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1. Introduction 

The use of the computer simulation not only in 
the control engineering grows rapidly 
nowadays with the increasing speed of the 
computers and low prices of the hardware. 
Furthermore, the simulation is very often used 
at present as it has many advantages over an 
experiment on a real system, which is not 
feasible and can be dangerous, time and money 
demanding. A modelling of the system usually 
precedes the simulation [1]. The mathematical 
model is a kind of abstract representation of the 
process which uses input, state or output 
variables, relations between these variables 
collected in the set of mathematical equations 
[1] and [2]. Some simulation and modelling 
examples can be found also in [3] and [4]. 

It is known, that almost all processes in the 
nature have a nonlinear behaviour [1], [5] and 
our goal is to cope with this nonlinearity. 
Typical examples of nonlinear systems are 
chemical reactors. A chemical reactor is a 
vessel or pipe which is used for the production 
of chemicals used in chemical, biochemical, 
drug and other industries through a specific 
reaction inside [6]. The controlled system here 
is represented by a Continuous Stirred-Tank 
Reactor (CSTR) as a typical member of a group 
of nonlinear systems used not only in the 
chemical industry. The mathematical model of 
the plant is described by the set of two 
nonlinear Ordinary Differential Equations 
(ODE) [7]. 

The thorough analysis of the system usually 
precedes the controller design. Steady-state and 
dynamic analyses as a typical simulation tools 

gives overview of system’s behavior especially 
for chemical reactors [5], [8], [9] etc. The 
methods used here was a Simple iteration 
method [10] and a Runge-Kutta’s standard 
method  for the numerical solving of set of 
ODE. Big advantage of both methods is that 
both are easily programmable or even build-in 
functions in popular mathematical software, 
such as MATLAB [11], Mathematica etc. 

The idea of an adaptive control [12] comes 
from the nature where every organism even 
humans try to “adapt” for the current 
environment. Transformed to the control 
theory, the controller also adapts parameters, 
structure etc. to the actual state of the 
controlled plant or desired course of the output 
signal [13]. The adaptive approach here is 
based on the approximation of the nonlinear 
system by the appropriate linear model, 
parameters of which are estimated online.  

The structure of the controller uses the 
polynomial synthesis [14] with Linear 
Quadratic (LQ) theory [15]. Resulted controller 
fulfills basic requests for the control loop such 
as stability, reference signal tracking and 
disturbance attenuation – [14] and [16]. 

Although there could be found a lot of 
contributions dealing with the simulation of 
control, the goal of this contribution is to 
describe the procedure from the steady-state 
and dynamic analyses to the design of the 
hybrid adaptive controller for temperature 
control inside the CSTR as a typical member of 
the nonlinear processes. This method could be 
applied to similar nonlinear processes which 
are described also by the mathematical model. 
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The contribution is divided into six main parts. 
The second section after this introduction 
describes the mathematical model of the 
controlled plant (CSTR) and the results of 
steady-state and dynamic analyses. Then, the 
third part describes theoretical background to 
the adaptive control with recursive 
identification and the LQ approach and 
polynomial synthesis of the controller. The 
fourth part is dedicated to various simulation 
experiments of the proposed controller on the 
mathematical model. After that, the last part 
before conclusion presents usability of the 
controller to the real plant followed by the final 
conclusion and future work. 

All experiments were done by the simulations 
on the mathematical software MATLAB, 
version 7.0.3. 

2. Model of the Plant 

The model under the consideration is a 
Continuous Stirred-tank Reactor (CSTR) with 
the spiral cooling in the jacket – see Figure 1.  

The mathematical description of the process 
uses material and heat balances inside the 
reactor. Full description of the process is, of 
course, very complex because of number 
variables. There must be introduced some 
simplifications to reduce this complexity – we 
expect that reactant is perfectly mixed and 
reacts to the final product with the 
concentration cA(t). Furthermore we also 
assume that volume, heat capacities and 
densities are constant during the control. 

