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1. Introduction and Related Work 

In the last decade videoconferencing has gained 
a lot of momentum, supported by the 
introduction of fixed and mobile broadband 
Internet and the availability of affordable and 
easy to use video capture hardware. Having 
achieved the desiderate of real-time audio, 
video and document sharing, the next step in 
videoconferencing is to deliver an immersive 
experience by gathering participants into a 
common virtual space that further enhances  
collaboration options [1]. At the root of this 
concept rests the ability of the conferencing 
system to accurately extract foreground 
information from each incoming video stream 
and use it to populate the virtual space which is 
shared with all participants. The perceived 
quality of foreground segmentation represents a 
key aspect for achieving a true immersive 
experience, further accentuated by the fact that 
foreground segmentation is in itself an ill-posed 
problem [2]. The implementation of an 
immersive videoconferencing system must 
therefore rely on a real-time, automatic 
foreground extraction algorithm, capable of 
handling monocular video sequences that may 
exhibit illumination changes, multimodal and 

cluttered backgrounds, camera noise and video 
compression artifacts. 

Foreground / background segmentation has 
been an active research area of video sequence 
processing, with many algorithms and methods 
being developed [3-6]. The most accurate 
results are obtained by methods that rely on 
dedicated setups involving stereoscopic [7] or 
multiple cameras [8, 9]. While highly robust, 
these methods are not feasible for common 
videoconferencing scenarios which use off-the-
shelf or integrated monocular webcams. 

In the field of monocular object segmentation, 
the majority of encountered algorithms rely on 
background subtraction [4] based on an empty 
image of the scene provided during the 
initialization stage. In [10] the foreground layer 
is extracted by combining background 
subtraction with color and contrast cues. The 
key concept revolves around background 
contrast attenuation, which reduces contrast in 
the background layer while preserving it 
around object boundaries. The method 
proposed in [11] uses a known and stationary 
background image and a frontal human body 
detector in order to perform an initial 
segmentation of the person in the scene. The 
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result is subject to a coarse to fine segmentation 
process [12] that relies on a GMM model of 
foreground and background pixels to provide 
the input for an unsupervised graph cut 
segmentation [13, 14]. In addition, a self-
adaptive initialization level sets scheme is 
applied in order to find the most salient edges 
along the person’s contour. The major 
drawback of these otherwise accurate methods 
is the requirement for an initial clean 
background image. This cannot be satisfied in 
videoconference scenarios, since people are 
usually in the scene starting from the first 
frame and the number of potential backgrounds 
is virtually infinite. 

Another approach is to replace the need for an 
initial background image with a learning model 
trained using manually labeled video 
sequences. Criminisi et al. [15] have adapted 
stereoscopic approaches to monocular video by 
using a probabilistic framework to fuse motion, 
color and contrast cues with spatio-temporal 
(S-T) priors generated during training phase. 
The accuracy of this method is similar to the 
one in [7], except for cases when foreground 
color distribution resembles the one in the 
background or when there is insufficient 
motion. Further improvements described in 
[16] have replaced the Hidden Markov Model 
with tree-based classifiers trained on ground-
truth segmentations that imitate depth masks 
used in stereoscopic vision. The classifiers 
operate on motion information encoded in the 
form of motons (motion descriptors similar to 
textons, which encode texture information). 
This method allows a better segmentation of 
the foreground which is closest to the camera, 
being able to discard background motion. 
Despite their relatively high accuracy, both 
methods can be prohibitive due to the need to 
calibrate the learned priors for different types 
of scenes using manually labeled sequences.  

A third way of addressing the foreground 
segmentation problem takes the form of 
constraints placed on the nature and position of 
foreground objects. Kim et al. [17, 18] propose 
an algorithm which targets the part of the 
MPEG-4 standard related to object-based video 
compression and handling. The algorithm 
performs S-T motion segmentation by 
combining a low-complexity spatial technique 
with a marker extraction and update process 
followed by a region growing phase. The low 
complexity and relative accuracy of the 
approach makes it suitable for use in mobile 

devices, but the a priori assumption that the 
foreground object is placed in the center of the 
frame limits the number of applicable 
scenarios. For videoconferencing, segmentation 
needs to take into account extra movements, 
other than only those related to head and torso. 
For example, the system must handle cases in 
which a person uses hand gestures and body 
language in order to support the presentation of 
a topic or to show an exhibit. 

