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Abstract: Immersive videoconferences have added a new dimension to remote collaboration by bringing participants
together in a common virtual space. To achieve this, the conferencing system must extract in real-time the foreground
from each incoming video stream and translate it into the shared virtual space. The method presented in this paper
differentiates itself in the sense that no prior training or assumptions on the video content are used during foreground
extraction. A temporally coherent mask is created based on motion cues obtained from the video stream and is used to
provide a set of hard constraints. Based on these constraints, a graph cut algorithm is employed to produce the pixel-
accurate foreground segmentation. The obtained results are evaluated using a state-of-the-art perceptual metric to provide
an objective assessment of the method accuracy and reliability. Furthermore, the presented approach makes use of parallel
execution in order to achieve real-time processing capabilities.
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video processing.

1. Introduction and Related Work

In the last decade videoconferencing has gained
a lot of momentum, supported by the
introduction of fixed and mobile broadband
Internet and the availability of affordable and
easy to use video capture hardware. Having
achieved the desiderate of real-time audio,
video and document sharing, the next step in
videoconferencing is to deliver an immersive
experience by gathering participants into a
common virtual space that further enhances
collaboration options [1]. At the root of this
concept rests the ability of the conferencing
system to accurately extract foreground
information from each incoming video stream
and use it to populate the virtual space which is
shared with all participants. The perceived
quality of foreground segmentation represents a
key aspect for achieving a true immersive
experience, further accentuated by the fact that
foreground segmentation is in itself an ill-posed
problem [2]. The implementation of an
immersive videoconferencing system must
therefore rely on a real-time, automatic
foreground extraction algorithm, capable of
handling monocular video sequences that may
exhibit illumination changes, multimodal and

cluttered backgrounds, camera noise and video
compression artifacts.

Foreground / background segmentation has
been an active research area of video sequence
processing, with many algorithms and methods
being developed [3-6]. The most accurate
results are obtained by methods that rely on
dedicated setups involving stereoscopic [7] or
multiple cameras [8, 9]. While highly robust,
these methods are not feasible for common
videoconferencing scenarios which use off-the-
shelf or integrated monocular webcams.

In the field of monocular object segmentation,
the majority of encountered algorithms rely on
background subtraction [4] based on an empty
image of the scene provided during the
initialization stage. In [10] the foreground layer
is extracted by combining background
subtraction with color and contrast cues. The
key concept revolves around background
contrast attenuation, which reduces contrast in
the background layer while preserving it
around object boundaries. The method
proposed in [11] uses a known and stationary
background image and a frontal human body
detector in order to perform an initial
segmentation of the person in the scene. The
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result is subject to a coarse to fine segmentation
process [12] that relies on a GMM model of
foreground and background pixels to provide
the input for an unsupervised graph cut
segmentation [13, 14]. In addition, a self-
adaptive initialization level sets scheme is
applied in order to find the most salient edges
along the person’s contour. The major
drawback of these otherwise accurate methods
is the requirement for an initial clean
background image. This cannot be satisfied in
videoconference scenarios, since people are
usually in the scene starting from the first
frame and the number of potential backgrounds
is virtually infinite.

Another approach is to replace the need for an
initial background image with a learning model
trained using manually labeled video
sequences. Criminisi et al. [15] have adapted
stereoscopic approaches to monocular video by
using a probabilistic framework to fuse motion,
color and contrast cues with spatio-temporal
(S-T) priors generated during training phase.
The accuracy of this method is similar to the
one in [7], except for cases when foreground
color distribution resembles the one in the
background or when there is insufficient
motion. Further improvements described in
[16] have replaced the Hidden Markov Model
with tree-based classifiers trained on ground-
truth segmentations that imitate depth masks
used in stereoscopic vision. The classifiers
operate on motion information encoded in the
form of motons (motion descriptors similar to
textons, which encode texture information).
This method allows a better segmentation of
the foreground which is closest to the camera,
being able to discard background motion.
Despite their relatively high accuracy, both
methods can be prohibitive due to the need to
calibrate the learned priors for different types
of scenes using manually labeled sequences.

