 14.8329 
130 15.2291 6.3704 2.6008 7.2907 3.5754 9.3834 3.3657 6.8084 11.4624 15.47 
160 15.2409 6.4944 2.6345 7.5471 3.4998 9.3965 3.4077 7.4375 11.2079 15.4614 
190 15.2946 6.5304 2.562 7.5005 3.4726 9.408 3.4083 7.3658 11.0088 15.4996 
220 15.3443 6.6745 2.5247 7.477 3.4952 9.4252 3.4228 7.2732 10.8516 15.4999 
250 15.3742 7.1753 2.6118 7.4724 3.496 9.4438 3.4362 7.206 11.3159 15.5 
280 15.3954 7.4884 2.5661 7.4761 3.4979 9.4606 3.4489 7.1381 11.4903 15.5 
310 15.4147 7.4992 2.5365 7.4822 3.4992 9.4741 3.4608 7.1141 11.4951 15.5 
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Table 4. Weight evolution corresponding to second input (linear type topology) 

Weights corresponding to first input 
Training cycle W1  W100  W200  W300  W400  W500  W600  W700  W800  W900 

1 4.786 5.7963 2.0015 9.0381 14.7819 14.3306 5.4672 12.5902 0.4029 9.7687 
40 15.3826 15.3463 14.7741 13.8128 11.5091 11.4412 11.0032 11.6343 5.7967 2.2433 
70 15.4303 15.5 13.6102 11.2637 10.1007 5.7031 4.6192 4.5223 11.5664 2.6679 
100 15.1576 15.5 13.8502 10.9903 10.4719 6.8125 6.3098 2.2501 11.7502 2.0151 
130 15.458 15.5 14.3828 11.3444 10.4957 6.7721 5.3131 2.0572 10.0533 2.7934 
160 15.4669 15.5 14.4762 11.2228 10.4996 6.7364 5.1719 1.5747 9.9481 3.8436 
190 15.4815 15.5 14.49 11.29 10.5 6.6506 5.1505 1.5381 8.8686 3.0986 
220 15.4915 15.5 14.4967 11.3313 10.5 6.5873 4.832 1.5214 8.8967 3.0144 
250 15.4963 15.5 14.4995 11.3586 10.5 6.5459 4.7619 1.5108 9.7054 2.9496 
280 15.4985 15.5 14.4999 11.3793 10.5 6.522 4.6995 1.505 9.5827 2.894 
310 15.4994 15.5 14.5 11.3972 10.5 6.5096 4.6464 1.502 9.5559 2.8424 

Table 5. Weight evolution corresponding to first input (linear type topology with fixed start and end node) 

Weights corresponding to first input 
Training cycle W1 W100 W200 W300 W400 W500 W600 W700 W800 W900 

1 5.6941 3.7343 10.762 13.7838 9.4586 6.4059 1.8799 11.1667 4.4094 6.7183 
70 1.5 8.6642 14.9179 15.3683 10.4293 6.357 2.2908 3.1545 7.4041 12.092 

130 1.5 10.4087 15.3288 12.9871 10.4378 6.1834 3.272 1.632 7.0823 11.7415 
190 1.5 9.5657 15.3074 12.7897 10.4972 7.4531 3.4529 1.5153 6.9384 11.5615 
250 1.5 9.8068 14.9712 12.6385 10.4998 7.4733 3.5003 1.5006 6.8079 11.5084 
310 1.5 9.6289 14.8487 12.5526 10.5 7.4913 3.4998 1.5 6.6992 11.5007 
370 1.5 9.5515 14.748 12.5159 10.5 7.498 3.5 1.5 6.6177 11.5 
430 1.5 9.5204 14.6663 12.5039 10.5 7.4997 3.5 1.5 6.5641 11.5 
490 1.5 9.5071 14.6042 12.5008 10.5 7.5 3.5 1.5 6.5338 11.5 
560 1.5 9.5022 14.5609 12.5001 10.5 7.5 3.5 1.5 6.5189 11.5 
610 1.5 9.5006 14.5331 12.5 10.5 7.5 3.5 1.5 6.5124 11.5 

Table 6. Weight evolution corresponding to second input (linear type topology with fixed start and end node) 

Weights corresponding to first input 
Training cycle W1 W100 W200 W300 W400 W500 W600 W700 W800 W900 

1 4.786 5.7963 2.0015 9.0381 14.7819 14.3306 5.4672 12.5902 0.4029 9.7687 
70 1.5 7.1013 5.7711 12.164 10.6822 11.2775 11.887 15.4116 15.3259 14.9019 
130 1.5 7.3279 8.5055 10.4981 11.9371 7.538 10.6921 15.3122 15.4758 14.6988 
190 1.5 5.5375 7.6104 10.4991 12.3482 7.2816 10.6023 15.1996 15.4987 14.5587 
250 1.5 5.1049 7.4946 10.4999 12.3099 7.1437 10.8195 15.1951 15.5 14.5084 
310 1.5 5.1715 7.4984 10.5 12.3358 7.1096 10.6949 15.211 15.5 14.5007 
370 1.5 5.1063 7.4998 10.5 12.3787 7.0792 10.6057 15.2441 15.5 14.5 
430 1.5 5.0362 7.5 10.5 12.4206 7.0549 10.5506 15.2867 15.5 14.5 
490 1.5 4.9714 7.5 10.5 12.4535 7.0366 10.5214 15.3298 15.5 14.5 
560 1.5 4.9114 7.5 10.5 12.4752 7.0237 10.508 15.3654 15.5 14.5 
610 1.5 4.8554 7.5 10.5 12.4876 7.0149 10.5027 15.3898 15.5 14.5 

 


