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1. Introduction 

This article is motivated because there is only a 
polynomial time algorithm for finding an 
optimally efficient set in an arbitrary graph, and 
we determine it directly for special classes of 
graphs. Also, in [13] domination and 
irredundance parameters for some graphs have 
been extensively studied. For a survey see [9]. 

The efficiency of a set S ⊆ V in a graph 
G=(V,E), is defined as ε(S) = |{v ∈ V −S: 
|N(v)∩ S| = 1}|. The efficiency of a graph, 
denoted ε(G), is defined to equal the maximum 
efficiency of a set S ⊆ V in G [3]. A dominating 
set for a graph G = (V, E) is a subset D of V such 
that every vertex not in D is joined to at least 
one member of D by some edge. That is, a set D 
is a dominating set if |N[v] ∩ D| ≥ 1 for all 
vertices v in V (G). The domination number 
γ(G) is the number of vertices in the smallest 
dominating set of G. A subset S  V (G) is 
called a k -packing, if for any two distinct 
vertices u, v in S , we have d(u, v) > k. A set S 
is a closed neighborhood packing if for each u, 
v   S , u  v we have  N[u]∩N[v] =  . That is, 
a set S is a closed neighborhood packing if 
|N[v] ∩ S| ≤ 1 for all vertices v V (G). The 
packing number ρ(G) is the size of the largest 
closed neighborhood packing. For all graphs G, 
1 ≤ ρ(G) ≤ n . The only graphs with ρ(G) = n 
are graphs with no edges. 

A dominating set S is called a perfect 
dominating set if every vertex v ∈ V − S is 
adjacent to exactly one vertex in S [4]. A 
dominating set is said to be an efficient 
dominating set if for every vertex v ∈ V , 

|N[v] ∩ S| = 1 [1]. The efficient domination 
number of a graph, denoted F(G), is the 
maximum number of vertices that can be 
dominated by a set S that dominates each 
vertex at the most once. A graph G of order n = 
|V (G)| has an efficient dominating set if and 
only if F(G) = n. 

A graph is efficient if and only if there exists an 
efficient dominating set. That is, a graph is 
efficient if and only if there exists a set S which 
is both dominating and a closed    
neighborhood packing. 

If a graph G is efficient, then ρ(G) = γ(G) [12] . 

The influence of S is defined in [8] to be 

I(S) =   
 


Sv Sv

vvN )deg(1}[ ,  

where deg(v) = |N(v)|, the cardinality of the 
open neighborhood of v.  

Thus, the efficient domination number of a 
graph G is F(G)=max{I(S): S is a 

packing}=max{



Sv

v))deg(1(  

)(: GVS  and u, v   S implies d(u, v) 
 3} . An F(G) -set S is a set that is both a 
packing and I(S) = F(G) . 

A set S is called open irredundant if for every 
vertex u ∈ S there exists a vertex v ∈ V − S 
for which N(v)∩ S = {u}, in which case we say 
that u efficiently dominates v [7].  The upper 
open irredundance number, denoted OIR(G), 
equals the maximum number of vertices in an 
open irredundant set. Thus, OIR(G) equals the 
maximum number of vertices that can 
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simultaneously and successfully broadcast a 
message in an Ethernet graph.  

By contrast, the efficiency of a graph G equals 
the maximum number of vertices that can 
simultaneously receive a broadcast message in 
an Ethernet graph. 

A set S is optimally efficient if two conditions 
are met: (i) for every vertex v ∈ V − S, ε(S ∪ 
{v}) ≤ ε(S), and (ii) for every vertex u ∈ S, ε(S 
− {u}) < ε(S). 

In a network, the communication is said to be 
"confidential" if a message can be passed 
between any two vertices, without being 
intercepted by a third vertex. In the language of 
graph theory, this property stands for 
confidential connectivity. 

There exists a polynomial time algorithm for 
finding an optimally efficient set in an arbitrary 
graph [10]. 

We determine directly the optimally efficient 
sets in confidentially connected graphs and 
unbreakable graphs. 

Such communications are shown in [11]. 

2.   Notations and  
Fundamental Definitions 

Throughout this paper, G=(V,E) is a simple 
(i.e. finite, undirected, without loops and 
multiple edges) graph [2]. Let co- GG   
denote the complement graph of G. For UV 
let G(U) denote the subgraph of G induced by 
U. By G-X we mean the graph G(V-X), 
whenever XV, but we often denote it simply 
by G-v ( v V) when there is no ambiguity. 
If vV is a vertex in G, the neighborhood 
NG(v)  denotes the vertices of G-v that are 

adjacent to v. We write N(v) when the graph G 
appears clearly from the context. The 
neighborhood of the vertex v in the 
complement of the graph G is denoted by 

)(vN . For any subset S of vertices in the graph 

G the neighborhood of S is 
SvNSN Sv   )()(  and N[S]=SN(S). 