A third way of addressing the foreground
segmentation problem takes the form of
constraints placed on the nature and position of
foreground objects. Kim et al. [17, 18] propose
an algorithm which targets the part of the
MPEG-4 standard related to object-based video
compression and handling. The algorithm
performs S-T motion segmentation by
combining a low-complexity spatial technique
with a marker extraction and update process
followed by a region growing phase. The low
complexity and relative accuracy of the
approach makes it suitable for use in mobile

devices, but the a priori assumption that the
foreground object is placed in the center of the
frame limits the number of applicable
scenarios. For videoconferencing, segmentation
needs to take into account extra movements,
other than only those related to head and torso.
For example, the system must handle cases in
which a person uses hand gestures and body
language in order to support the presentation of
a topic or to show an exhibit.

The foreground extraction method proposed in
the present paper eliminates the need for initial
training as well as any a priori assumptions or
knowledge related to the nature of the observed
scene. Starting from accurate motion cues
obtained through aggregation of dense and
sparse optical flow information [19], the system
builds a temporally coherent mask (TCM) of
foreground detected through motion. The
temporal coherence of the mask in absence of
motion is achieved through the use of image
statistics, similar to other methods encountered
in the state-of-the-art [3, 18]. To obtain the
final pixel-accurate segmentation, a heuristic
approach combines the TCM and sparse optic
flow information in order to generate the hard
foreground and background constraints for a
graph-cut algorithm. The accuracy and
reliability of the obtained results are evaluated
using the state-of-the-art perceptual objective
metric described in [20]. The proposed
approach supports parallelization, enabling it to
achieve real-time execution capabilities.

2. Optical Flow-based
Motion Segmentation

The motion detection and segmentation part of
the proposed method uses the algorithm
described by the authors in [19], based on the
aggregation of dense and sparse optic flow
(OF) information. This approach is capable of
producing accurate results while ensuring
resilience to noise and compression artifacts.

The algorithm comports three steps, as follows:

1. identifying a set ¢ of control points on
moving objects from the set ® of sparse OF
features computed between the edge
images of two consecutive frames;

2. computing the concave hull ¢; of moving
objects from the set ¢ of control points and
dense OF information R;;

3. determining the accurate boundary ¢; of
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each moving region using an active contour
initialized from the concave hull.

The result, shown in Figure 1, is an accurate
representation of the silhouette of each moving
object in the current frame. The accuracy is
higher for large objects that are characterized
by a higher number of control points. This
matches the case of videoconferencing
applications, where participants occupy a

significant part of the scene.

segmented object

R; G ¢}

Figure 1. Concave hull and accurate boundary
extraction for moving objects

3. Temporal Aggregation of
Detected Movement

At each moment t relative to the beginning of
the video sequence, a binary foreground mask
M[ is generated as a reunion of the bodies of
all contours C; generated by the motion
segmentation algorithm. This motion cue
exposes a part of the real foreground and is
valid only at the time t of its creation. In order
to obtain a coherent foreground mask over a
longer, ideally indefinite time frame, a method
is required to integrate all motion cues
(MF,Mf,..MF} into a single temporally
coherent mask, defined as:

TCM, .= F(MF,i =1..t) (1)

In an ideal case where, at any given moment t,
TCM, is free of false positives and contains the
up-to-date positions of all pixels that were
exposed by at least one motion cue MF, i <'t,
the formula can be expressed recursively:

TCM, := F(TSM,_,, MF) ).

The temporal coherence approach introduced in
the present article assumes that once an image
region is exposed as foreground by a certain
motion cue M7, it will remain labeled as such
in all TCM,s; until sufficient evidence is
obtained to prove otherwise. This evidence
comes from image statistics, in the form of a
similarity measure.

3.1 Statistical Indicators for Foreground
Labeling and Persistence

Image statistics are computed using a block-
based approach, which offers higher robustness
against noise and lighting changes [3]. The
image plane of I, is divided into equally-sized
blocks of m x n pixels for a total of M X V'
blocks, and for each channel the pixel color
information is modeled as a normal distribution:

Kije~NWijer0%i)c) (3)

where i, j are the block coordinates and c is the
color channel index. u and ¢ denote the mean
and respectively the variance of the pixel color
intensities inside the block.