The foreground extraction method proposed in 
the present paper eliminates the need for initial 
training as well as any a priori assumptions or 
knowledge related to the nature of the observed 
scene. Starting from accurate motion cues 
obtained through aggregation of dense and 
sparse optical flow information [19], the system 
builds a temporally coherent mask (TCM) of 
foreground detected through motion. The 
temporal coherence of the mask in absence of 
motion is achieved through the use of image 
statistics, similar to other methods encountered 
in the state-of-the-art [3, 18]. To obtain the 
final pixel-accurate segmentation, a heuristic 
approach combines the TCM and sparse optic 
flow information in order to generate the hard 
foreground and background constraints for a 
graph-cut algorithm. The accuracy and 
reliability of the obtained results are evaluated 
using the state-of-the-art perceptual objective 
metric described in [20]. The proposed 
approach supports parallelization, enabling it to 
achieve real-time execution capabilities. 

2.  Optical Flow-based  
Motion Segmentation 

The motion detection and segmentation part of 
the proposed method uses the algorithm 
described by the authors in [19], based on the 
aggregation of dense and sparse optic flow 
(OF) information. This approach is capable of 
producing accurate results while ensuring 
resilience to noise and compression artifacts.  

The algorithm comports three steps, as follows:  

1. identifying a set ߮ of control points on 
moving objects from the set Φ of sparse OF 
features computed between the edge 
images of two consecutive frames; 

2. computing the concave hull ࣝ௜ of moving 
objects from the set ߮ of control points and 
dense OF information ܴ௜; 

3. determining the accurate boundary ࣝ௜
ௌ of 
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each moving region using an active contour 
initialized from the concave hull. 

The result, shown in Figure 1, is an accurate 
representation of the silhouette of each moving 
object in the current frame. The accuracy is 
higher for large objects that are characterized 
by a higher number of control points. This 
matches the case of videoconferencing 
applications, where participants occupy a 
significant part of the scene.  

 

Figure 1. Concave hull and accurate boundary 
extraction for moving objects 

3.  Temporal Aggregation of 
Detected Movement 

At each moment ݐ relative to the beginning of 
the video sequence, a binary foreground mask 
௧ܯ

ி is generated as a reunion of the bodies of 
all contours ࣝ௜

ௌ generated by the motion 
segmentation algorithm. This motion cue 
exposes a part of the real foreground and is 
valid only at the time ݐ of its creation. In order 
to obtain a coherent foreground mask over a 
longer, ideally indefinite time frame, a method 
is required to integrate all motion cues 
ሼܯଵ

ி, ଶܯ
ி, … ௧ܯ

ிሽ into a single temporally 
coherent mask, defined as: 

௧ܯܥܶ ؔ ࣠ሺܯ௜
ி, ݅ ൌ 1. .  തതതതതሻ (1)ݐ

In an ideal case where, at any given moment ݐ, 
 ௧ is free of false positives and contains theܯܥܶ
up-to-date positions of all pixels that were 
exposed by at least one motion cue ܯ௜

ி, ݅ ൑  ,ݐ
the formula can be expressed recursively: 

௧ܯܥܶ ؔ ࣠ሺܶܵܯ௧ିଵ, ௧ܯ
ிሻ (2). 

The temporal coherence approach introduced in 
the present article assumes that once an image 
region is exposed as foreground by a certain 
motion cue ܯ௜

ி, it will remain labeled as such 
in all ܶܯܥ௧ஹ௜ until sufficient evidence is 
obtained to prove otherwise. This evidence 
comes from image statistics, in the form of a 
similarity measure. 