 

 

Figure 1. Continuous Stirred-Tank Reactor (CSTR) 

The mathematical model in the form of 
Ordinary Differential Equations (ODE) with all 
these simplifications has then form [7]: 
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The variable t in the previous equations denotes 
time, T is used for temperature of the reactant, 
V is volume of the reactor, cA represents 
concentration of the product, q and qc are 
volumetric flow rates of the reactant and 
cooling respectively. Indexes (·)0 denote input 
values of the variables, (·)c  is used for variables 
related to the cooling and variables without 
index are connected with the reactant. 

The main nonlinearity of this model can be 
found in the reaction rate, k1, as a nonlinear 
function of the reactant temperature, T, which 
also state variable in (1). This reaction rate is 
computed via Arrhenius law, e.g.  

1 0 e
E

R Tk k

   (3) 

where k0 is the reaction rate constant, E denotes 
an activation energy and R is a gas constant. 

The mathematical model in (1) together with 
constants (2) and variable k1 in (3) defines a 
nonlinear system with lumped parameters. 
There could be several input variables but from 
the practical point of view, only volumetric 
flow rates of the reactant, q, and the cooling, qc, 
were chosen as input variables. The output 
variables are the temperature of the reactant, T, 
and the concentration of the product, cA. The 
fixed parameters of are shown in Table 1 [7]: 
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Table 1. Fixed parameters of the reactor 

Name of the variable Value  

Reactant’s flow rate  
Reactor’s volume 
Reaction rate constant 
Activation energy to R 
Reactant’s feed temp. 
Reaction heat 
Specific heat of reactant 
Specific heat of cooling 
Density of the reactant 
Density of the cooling 
Feed concentration 
Heat transfer coef. 

q = 0.1 m3.min-1 
V = 0.1 m3 
k0 = 7.2·1010 min-1 
E/R = 1·104 K 
T0 = 350 K 
ΔH = -2·105cal.mol-1 
cp = 1 cal.g-1.K-1 
cpc = 1 cal.g-1.K-1 
ρ = 1·103 kg. m3 
ρc = 1·103 kg. m3 
cA0 = 1 kmol. m3 
ha=7·105cal.min-1.K-1 

Analyses inside the reactor are the next step 
after the developing of the mathematical model. 
There were used steady-state and dynamic 
analysis to obtain information about the type 
and behaviour of the system. 

Steady-state Analysis 

Steady-state analysis for stable systems 
involves computing values of state variables in 
time t  ∞, when changes of these variables 
are equal to the zero. That means that all 
equations which consist of derivations with 
respect to the time in (1) have these derivations 
equal to the zero, e.g. d(·)/dt = 0. The 
mathematical model (1) is then transformed to 
the set of nonlinear equations: 
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The simple iteration method [10] was used for 
solving of this set of equations (4). 

The heat balance of the reactor shows 
interesting thing about this reactor – it has 3 
steady-states. The Qr in Figure 2 is used for 
heat of the reactant and Qc denotes heat of the 
coolant. It holds, that Qr = Qc in the steady 
state which means that this type of reactor has 
two stable (S1 and S2) and one unstable (N1) 
steady-states. 
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Figure 2. Heat balance inside the reactor 
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Although it seems that the second steady-state 
S2 has better efficiency (95.6% of the reactant 
reacts), the steady-state temperature of the 
reactant is very high which in some case means 
that this point is only theoretical and not 
practically feasible. That is why the first 
steady-state S1 was used in this work.  

The steady-state analysis here was done for 
different input volumetric flow rates q and qc 
and results are shown in the following figures 
where Ts denotes steady-state value of the 
reactant’s temperature and cA

s is steady-state 
value of the product’s concentration. 
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Figure 3. Steady-state values of the temperature Ts 
for different volumetric flow rates q and qc 

Graphs have shown nonlinearities in both 
product’s concentration and temperature. The 
steady-state analysis usually results in the 
optimal working point. From the practical and 
mainly cost point of view is good to choose 
volumetric flow rates as low as possible. The 
working point is then characterized by the pair 
of volumetric flow rates qc = 0.08 m3.min-1 and 
q = 0.10 m3.min-1. 
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Figure 4. Steady-state values of the concentration 
cA

s for different volumetric flow rates q and qc 

Steady-state values of state variables T and are 
cA for this working point are Ts = 354.26 K and 
cs

A = 0.9620 kmol.m-3. 