Next, a similarity measure is defined between
two block models. This measure indicates if the
color information in a block has changed
enough to trigger a change from foreground to
background status. Formally, the measure is
expressed as:

1,if d(K;,Kp) <14
0,otherwise

(4)

where d is a distance function between two
Gaussian kernels and t, is a threshold which
depends on the chosen distance function d.

5Ky, k) = |

In the context of the presented algorithm, d was
substituted with the Hellinger distance
H (K4, K3) [21], which produces a result in the
[0, 1] domain. A distance close to 0 indicates a
high degree of similarity between two
probability distributions, while a value of 1
means total dissimilarity.

Considering two consecutive frames I;,_, and I,
in the RGB color space, the similarity measure
between two corresponding image blocks
located at coordinates i, j can be expressed as:

{1 Jif maxeer g HK 0 K o) < 1q (5)
0, otherwise

When 651- < 14, block labeling persistence in

achieved, otherwise the previous block label is
invalidated. The distance threshold in case of
using the Hellinger distance has been
determined experimentally as 7,y = 0.7.

3.2 Temporal Integration Algorithm

Each block carries a label Lﬁ,j which can take
values in the {BG, FG} domain. At the initial
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moment t =0, all blocks are assigned by
default a BG label.

At each given moment t > 0, a block is labeled
as FG if the motion cue Mf exposes a
significant number of foreground pixels in the
block. Considering nl-t_j as the ratio between the
number of foreground pixels exposed by the
motion cue in block i,j and the number of
block pixels (m x n), the labels are propagated
from the previous to the current frame
according to the rule:

FG ,if nf; 2 15
BG, ,lfT)ltJ <TFG and 651 = O (6)

Li;'  otherwise

t _
Li; =

where T, represents a threshold that controls
the minimum number of foreground pixels
required to mark a block with the FG label, set
to a value of 0.33.

Once a block is labeled as FG, its label is
persisted as long as the distribution of pixel
color intensities does not exhibit significant
variations between frames. A significant
change in the distribution pushes the label back
to BG if no motion cue is present.

The temporally coherent mask TCM, is
obtained as a binary mask from Lt by scaling it
with a vertical factor of m and a horizontal
factor of n and by replacing the FG and BG
labels with 1 and O values respectively. Figure
2 shows the output of the temporal integration
algorithm on a set of videoconference videos.

In Sequence a, the obtained TCM is accurate
and reflects the real foreground due to the
presence of significant and complementing

19 78 176

Sequence b
o W

motion cues. These motion cues draw their
quality from the fact that the person’s clothing
presents a rich texture on which OF can be
accurately estimated. Even in the case of a
cluttered background and compression artifacts,
the TCM maintains a lock on the FG as it can
be seen in frame #78 when the person turns his
head. In Sequence b the influence of the
saturated background is visible in frame #299
where an added region is present on the left
side of the person. The hand movement creates
a temporary occlusion that causes a hole in the
TCM, but overall the result covers the
foreground well. In Sequence ¢, the
smoothness, lack of color and low reflectivity
of the person’s clothing affects the OF motion
estimation and the unstable statistical model
prevents the TCM from maintaining those areas
in the foreground. In contrast, the participant’s
head is locked onto properly and so are other
regions like the second person in frame #568.
These observations outline the role of the TCM
as a coarse indicator of foreground areas
exposed by motion and an intermediate result
on the path to a pixel-accurate segmentation.

4. A Graph Cut Approach for
Pixel-accurate Segmentation

The final stage of the proposed method
introduces an  unsupervised  graph-cut
segmentation process responsible of
regenerating the foreground starting from the
coarse result represented by the temporally
coherent mask. This stage labels not only
image blocks but every pixel in the image I,
using the predefined label set Q = {BG, FG}.

Sequence ¢

299 268 568

Figure 2. Temporal coherence results on different video sequences. The top row shows the captured frame, the
mid row contains the motion cues and the bottom row shows TCM, applied as a mask on the original frame.
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4.1 The graph cut algorithm

Boykov and Jolly [13] introduced a
segmentation technique that represents the
image as a graph and provided a new min-
cut/max-flow algorithm to segment (or cut) the
graph. The segmentation problem is formulated
as a MAP estimation of a Markov Random
Field that requires the minimization of a
posteriori energy. The pixels in the current
frame correspond to nodes on the graph and the
label space is defined as Q. = {BG, FG}.