3.1 Statistical Indicators for Foreground 
Labeling and Persistence 

Image statistics are computed using a block-
based approach, which offers higher robustness 
against noise and lighting changes [3]. The 
image plane of ܫ௧ is divided into equally-sized 
blocks of ݉ ൈ ݊ pixels for a total of ࣧ ൈ ࣨ 
blocks, and for each channel the pixel color 
information is modeled as a normal distribution: 

,௜,௝,௖ߤ௜,௝,௖~ࣨሺܭ ଶߪ
௜,௝,௖ሻ (3) 

where ݅, ݆ are the block coordinates and ܿ is the 
color channel index. ߤ and ߪଶ denote the mean 
and respectively the variance of the pixel color 
intensities inside the block. 

Next, a similarity measure is defined between 
two block models. This measure indicates if the 
color information in a block has changed 
enough to trigger a change from foreground to 
background status. Formally, the measure is 
expressed as: 

,ଵܭሺߜ ଶሻܭ ൌ ൜
1 , ݂݅ ݀ሺܭଵ, ଶሻܭ ൏ ߬ௗ 
0 , ݁ݏ݅ݓݎ݄݁ݐ݋

  (4) 

where ݀ is a distance function between two 
Gaussian kernels and ߬ௗ is a threshold which 
depends on the chosen distance function ݀.  

In the context of the presented algorithm, ݀ was 
substituted with the Hellinger distance 
,ଵܭሺܪ  ଶሻ [21], which produces a result in theܭ
ሾ0, 1ሿ domain. A distance close to 0 indicates a 
high degree of similarity between two 
probability distributions, while a value of 1 
means total dissimilarity. 

Considering two consecutive frames ܫ௧ିଵ and ܫ௧ 
in the RGB color space, the similarity measure 
between two corresponding image blocks 
located at coordinates ݅, ݆ can be expressed as: 

௜,௝ߜ
௧ ൌ

൜
1 , ݂݅ max௖אሼோ,ீ,஻ሽ ௜,௝,௖ܭሺܪ

௧ିଵ, ௜,௝,௖ܭ
௧ ሻ ൏ ߬ௗ 

0 , ݁ݏ݅ݓݎ݄݁ݐ݋
 (5) 

When ߜ௜,௝
௧ ൏ ߬ௗ, block labeling persistence in 

achieved, otherwise the previous block label is 
invalidated. The distance threshold in case of 
using the Hellinger distance has been 
determined experimentally as ߬ௗୀு ൌ 0.7. 

3.2 Temporal Integration Algorithm 

Each block carries a label ܮ௜,௝
௧  which can take 

values in the ሼܩܤ,  ሽ domain. At the initialܩܨ

ܴ݅  ݂ א ߮  ࣝ݅
݅ࣝ ݏ   segmented object 
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moment ݐ ൌ 0, all blocks are assigned by 
default a BG label. 

At each given moment ݐ ൐ 0, a block is labeled 
as FG if the motion cue ܯ௧

ி exposes a 
significant number of foreground pixels in the 
block. Considering ߟ௜,௝

௧  as the ratio between the 
number of foreground pixels exposed by the 
motion cue in block ݅, ݆ and the number of 
block pixels (݉ ൈ ݊), the labels are propagated 
from the previous to the current frame 
according to the rule: 

௜,௝ܮ
௧ ൌ ൞

,    ܩܨ ௜,௝ߟ ݂݅
௧ ൒ ߬ிீ

,   ,ܩܤ ௜,௝ߟ ݂݅
௧ ൏ ߬ிீ ܽ݊݀ ߜ௜,௝

௧ ൌ 0 

௜,௝ܮ
௧ିଵ  , ݁ݏ݅ݓݎ݄݁ݐ݋

 (6) 

where ߬ிீ  represents a threshold that controls 
the minimum number of foreground pixels 
required to mark a block with the FG label, set 
to a value of 0.33. 

Once a block is labeled as FG, its label is 
persisted as long as the distribution of pixel 
color intensities does not exhibit significant 
variations between frames. A significant 
change in the distribution pushes the label back 
to BG if no motion cue is present.  

The temporally coherent mask ܶܯܥ௧ is 
obtained as a binary mask from ܮ௧ by scaling it 
with a vertical factor of ݉ and a horizontal 
factor of ݊ and by replacing the FG and BG 
labels with 1 and 0 values respectively. Figure 
2 shows the output of the temporal integration 
algorithm on a set of videoconference videos. 