A clique is a subset of V with the property that 
all the vertices are pairwise adjacent. The 
clique number (density) of G, denoted by 
 (G) is the cardinal of the maximum clique. A 
clique cover is a partition of the vertices set 
such that each part is a clique.  (G) is the 

cardinal of a smallest possible clique cover of 
G; it is called the clique cover number of G. A 
stable (or independent) set is a subset of V with 
the property that all the vertices are pairwise 
non-adjacent. The stability number of G is 
 (G)= )(G ; the chromatic number of G is 

 (G)= )(G . 

By Pn, Cn, Kn we mean a chordless path on 

n 3 vertices, the chordless cycle on n 3 
vertices, and the complete graph on n 1 
vertices. If e=xyE, we also denote x~y; we 
also denote x≁y whenever x, y are not adjacent 
in G. A set A is totally adjacent (non adjacent) 

with a set B of vertices (A B= ) if ab is (is 
not) edge, for any a vertex in A and any b 
vertex in B; we note denote A~B (A≁B). A 
graph G is F-free if none of its induced 
subgraphs is in F.  

The subset AV is called a cutset if G-A is 
not connected. If, in addition, none of the 
proper subsets of A is a cutset, then A is called 
a minimal cutset. The distance between any 
two vertices u, v ∈ V (G), denoted by d(u, v) , 
is the length of the shortest path from u to v.  

The paper is organized as follows. In Section 3 
we give preliminary results. In Section 4 we 
give the results concerning confidentially 
connected graphs and unbreakable graphs. 

3. Preliminary Results 

At first, we recall the notion of a                 
weak component. 

Definition 1. ([14], [15], [16]) A set AV(G) 
is called a weak set of the graph G if 

AGVANG  )()(  and G(A) are connected. 

If A is a weak set, maximal with respect to set 
inclusion, then G(A) is called a weak 
component. For simplicity, the weak component 
G(A) will be denoted by A. 

Definition 2. ([14], [15], [16]) Let G=(V,E) be 
a connected and non-complete graph. If A is a 
weak set, then the partition {A,N(A),V-
AN(A)} is called a weak decomposition of G 
with respect to A. 

The name of "weak component" is justified by 
the following result. 
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Theorem 1. ([14],[15],[16]) Every connected 
and non-complete graph G=(V,E) admits a 
weak component A such that  

))(()(()( ANGANGAVG  . 

Theorem 2. ([14], [15], [16]) Let G=(V,E) be a 
connected and non-complete graph and AV. 
Then A is a weak component of G if and only if 

G(A) is connected and )(~)( ANAN .  

The next result, based on Theorem 1, ensures 
the existence of a weak decomposition in a 
connected and non-complete graph. 

Theorem 3. If G=(V,E) is a connected and 
non-complete graph, then V admits a weak 
decomposition (A,B,C), such that G(A) is a 
weak component and  

G(V-A)=G(B)+G(C). 

Theorem 2 provides an O(n+m) algorithm for 
building a weak decomposition for a non-
complete and connected graph. 

Algorithm for the weak decomposition of 
a graph ([14], [16])  

Input: A connected graph with at least two 
nonadjacent vertices, G=(V,E).  

Output: A partition V=(A,N,R) such that G(A) is 

connected, N=N(A), A≁ )(ANR  .  

4. The Results Concerning 
Confidentially Connected Graphs 
and Unbreakable Graphs 

4.1 Basic properties  

In a network, the communication is said to be 
"confidential" if a message can be passed 

between any two vertices, without being 
intercepted by a third vertex. In the language of 
graph theory, this property stands for 
confidential connectivity. 

At first, we recall the notions of weakly 
component and weakly decomposition. 

Definition 3. ([14], [5], [6]) A graph 
),(= EVG  with at least three vertices is 

called confidentially connected if 
3),,( Vcba   three distinct vertices, there 

exists P  an ba, -path in G  such that 

},{)(][ baPVcN  . 

The confidential connectivity property can be 
translated as follows: every two vertices are 
joined by a path whose intersection with the 
neighborhood of any other third vertex is either 
empty or an extremity or both extremities of 
the path, that is 

3),,( Vcba  : },{)(][ baPVcN ab  . 

A new characterization of confidentially 
connected graphs, using weakly decomposition, 
is given below. Some similar results are stated 
in [14]. 

Theorem 4. A connected and non-complete 
graph ),(= EVG  is confidentially connected 

if and only if )(GVv ,  GvN ])([  is  a 

weakly component. 

Proof. Let G  be a confidentially connected 
graph and Vv . Because 

))((=)( vNNvN , }{=))(( vvNN  and 

)(~}{ vNv  follow as ))((~))(( vNNvNN . 