Graph edges known as n-links are established
between neighbor pixels. Their weights
represent the pairwise smoothing term in the
energy functional and are defined by a cost
function, B, 4. In the context of binary labeling
two terminal nodes are added, named Source
and Sink. The terminals are linked to each pixel
by weighted edges, called t-links. The relation
between terminal nodes and pixels represents
the unary data term in the energy functional,
describing how pixels fit the foreground and
background color distributions respectively.
The concept is illustrated in Figure 3.

Figure 3. A graph constructed from the image data
with a min-cut/max-flow graph cut.

Considering P the set of pixels in the frame
and V" a neighborhood system represented by a
set of all pairs {p, q} of neighboring elements
in 2, the energy functional that corresponds to
the labeling y of all pixels in the image is:

E(y) = AZpeSD Rp (yp) + Z{p,q}eN Bp,q
8y 2y, )
where 1 is a weighting factor, y,, € Q is the

label of pixel p, R, represents the data term,
By, is the smoothness term and &, ., =
’ 14 q

{1 if Yp F Yq
0 otherwise
that represents pixel interaction potential.

4.1.1 The Data Term t-link

In order to adhere to the real-time requirements
of a videoconferencing system, an intensity
histogram is used to store the pixels’
probability density of color information found
in the image. Although less adapted in case of
color images than a GMM [23], this restriction
is necessary due to performance requirements.
To reduce the impact of color variety and to
improve the t-link’s formulation found in [24]
in respect to handling color images, a
regularization term which is the mean color of
each label has been introduced:

is a Kronecker delta function

_ __InP@lF6)
Rp (FG) N P(ImeanFG|FG) (8)
In P(Ip|BG)
R,(BG) = ———2——
p( G) P(ImeanBG|BG) (9)

with I,, being the color vector for a pixel p
across all image channels.

4.1.2 The Smoothness Term n-link

The n-link models the cohesion between
neighboring pixels, with the purpose of
ensuring that labeling varies smoothly inside
objects but changes at their boundaries [22].
Although the concept of pixel connectivity can
be defined at different levels, the presented
approach refers to the case of 4-connected
neighbor pixels. The B, , term exhibits large
values for similar pixels and close to zero if the
pixels are very different (e.g. at a region
boundary). Its value is expressed as:

_lp=igl? 10
B, . =e 2z -——
Pa=¢ 7 il (10)
where ||.|| represents the vector Euclidian

norm and o is a fixed value that estimates the
video capture noise [24].

4.2 Automatic constraints generation for
the graph cut algorithm

Graph cut is known to produce very accurate
results in applications that rely on interactive
segmentation [13, 25, 26]. In such scenarios,
the user provides two sets of seeds on the
image, O and B (O N B = @), that correspond
to foreground and to background objects
respectively. They act as hard constraints
among all possible segmentations, linking with
infinite-cost t-links any pixel p € 0 to the
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Source and any pixel g € B to the Sink. The
graph-cut algorithm computes the globally
optimal minimum cut and separates the two
terminals. Image pixels that remain connected
to the Source denote the foreground, while the
rest define the background.

The present paper introduces an automated
approach to constraint creation, based on the

information provided by the temporally
coherent mask and the sparse OF.

4.2.1 Foreground Constraints

The process of generating foreground

constraints, illustrated in Figure 4, starts by
finding the locations in the TCM that involve a
high degree of certitude in respect to their
foreground label. In Section 2, the subset ¢ of
sparse OF features was used as a confident
source of control points on moving image
objects. The features exposed by ¢ at a given
moment t in time can be tracked across a larger
time window as part of a bigger set D;, by
applying the following algorithm:
- all features in the subset ¢ are added as
part of the new set Dy;
- all features in ® — ¢ that are located within
ary = 3 pixel radius from a feature in D,_,

are also added to D, in order to account for
features that belong on previously moving
foreground regions, now stationary;

- the features in the newly-formed set D, that
are not labeled as FG in TCM, are eliminated.