In Sequence a, the obtained TCM is accurate 
and reflects the real foreground due to the 
presence of significant and complementing 

motion cues. These motion cues draw their 
quality from the fact that the person’s clothing 
presents a rich texture on which OF can be 
accurately estimated. Even in the case of a 
cluttered background and compression artifacts, 
the TCM maintains a lock on the FG as it can 
be seen in frame #78 when the person turns his 
head. In Sequence b the influence of the 
saturated background is visible in frame #299 
where an added region is present on the left 
side of the person. The hand movement creates 
a temporary occlusion that causes a hole in the 
TCM, but overall the result covers the 
foreground well. In Sequence c, the 
smoothness, lack of color and low reflectivity 
of the person’s clothing affects the OF motion 
estimation and the unstable statistical model 
prevents the TCM from maintaining those areas 
in the foreground. In contrast, the participant’s 
head is locked onto properly and so are other 
regions like the second person in frame #568. 
These observations outline the role of the TCM 
as a coarse indicator of foreground areas 
exposed by motion and an intermediate result 
on the path to a pixel-accurate segmentation. 

4. A Graph Cut Approach for 
Pixel-accurate Segmentation 

The final stage of the proposed method 
introduces an unsupervised graph-cut 
segmentation process responsible of 
regenerating the foreground starting from the 
coarse result represented by the temporally 
coherent mask. This stage labels not only 
image blocks but every pixel in the image ܫ௧, 
using the predefined label set Ω ൌ ሼܩܤ,  .ሽܩܨ

 

Figure 2. Temporal coherence results on different video sequences. The top row shows the captured frame, the 
mid row contains the motion cues and the bottom row shows ࢚ࡹ࡯ࢀ applied as a mask on the original frame. 

Sequence a Sequence b Sequence c 
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Source and any pixel ݍ א ࣜ to the Sink. The 
graph-cut algorithm computes the globally 
optimal minimum cut and separates the two 
terminals. Image pixels that remain connected 
to the Source denote the foreground, while the 
rest define the background. 

The present paper introduces an automated 
approach to constraint creation, based on the 
information provided by the temporally 
coherent mask and the sparse OF. 

4.2.1 Foreground Constraints 

The process of generating foreground 
constraints, illustrated in Figure 4, starts by 
finding the locations in the TCM that involve a 
high degree of certitude in respect to their 
foreground label. In Section 2, the subset ߮ of 
sparse OF features was used as a confident 
source of control points on moving image 
objects. The features exposed by ߮ at a given 
moment ݐ in time can be tracked across a larger 
time window as part of a bigger set ࣞ௧, by 
applying the following algorithm: 

- all features in the subset ߮ are added as 
part of the new set ࣞ௧; 

- all features in Φ െ ߮ that are located within 
a ݎ௙ ൌ 3 pixel radius from a feature in ࣞ௧ିଵ 
are also added to ࣞ௧ in order to account for 
features that belong on previously moving 
foreground regions, now stationary; 

- the features in the newly-formed set ࣞ௧ that 
are not labeled as FG in ܶܯܥ௧ are eliminated.  

Formally, set ࣞ can be expressed as: 

௧ܦ ൌ
߮ ׫ ൛ ௜݂ א Φ െ ߮ห׌ ௝݂ א ,௧ିଵܦ ห ௜݂ െ ௝݂ห ൏ ௙ൟݎ െ
ሼ ௜݂ א Φ|ܶܯܥ௧ሺ ௜݂ሻ ൌ  ሽ  (11)ܩܤ

Features in ࣞ௧ are first candidates for 
foreground hard constraints. To extend the set 
ࣩ and capture even more color information 
from the foreground, a Delaunay triangulation 
is applied on ࣞ௧. As the reunion of all 2-
simplices produced by the triangulation gives 
the convex hull of set ࣞ௧, there may be facets 
that exceed the boundaries of ܶܯܥ௧. By 
eliminating the 2-simplices not included in the 
TCM, a subset of triangulation facets is 
obtained. The edges of each facet in the subset 
are used to build a wireframe inside ܶܯܥ௧. For 
every pixel on the wireframe, a seed of radius 
௦ݎ ൌ 2 pixels is added to ࣩ. In order to avoid 
overextending the foreground into the 
background, seeds that are located too close to 

the TCM boundary are eliminated from set ࣩ. 
This is achieved by constraining them within a 
mask ܶܯܥෛ௧ obtained as the erosion of ܶܯܥ௧. 