Because GvN )]([  is connected follow as 

GvN )]([  is a weakly component of G.  Let A 

 begin  

         A := any set of vertices such that A N(A) V  

        N:=N(A)  

        R:=V-A N(A)  

        while ( nN,   rR such that nrE ) do  

               begin  

                       A:=A {n}  

                      N:=(N-{n})  (N(n) R)  

                      R:=R-(N(n)  R)  

               end 

          end  
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be a weakly component of G. Considering the 
weakly decomposition procedure applied of G 
with A the weakly component, in [10] follows 
that R has a single element. So any weakly 
component is non-neighborhood a vertex. 

Vice versa. Let Vv  with GvN )]([  weakly 

component. Because GvN )]([  is weakly 

component follows as GvN )]([  is connected. 

Because a weakly component is maximal with 
respect to set inclusion, for any two distinct 
vertices, their non-neighborhoods are not 
comparable. If there are two distinct vertices 
that are the extremities of an edge in G, with 
their neighborhoods comparable, then their 
non-neighborhoods would be comparable also, 
thereby contradicting the above remark. In [14] 
follows that G is confidentially connected.    

Theorem 5 [14]. A connected and non-
complete graph G = (V;E) is unbreakable if 

and only if GvN ])([  is a weak component of G 

for v in V and  
G

vN ])([  is a weak component 

of G . 

Definition 4. A graph G is called minimal 
unbreakable if G is unbreakable and none of its 
proper induced subgraphs is unbreakable. 

Theorem 6 [14]. G is minimal unbreakable if 

and only if G is kC  or kC  for some k>=5. 

4.2 The determination of the optimally 
efficient sets 

In this section we give two results that lead to 
the determination of an optimally efficient set 
and open irredundant in particular classes        
of graphs. 

Theorem 7. Let G=(V,E) be a connected and 
non-complete graph. If G is confidentially 
connected graphs, the set S={v}, for v in V with 
maxim degree, is an optimally efficient, open 
irredundant,  closed neighborhood packing set 
and the influence of S is the maxim degree of G. 

Proof. Let S={v}, Vv . We obtain 
 (S)=degG(v)= the degree of v. We rank the 
vertices after degrees. We obtain 

)()( GG   = the maximum degree of G. 
Clearly, S={v0}, is open irredundant. Let 
S={v0} such that )()( GS   . Then 

SVw  , )(}{( SwS   . Because 

Su , )(}){(0 SuS   , because G, 
being connected, has no isolated vertices. So, 
S={v0} is an optimally efficient set. S={v0} is 
a closed neighborhood packing set, because  

)(,0}{][ 00 vNavaN  ,  

)(,1}{}{][ 000 vNnvvnN  .  

)(})({ 0 GvI  . 

Calculating   and finding a vertex of maxim 
degree, Theorem 7 leads to a O (n) algorithm 
for determining the optimally efficient set, open 
irredundant set, closed neighborhood packing 
set in a confidentially connected graph.  

From Theorem 5 and Theorem 7 follows: 

Corollary 1. Let G=(V,E) be a connected and 
non-complete graph. If G is unbreakable, the 
set S={v}, for v in V with maxim degree and set 
T={w}, for w in V with minim degree, is an 
optimally efficient, open irredundant, closed 
neighborhood packing set, the influence of S is 
the maxim degree of G and  the influence of T 
is the minim degree of G. 

Calculating  and   (the maximum degree of 
G) and finding a vertex of maxim degree and  a 
vertex of minimum degree, Corollary 1 leads to 
a O (n) algorithm for determining the optimally 
efficient set, open irredundant set, closed 
neighborhood packing set in a is unbreakable 
graph.  

Theorem 8. Let G=(V,E) be a connected and 
non-complete graph with n vertices. If G is  
minimal unbreakable then the set 

 S={3k+1| 2
3

30 




n

k }  

 is an optimally efficient set, open irredundant 
set, closed neighborhood packing set  in G or 

in G . 

Proof. If G is minimal unbreakable then G is 

nC  or nC . Let V(G)={1,2,…,n} be such that, 

taking any two consecutive vertices that are 
adjacent, we obtain that  

}2
3

3,...,4,1{ 




n

S  
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is an optimally efficient set. Indeed, the vertices 
in V-S have exactly one neighbor in S, 






3

)(
n

nSVS , clearly  

SVvSvS  ),(}{(  ,  

SuSuS  ),(}){(  .  

Because ,Su  SVu  1  such that 

}{)1( uSuN   follow S is open 
irredundant set. Because 

VvSvN  ,1][  follow S is closed 

neighborhood packing set. 

5. Conclusions and Future Work 

In this paper we determine the optimally 
efficient sets in confidentially connected graphs 
and unbreakable graphs.. Our future work will 
determine the optimally efficient sets in other 
classes of graphs. 
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