Formally, set D can be expressed as:
D —_

, =
pU{fied—o|3fj €Dy |fi - fi| <17} -
{fi € ®|ITCM(f;) = BG} (11)
Features in D, are first candidates for

foreground hard constraints. To extend the set
O and capture even more color information
from the foreground, a Delaunay triangulation
is applied on D,. As the reunion of all 2-
simplices produced by the triangulation gives
the convex hull of set D;, there may be facets
that exceed the boundaries of TCM;. By
eliminating the 2-simplices not included in the
TCM, a subset of triangulation facets is
obtained. The edges of each facet in the subset
are used to build a wireframe inside TCM,. For
every pixel on the wireframe, a seed of radius
1, = 2 pixels is added to O. In order to avoid
overextending the foreground into the
background, seeds that are located too close to

the TCM boundary are eliminated from set O.
This is achieved by constraining them within a
mask TCM, obtained as the erosion of TCM,.

seeds in set O

removed A valid A

TCM, TCM,

Figure 4. Process for generating hard FG constraints
4.2.2 Background Constraints

Background seeds are generated using a drape
model that descends pixel by pixel from the top
row of the current frame, until it reaches the
proximity of TCM; or the bottom row of the
frame. The proximity mask TCM, is obtained
by dilating the TCM over a number of
iterations i = 2 * 1, where r; is the seed radius.
Leaving enough space between the background
and foreground seeds around the TCM border
ensures that the drape does not get too close to
the foreground to adversely affect the accurate
boundary extraction.

At each point where the drape meets TCM,, a
new BG seed of radius r; is added to the set B,
as shown in Figure 5-a. No seeds are added for
drape pixels that reach the bottom row of the
frame, in order to leave room for foreground
expansion. Foreground expansion is required
for cases that involve smooth regions (like the
one shown in Figure 2, Sequence c).

To account for cluttered backgrounds or
background elements with similar color
distributions as the foreground, every j = 3 x 7y
columns a complete line of smaller seeds with
radiuses of r;/2 is added to B, connecting the
top row of the frame with the newly added BG
seed (Figure 5-b).

TCM, TCM,

Figure 5. Automatic creation of background hard
constraints for the graph-cut algorithm
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Figure 6. Foreground extraction results after graph-cut segmentation.

In order to favor the common case where
foreground is mostly located in the middle of
the screen, the top row, the leftmost and the
rightmost columns are by default bordered
with BG seeds (Figure 5-c), as long as those
seeds do not reach TCM,. The aim is to
prevent an uncontrolled foreground expansion
caused by the min-flow/max-cut algorithm,
especially at the start of the sequence when
the TCM is yet incomplete.

4.3 Final segmentation and TCM correction

After applying the graph cut algorithm, the
final foreground mask Y, is given by the pixels
in I, that remain connected to the Source
terminal, as shown in Figure 6.

As the last step in the presented method, the
TCM is corrected by removing the foreground
pixels that are not labeled as FG in Y,. This

eliminates leaking background regions, like
those illustrated in Figure 2, Sequence b, so
that they are not propagated into TCM;., 4.

5. Results and Discussion

5.1 Implementation details

The proposed foreground extraction method
was implemented using the C# programming
language on top of Microsoft .NET 4.0
framework. Additional image processing
support was provided by the Emgu CV 2.2.1
.NET wrappers to the Intel OpenCV image
processing library.

The implementation takes advantage of the
multiprocessor capabilities of the host machine
by exploiting the parallelization support
introduced by the Parallel Extensions of .NET
framework, as illustrated in Figure 7.

[

SPARSE OF ] [

LINK COSTS
ESTIMATION

COMPUTATION

]

DENSE OF
ESTIMATION

| |

REGION 1 REGION 2
PROCESSING PROCESSING

CONCAVE HULL
+BOUNDARY
EXTRACTION

l |

REGION n
PROCESSING

TEMPORAL MOTION
INTEGRATION

HARD CONSTRAINT
GENERATION

A
GRAPH-CUT

Figure 7. Parallel execution paths in the video frame processing pipeline
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5.2 Execution performance

Execution performance was measured on two
different test machines, using a database of test
videos recorded at a resolution of 320 x 240
pixels and 30 FPS, common in most
videoconferencing systems.