 
Figure 4. Process for generating hard FG constraints 

4.2.2 Background Constraints 

Background seeds are generated using a drape 
model that descends pixel by pixel from the top 
row of the current frame, until it reaches the 
proximity of ܶܯܥ௧ or the bottom row of the 
frame. The proximity mask ܶܯܥ෣௧ is obtained 
by dilating the TCM over a number of 
iterations ݅ ൌ 2 כ  .௦ is the seed radiusݎ ௦, whereݎ
Leaving enough space between the background 
and foreground seeds around the TCM border 
ensures that the drape does not get too close to 
the foreground to adversely affect the accurate 
boundary extraction.   

At each point where the drape meets ܶܯܥ෣௧, a 
new BG seed of radius ݎ௦ is added to the set ࣜ, 
as shown in Figure 5-a. No seeds are added for 
drape pixels that reach the bottom row of the 
frame, in order to leave room for foreground 
expansion. Foreground expansion is required 
for cases that involve smooth regions (like the 
one shown in Figure 2, Sequence c).  

To account for cluttered backgrounds or 
background elements with similar color 
distributions as the foreground, every ݆ ൌ 3 כ  ௦ݎ
columns a complete line of smaller seeds with 
radiuses of ݎ௦/2 is added to ࣜ, connecting the 
top row of the frame with the newly added BG 
seed (Figure 5-b). 

 

Figure 5. Automatic creation of background hard 
constraints for the graph-cut algorithm 

ݐܯܥܶ  

݂ א ߮ ݂ א Φ െ ߮  removed ∆ valid ∆  seeds in set ࣩ 

ݐෛܯܥܶ  

ݐ෣ܯܥܶ ݐܯܥܶ 

(c)
(b)

(a)
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In order to favor the common case where 
foreground is mostly located in the middle of 
the screen, the top row, the leftmost and the 
rightmost columns are by default bordered 
with BG seeds (Figure 5-c), as long as those 
seeds do not reach ܶܯܥ෣௧. The aim is to 
prevent an uncontrolled foreground expansion 
caused by the min-flow/max-cut algorithm, 
especially at the start of the sequence when 
the TCM is yet incomplete. 

4.3 Final segmentation and TCM correction 

After applying the graph cut algorithm, the 
final foreground mask ௧ࣳ is given by the pixels 
in ܫ௧ that remain connected to the Source 
terminal, as shown in Figure 6. 

As the last step in the presented method, the 
TCM is corrected by removing the foreground 
pixels that are not labeled as FG in ௧ࣳ. This 

eliminates leaking background regions, like 
those illustrated in Figure 2, Sequence b, so 
that they are not propagated into ܶܯܥ௧ାଵ. 

5. Results and Discussion 

5.1 Implementation details 

The proposed foreground extraction method 
was implemented using the C# programming 
language on top of Microsoft .NET 4.0 
framework. Additional image processing 
support was provided by the Emgu CV 2.2.1 
.NET wrappers to the Intel OpenCV image 
processing library.  

The implementation takes advantage of the 
multiprocessor capabilities of the host machine 
by exploiting the parallelization support 
introduced by the Parallel Extensions of .NET 
framework, as illustrated in Figure 7. 

 

Figure 6. Foreground extraction results after graph-cut segmentation.  

 

Figure 7. Parallel execution paths in the video frame processing pipeline 
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5.2 Execution performance 

Execution performance was measured on two 
different test machines, using a database of test 
videos recorded at a resolution of 320 x 240 
pixels and 30 FPS, common in most 
videoconferencing systems. 

The first machine in the test setup was an older 
generation laptop equipped with a dual-core 
Intel Centrino P8400 CPU and 2 GB RAM, 
while the second, a modern desktop, had a 
quad-core Intel Core i5 – 2400 CPU and 4 GB 
of RAM. 