Dynamic Analysis 

The dynamic analysis is usually the next step 
after the steady-state analysis. The dynamic 
analysis observes behavior of the system after 
the step change of the input variable. The 
mathematical interpretation of this analysis is 
the numerical solving of the set of ODE in 
equations (1). The standard Runge-Kutta‘s 
method [10] was used in this work. This 
numerical method belongs to the class of high-
order methods, it can be used for computation 
of the initial values or for the final result too 
and they are easily programmable. It can be 
also found as a build-in function in various 
mathematical simulation software, such as 
Matlab (functions ode23, ode43 etc.) [11], 
Mathematica (function NDSolve) etc. 

As there were chosen two volumetric flow rates 
of the reactant and the cooling as input 
variables, several changes of both recomputed 
to % were examined in the following 
simulations. Input variables are then: 
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Results of dynamic analyses for several step 
changes of the input variables u1 and u2 are 
shown in following Figure 5 – Figure 8. 
Steady-state values of the state variables Ts and 
cA

s are used as a initial conditions for the 
dynamic which also means that the course of 
output variables starts from these values. 
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Figure 5. Time responses of the product’s 
temperature, T(t) to the step change of the 

volumetric flow rate of the coolant, u1 
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Figure 6. Time responses of the product’s 
concentration, cA(t) to the step change of the 

volumetric flow rate of the coolant, u1 
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Figure 7. Time responses of the product’s 
temperature, T(t) to the step change of the 

volumetric flow rate of the reactant, u2 
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Figure 8. Time responses of the product’s 
concentration, cA(t) to the step change of the 

volumetric flow rate of the reactant, u2 

Step responses for both input variables u1 and 
u2 show dynamical behaviour of the examined 
system. All outputs of the nonlinear system 
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could be from the control point of view 
described by the second order transfer function 
with relative order one in the polynomial form: 
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3. Control of the Plant 

The adaptive control [12] was used here as a 
control strategy. The basic idea of adaptive 
control is that parameters or the structure of the 
controller are adapted to parameters of the 
controlled plant according to the selected 
criterion [13]. The adaptive approach in this 
work is based on choosing an External Linear 
Model (ELM) (7) of the original nonlinear 
system whose parameters are recursively 
identified during the control. Parameters of the 
resulted controller are recomputed in every step 
from the estimated parameters of the ELM.  

External Linear Model 

In our case, the ELM has form of the Equation 
(7). It means that variables must be identified in 
continuous-time (CT) which is problem 
especially from the technical point of view. The 
other type of ELM is discrete-time (DT) model 
where input and output variables are read in the 
defined time intervals and parameters are 
estimated in these intervals too. Disadvantages 
of this model can be found on the choice of the 
sampling period – there is no general tool or 
advice to the right choice of this interval. 
Somewhere between these two types of ELM 
are the delta (-) models that belongs to the DT 
models but its parameters are close to the 
continuous ones for very small sampling period 
as it proofed in [17].  

The CT model (7) could be also described in 
the general form and the use of input and 
output variables as: 

( ) ( ) ( ) ( )a y t b u t   (8) 

Where a and b are polynomials from (7) and  
is the differentiation operator. If we want to use 
δ–model we must introduce a new complex 
variable γ computed as [18]: 
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and we can obtain infinitely many models for 
optional parameter  from the interval 0 ≤  ≤ 1 

and a sampling period Tv. A forward δ-model 
was used in this work. The γ operator is then 
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The continuous model (8) is then rewritten to 
the form 
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where polynomials a and b are discrete 
polynomials and their coefficients are different 
from those of the CT model a(s) and b(s). Time 
t' is discrete time and with the new substitution  
t‘ = k – n for k ≥ n the -model for this concrete 
transfer function would be: 

2
1 0

1 0

( ) ( ) ( )

( ) ( )

y k n b u k n b u k n

a y k n a y k n

 

 

 



     

   
 (12) 

It means that the regression vector  is then 
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where y and u denotes the recomputed output 
and input variables to the -model and 
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The computed vector of parameters              
is generally 

  1 0 1 0, , ,
T

k a a b b      δθ  (15) 

and parameters of this vector are computed by 
the on-line identification.  