The first machine in the test setup was an older
generation laptop equipped with a dual-core
Intel Centrino P8400 CPU and 2 GB RAM,
while the second, a modern desktop, had a
quad-core Intel Core i5 — 2400 CPU and 4 GB
of RAM.

Table 1. Algorithm execution times

CPU Cores | Load FPS (Exec.

time)
Centrino 2 65% | 5.8 (172.4 ms)
P8400

Core i5 - 2400 4 40% | 11.9 (84.0 ms)

The average performance results are listed in
Table 1. As expected, the 4 core CPU is able to
better exploit the parallelization potential
achieving an average FPS of 12. Considering the
managed programming language implementation
and the overhead introduced by the Parallel
Extensions context switching, the results prove
the real-time capabilities of the proposed method
on current generation hardware. Given the
existing GPU implementations of optical flow
estimators [28], active contours [29] and graph-
cuts [30], the method has potential for
significantly faster execution if implemented
using video hardware acceleration.

5.3 Foreground extraction quality assessment

Gelasca and Ebrahimi [20] have proposed a set
of perceptually-driven metrics based on
psychophysical experiments, which enable the
measurement of segmentation quality from a
human perspective. For immersive
conferencing, which falls into a broader group
called mixed reality, their experiments have
shown that the following artifacts have the
most impact on the perceived FG segmentation
quality (in descending order of their annoyance
effect to a human observer): flickering, inside
holes (HI), border holes (HB), added regions
(AR) and added background (AB).

The quality of the extracted foreground was
evaluated using the optimized perceptual
objective metric (PST) from [20], considering

the artifact weights applicable to the mixed
reality scenario. An unsupervised evaluation
was performed on a database of 30 videos
recorded using a chroma key background. By
removing the color keyed component, the
ground truth segmentation is obtained. The
ground truth is overlaid on a background video
sequence and the result is subject to foreground
extraction using the proposed method. The
result is compared frame-by-frame with the
ground truth in order to identify segmentation
artifacts and compute their contribution to the
perceptual objective metric. A total of 10
background video sequences recorded in
various environments and lighting conditions
were used with each chroma key video, for a
total of 300 assessments. The evaluation results
are summarized in Table 2.

Table 2. Perceptual quality indicators for the
proposed foreground extraction method

PSTar | PSTag | PSTH | PSThs | PSTiota

Mean | 0.17 0.69 0.32 0.99 19.79

St.dev | 0.16 0.31 0.25 0.02 5.38

Compared with the results presented in [20],
the proposed method performs better in terms
of overall perceived quality than the top
performers [31, 32] evaluated with the same
metric. Inner holes (HI), the second most
annoying artifact after flickering, present a very
low occurrence, as well as added regions (AR).
This comes from the way hard constraints are
generated for the graph-cut algorithm, as a
clear separation between foreground and
background is achieved. The higher value for
the border holes (HB) metric is partly due to
lack of sufficient motion at the beginning of the
video sequences under test. The ground truth is
instantly available but foreground extraction
requires a sufficient number of motion cues to
reach the same level of completeness. During
this phase, HB artifacts are likely to occur as
false negatives, sometimes in conjunction with
the flickering effect.

6. Conclusions

A new method has been introduced for
foreground extraction in monocular video
streams, with applicability to
videoconferencing systems. Without employing
a priori knowledge in the form of assumptions
or training relative to the scene or the object to
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be segmented, the method relies on the concept
of foreground exposed through motion to
perform the task of foreground extraction. The
approach introduces an incremental way of
building a foreground image from motion cues
and a novel heuristic algorithm for
unsupervised graph-cut segmentation to obtain
pixel-accurate object representations.

Experimental results and quality evaluations
using perceptual objective metrics confirm the
accuracy and the robustness of the approach,
provided that motion is present in the video
stream. The method achieves real-time
performance by exploiting multi-core processor
architectures. Research perspectives include
the topic of initialization in absence of
significant motion and improved statistical
modeling to increase the robustness of temporal
motion integration.
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