Table 1. Algorithm execution times 

CPU Cores Load FPS (Exec. 
time) 

Centrino 
P8400 

2 65% 5.8 (172.4 ms) 

Core i5 – 2400 4 40% 11.9 (84.0 ms) 

The average performance results are listed in 
Table 1. As expected, the 4 core CPU is able to 
better exploit the parallelization potential 
achieving an average FPS of 12. Considering the 
managed programming language implementation 
and the overhead introduced by the Parallel 
Extensions context switching, the results prove 
the real-time capabilities of the proposed method 
on current generation hardware. Given the 
existing GPU implementations of optical flow 
estimators [28], active contours [29] and graph-
cuts [30], the method has potential for 
significantly faster execution if implemented 
using video hardware acceleration. 

5.3 Foreground extraction quality assessment 

Gelasca and Ebrahimi [20] have proposed a set 
of perceptually-driven metrics based on 
psychophysical experiments, which enable the 
measurement of segmentation quality from a 
human perspective. For immersive 
conferencing, which falls into a broader group 
called mixed reality, their experiments have 
shown that the following artifacts have the 
most impact on the perceived FG segmentation 
quality (in descending order of their annoyance 
effect to a human observer): flickering, inside 
holes (HI), border holes (HB), added regions 
(AR) and added background (AB).  

The quality of the extracted foreground was 
evaluated using the optimized perceptual 
objective metric (PST) from [20], considering 

the artifact weights applicable to the mixed 
reality scenario. An unsupervised evaluation 
was performed on a database of 30 videos 
recorded using a chroma key background. By 
removing the color keyed component, the 
ground truth segmentation is obtained. The 
ground truth is overlaid on a background video 
sequence and the result is subject to foreground 
extraction using the proposed method. The 
result is compared frame-by-frame with the 
ground truth in order to identify segmentation 
artifacts and compute their contribution to the 
perceptual objective metric. A total of 10 
background video sequences recorded in 
various environments and lighting conditions 
were used with each chroma key video, for a 
total of 300 assessments. The evaluation results 
are summarized in Table 2. 

Table 2. Perceptual quality indicators for the 
proposed foreground extraction method 

 PSTAR PSTAB PSTHI PSTHB PSTtotal 

Mean 0.17 0.69 0.32 0.99 19.79 

St.dev 0.16 0.31 0.25 0.02 5.38 

Compared with the results presented in [20], 
the proposed method performs better in terms 
of overall perceived quality than the top 
performers [31, 32] evaluated with the same 
metric. Inner holes (HI), the second most 
annoying artifact after flickering, present a very 
low occurrence, as well as added regions (AR). 
This comes from the way hard constraints are 
generated for the graph-cut algorithm, as a 
clear separation between foreground and 
background is achieved. The higher value for 
the border holes (HB) metric is partly due to 
lack of sufficient motion at the beginning of the 
video sequences under test. The ground truth is 
instantly available but foreground extraction 
requires a sufficient number of motion cues to 
reach the same level of completeness. During 
this phase, HB artifacts are likely to occur as 
false negatives, sometimes in conjunction with 
the flickering effect. 

6. Conclusions 

A new method has been introduced for 
foreground extraction in monocular video 
streams, with applicability to 
videoconferencing systems. Without employing 
a priori knowledge in the form of assumptions 
or training relative to the scene or the object to 
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be segmented, the method relies on the concept 
of foreground exposed through motion to 
perform the task of foreground extraction. The 
approach introduces an incremental way of 
building a foreground image from motion cues 
and a novel heuristic algorithm for 
unsupervised graph-cut segmentation to obtain 
pixel-accurate object representations. 

Experimental results and quality evaluations 
using perceptual objective metrics confirm the 
accuracy and the robustness of the approach, 
provided that motion is present in the video 
stream. The method achieves real-time 
performance by exploiting multi-core processor 
architectures.  Research perspectives include 
the topic of initialization in absence of 
significant motion and improved statistical 
modeling to increase the robustness of temporal 
motion integration. 
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