Finally, the differential equation (12) has the 
vector form: 

       1Ty k k k e k    δ δθ φ  (16) 

where e(k) is a general random     
immeasurable component. 
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Recursive Identification 

The Recursive Least-Squares (RLS) method is 
used for the on-line estimation of the vector of 
parameters  in (15). This method is well-
known, easily programmable and widely used 
for the parameter estimation. It is usually 
modified with exponential or directional 
forgetting because parameters of the identified 
system can vary during the control which is 
typical for nonlinear systems and the use of 
some forgetting factor could result in better 
output response.  

As an example, the RLS method with changing 
exponential forgetting used here is described by 
the set of equations: 
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where the changing forgetting factor 1 is 
computed from the equation 

     2
1 1k K k k       (18) 

and K is small number, in our case K = 0.001. 

Control Synthesis 

The last theoretical step is the design of the 
controller. The polynomial approach [14] and 
[16] was used in this work. This method is 
based on the input-output model of the 
controlled system or its transfer function. It can 
be classified as an algebraic method and it is 
based on algebraic operations in the ring of 
polynomials. One of the biggest advantages of 
the polynomial method compared to the 
conventional method is that it provides not only 
relations for computing of the controller's 
parameters but the structure of the controller 
too. This structure fulfils general requirements 
for control systems and input signals (reference 
signal and disturbance) and it can be used for 
controlling of the systems with negative 
properties from the control point of view, such 
as non-minimum phase systems or unstable 

systems. Another advantage is that the resulted 
relations are easily programmable. 

The configuration with one degree-of-freedom 
(1DOF) was used here – see Figure 9. 

 
Figure 9. 1DOF control configuration 

The block G represents the transfer function of 
the plant (7), w is the reference signal (the 
wanted value), e stands for the control error  
(e = w - y), v is a disturbance, u is used for the 
control variable and y denotes the controlled 
output. Block Q is a transfer function of the 
controller which ensures three basic control 
conditions – (I.) stability, (II.) asymptotic 
tracking of the reference signal and (III.) load 
disturbance attenuation and it can be described 
by the polynomials in s-plain as 
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where degrees of the polynomials are  
computed from  

       deg deg , deg deg 1q s a s p s a s   (20) 

and parameters of the polynomials  p s  and 

q(s) are computed from a Diophantine eq. [14]: 
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Polynomials a(s) and b(s) are known from the 
recursive identification and the polynomial d(s) 
on the right side of (21) is an optional stable 
polynomial. Roots of this polynomial are called 
poles of the closed-loop and their position 
affects quality of the control. One method for 
designing of this polynomial is a Pole-
placement method [19]. Disadvantage of this 
method is the uncertainty – there is no rule for 
the choice of this root. The second method used 
in this work uses Linear Quadratic (LQ) 
approach [15] which is based on the 
minimization of the cost function 

    2 2

0

LQ LQ LQJ e t u t dt 

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where φLQ > 0 and μLQ ≥ 0 are weighting 
coefficients, e(t) is control error and 
 u t denotes difference of the input variable. 
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The polynomial d(s) is then divided into two 
polynomials n(s) and g(s), i.e. d(s) = g(s) · n(s), 
where polynomial n(s) is connected to the 
controlled system via the spectral factorization 
of the polynomial a(s) and g(s) comes from the 
solution of the equation (22) again with the use 
of the spectral factorization. Both factorizations 
are shown in the following equation: 

 * * *

* *

LQ LQa f a f b b g g

n n a a

         

  
 (23) 

The polynomial f(s) for control variable u(t) 
and disturbance v(t) from the ring of step 
functions is equal to s, i.e. f(s) = s. The resulted 
controller is strictly proper and the degree of 
d(s) together with degrees of the controller‘s 
polynomials q(s) and  p s  from (20) are then 

 deg deg 2deg 1 5

deg deg 2; deg deg 1 2

d g n a

q a p a

    

    
 (24) 

which means that the transfer function of the 
controller (19) is  

   
2

2 1 0
2

1 0

q s q s q
Q s

s s p s p

 


  
  (25) 

Finally, parameters of n(s) and g(s) are 
practically computed from Equation (23) as 

 

2 2 2
0 0 1 0 2 0 1

2
2 1 3 1 0 3

2 2
0 0 1 0 1 0

, 2 ,

2 2 , ,

, 2 2

LQ LQ

LQ LQ

g b g g g a b

g g g a a g

n a n n a a

  

 

   

   

   

  (26) 

We can say, that the resulting controller is 
“hybrid” because the polynomial synthesis is 
made for continuous-time but recursive 
identification runs on the -model, which 
belongs to the class of discrete-time models. 
This simplification can be introduced with the 
assumption that the parameters of the -model 
are close to the continuous one, i.e. a ≈ a     
and b ≈ b.  

4. Simulation Results 

The usability of the proposed controller from 
the previous part was examined by simulations 
on the mathematical model of the reactor from 
the chapter 2. All simulations were done on the 
mathematical software MATLAB. Common 
values for all simulations are the sampling 

period Tv = 0.3 min, the initial vector of 
parameters used for identification  
T(0) = [0.1 0.1 0.1 0.1] and the initial 
covariance matrix Pii(0) = 1·107 for i = 1,..,4. 
The input variable was limited in the interval 
u(t) = ± 80% due to physical reasons. The 
change of the input volumetric flow rate of the 
reactant u2 was chosen as a control input and 
the temperature of the reactant as a controlled 
output, i.e. y(t) = T(t). 

The first simulation analysis examines behavior 
of the controlled output for the changing 
weighting factor φLQ from (22) - φLQ = 0.1, 1 
and 3. On the other hand, the second parameter 
was μLQ = 1 for all simulations.  
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Figure 10. The course of the output variable y(t) 
and the reference signal w(t) for various values of 

the factor φLQ 
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Figure 11. The course of the input variable u(t) for 
various values of the factor φLQ 

Results presented in Figure 10 and Figure 11 
clearly show effect of the weighting factor φLQ 
– decreasing value of this parameter results in 
the quicker output response but also very quick 
changes of the input variable. This change 
could cause some problems from the practical 
point of view where this value represents for 
example twist of the valve in the input pipe to 
the reactor and quick and often changes could 
destroy the valve. Anyway, the controlled plant 
produced very good control results except very 
beginning of the control. This inaccurate course 
was caused by the recursive identification 
which did not have enough information about 
the system behaviour at the beginning – note 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 322 

that all simulations starts from the general 
values of T(0) and Pii(0) and controller needs 
some time for adapting to the system.  
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Figure 12. The course of the identified parameter 
a1

 during the control 
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Figure 13. The course of the identified parameter 
a0

 during the control 
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Figure 14. The course of the identified parameter 
b1

 during the control 
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Figure 15. The course of the identified parameter 
b0

 during the control 

This is illustrated also in Figure 12 – Figure 15 
where courses of identified parameters are 
displayed. This adaptation phase takes about 50 
min and the course after this initial time is 
again very smooth which mirrors in the course 
of the output variable too. Results also show 
fulfillment of first two control conditions – the 
stability of the control loop and the reference 
signal tracking. The third condition, 

disturbance attenuation, was tested in the 
second analysis for three disturbances – two of 
them were inserted on the input to the system 
(change of the input reactant temperature T0 
and input concentration cA0) and one 
disturbance on the output from the reactor 
(change of the temperature T), i.e. v1(t) = -8% 
step change of the input concentration cA0 for 
time t = <400; 1000> min, v2(t) = +1 K  step 
change of the input reactant’s temperature T0 
for time t = <600; 1000> min, v2(t) = -0.5 K  
step change of the output product’s temperature 
T for time t = <800; 1000> min.   

The weighting factor was φLQ = 0.25 and one 
step change of the reference signal, w(t), was 
done before disturbance injection due to 
inaccurate results caused by the recursive 
identification at the beginning of the control.  
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Figure 16. The course of the output variable y(t) 

and the reference signal w(t) for the simulation with 
three disturbances 
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Figure 17. The course of the input variable u(t) for 

the simulation with three disturbances 

It is clear from Figures 16 and 17 that proposed 
controller copes with these disturbances 
sufficiently even though the reactor is affected 
by all three disturbances from time 800 min to 
the end of the simulation. 

5. Verification of the Simulation 

As it is written at the beginning, all results 
presented here are results of computer 
simulations. The problem with the simulation is 
that it is always question of the reliability if the 
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proposed mathematical model provides 
sufficient description of the real system or it is 
too simple. This could be proofed only by the 
verification on the real system.  

The advantage of the control strategy presented 
here is that not only simulation of the 
mathematical model’s behaviour, but also the 
computation of controller’s parameters are 
easily programmable. Both blocks in Figure 9 
representing the controlled plant (block G) and 
the feedback controller (Q) form different parts 
of the M-file in MATLAB which makes the 
controller more universal. The part of the 
simulation program which represents 
mathematical model of the system (G) could be 
replaced by the MATLAB’s Real-Time toolbox 
routines which reads output from the controlled 
system, generally y(t), and send signals to the 
system according computed output from the 
controller u(t). 

One example can be found in our previous 
article [19], where we use the same controller 
for conductivity control inside the real model of 
CSTR as a part of the Multifunctional Process 
Control Teaching equipment PCT40 from 
Armfield – see schematic representation of 
PCT40 in Figure 18.  

 

Figure 18. Multifunctional process control teaching 
system PCT40 

This system is connected to the computer via 
two technological MF624 multifunction I/O 
cards from Humusoft. We can use 9 inputs and 
17 outputs at the same time in the MATLAB 
through the Real-Time toolbox. 

The control experiment uses the same 1DOF 
control scheme and LQ controller presented 
here and the sample results for various values 
of the weighting factor φLQ = 0.005, 0.001 and 
0.01 are shown in following graphs. 
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Figure 19. Course of the output variable y(t) for 
1DOF controller and LQ controller 
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Figure 20. Course of the input variable u(t) for 
1DOF controller and LQ controller 

Results in Figure 19 and Figure 20 have shown 
usability of this control strategy for different 
nonlinear systems. The only difference is in the 
settings of the controller. The setting, or let us 
say tuning, parameter here is weighting factor 
φLQ which is different for each control strategy 
and must be found by the experiments. 

6. Conclusions and Future Work 

The article presents simulation results of hybrid 
adaptive controller which uses polynomial 
synthesis together with delta-models and LQ 
approach. Results satisfy basic control 
requirements – the stability, the reference 
signal tracking and the disturbance attenuation. 
The controller could be also tuned via the 
choice of the weighting factor φLQ while the 
increasing value of this parameter results in the 
quicker output response. The only problem can 
be found at the beginning of the control when 
the recursive identification needs some 
adaptation time due to incomplete a priori 
information about the system. On the other 
hand, the controller has no problems at the rest 
of the control after this initial time even if it is 
affected by various disturbances. 

Although results are products of the computer 
simulation, the proposed hybrid adaptive 
controller could be used also for other similar 
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nonlinear processes as it was shown in the last 
part before conclusion which presents results of 
the conductivity control inside the CSTR with 
the use of the same adaptive LQ controller.  

The future work is related to the simulation 
experiments of other let us say “modern” control 
techniques such as predictive, robust or nonlinear 
control and verifications by the application of 
these controllers on the real process. 
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