
Studies in Informatics and Control, Vol. 21, No. 3, September 2012 http://www.sic.ici.ro 333

1. Introduction

In this paper we approach the queuing system
having a waiting queue to each station. When a
new client arrives in the system, it chooses a
random station based on a random process which
takes into account the burden of the stations.
Furthermore, we can consider that the clients
themselves can be partitioned into classes and
that for each class of clients there is a
corresponding fixed set of deserving stations. A
station from the clients’ class is randomly
selected to serve this client. The client’s class and
the station which will serve it are also randomly
chosen. Inside a class, we will allow a client to
migrate from a queue to another one that became
empty. Here we suppose that there are two classes
of clients, denoted as “privileged” and “regular”,
respectively. From now on we will suppose that
the number of stations in each class varies,
according to the agglomeration degree of the
stations in that class.

In [3] we presented a simulation algorithm for
waiting systems with a variable number of
stations and with a single waiting queue, while
in [4] we studied systems for which every
working station has it own waiting queue and
the probability of choosing a specific station is
based on a random process. In [5] we
considered the case for which the stations are
clustered in two different classes, each station
being devoted to a specific category and with a
constant number of stations in each class.

According to the status of each station, they are
partitioned in three groups: busy, inactive and
in laziness. Busy stations are those currently
serving clients. Inactive stations are the ones
removed from the system, due to a low number
of clients. Finally, for every class of working
stations there is at most a station in laziness,
when no client is in the waiting queue.

The essential difference between the model
with a fixed number of parallel stations and the
one that allows for a variable number is the
approach of determining the laziness time of
the stations. In the first case, all stations that are
not currently working are in laziness while for
the latter model, there is at most a single station
in laziness when no other client is present in the
same class and a potential arrival is expected.

Motivation: In real world there are plenty of
systems that can be abstracted as described
above. For example in super-markets, the pay
desks set can be seen as such a waiting system.
This type of simulation is potentially useful for
analyzing and predicting the behavior of client-
server based applications, when “organizations
or resourceful individuals provide services via
a set of loosely-coupled workstation nodes” [9].
We consider that simulation results are a
starting point to perform load balancing for a
set of resources that are accessed concurrently.
Moreover, simulating different scenarios can
assure decision support for making a choice
between the two main types of scalability [6]:
vertical scalability – adding more hardware to

An Algorithm for Simulation of Waiting Systems with
Different Types and Variable Number of

Parallel Working Stations Each Having its Own Queue

Ion Florea, Lucian Sasu

Transilvania University of Brasov,
Department of Mathematics and Computer Science,
Faculty of Mathematics and Computer Science,
Iuliu Maniu 50, Brasov, 500091, Romania,
ilflorea@gmail.com, lmsasu@unitbv.ro

Abstract: This paper presents waiting systems with parallel working stations, for which both the clients and the working
stations are grouped in classes. The working stations from the same class are identical and have their own waiting queues.
The clients’ arrivals, the choice of a class to whom the client belongs to and furthermore the choice of the serving station
relies on a random process. Also, this approach considers a variable number of stations, influenced by the number of
clients in the system. For this kind of problems there is no suitable analytical method and the support offered by
specialized languages is quite poor. The paper presents a study approach for this kind of systems, based on discrete event
simulation. It is shown that the given algorithm has a polynomial complexity. Also, the object-oriented design we used
for implementation is sketched.

Keywords: Queuing System, Waiting Queue, Simulation Algorithm, Polynomial Complexity, Different Classes of
Stations, Variable Number of Active Stations

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 334

the machine, which in our case is lowering the
service time for a client - and horizontal
scalability – which refers to adding more
servers and in our case this is equivalent to
adding more working stations. The main target
is in this case middleware platforms that use
clustered deployment not only for scalability
but also for efficiently supporting multiple
concurrent applications. From the same area of
enterprise applications we also mention the
load sensitivity which is an expression of how
the response time varies with system’s load [6].
The concept of different classes of clients is
encountered in marketing, for which successful
strategy is a classification of the firm’s target
markets. For example, in [10] a three tier
classification system of potential and present
clients is discussed. Thus our study based on
different types of clients in the simulation
mechanism has a strong connection with real-
world applications.

2. The Model Entities and the
Simulation Mechanism

Simulation of the arriv als. The entity that
generates random arrivals produces both the
inter-arrival time values denoted by IntArriv ,
and the service time for each client, denoted
as Stime . The global variable Atime contains
the event time of the next arrival. Initially,
Atime is set to 0 and after any generation the
IntArriv value is added to it.

Generating the category of the newly arrived
client. Let p be the fixed probability that a

type 1 client arrives in the system. The
category corresponding to a newly arrived
client is thus a Bernoulli random variable:









 pp

B
1

21
:

Choosing the serving sta tion. Let nbp(i) be
the number of the active stations from category
i and let sbp(i,j) be the index of the jth active
station of category i (}1{},2,1{ ,..,nbp(i)ji ).

Also, let nc(i,j)(}2,1{i ,

))}(,(},...,1,{{ inbpisbpisbpj  be the number
of clients that are in the waiting queue of
station sbp(i,j), i.e. the total number of clients
from the waiting queue plus the client which is
currently served by the station sbp(i,j). When a
new client arrival is generated, that client is
randomly assigned to a station belonging to its

category, according to the Bernoulli
distribution. Let the index of this station be
sbp(i,k) and the the probability for the client of
class i to be assigned to station k is denoted as

psbp(i,k) (}2,1{i ,))}(,(),...,1,({ inbpisbpisbpk ).

Generating psbp(i,k) corresponds to generate the
random variable X(i):










))(,()1,(...

))(,(...)1,(

inbpisbpisbp pp

inbpisbpisbp
X(i):

The probabilities psbp(i,j) are given by


















































1

,1

 ;1

,
1)(

1

)(

),(
1

),(

))(.(

)1,(),(

nbp(i)if

p

nbp(i)if

inbp
knc

jinc

p

jisbp

inbpisbp

isbpkjisbp

Theorem 1. If),(),(linckinc  };2,1{(i

)),(,..,1{, klinbpkl  then

),(),(lisbpkisbp pp  , 10),( jisbpp

)}(,...,1{ inbpj and }2,1{,1
))(,(

)1,(




ip
inbpisbp

isbpk
i

.

Proof. Firstly, we assume that }2,1{ ,1)( iinbp .
If),(),(linckinc  , then we have the inequality




))(,(

)1,(

))(,(

)1,(

),(

),(

),(

),(
inbpisbp

inbpl

inbpisbp

isbpj

linc

linc

jinc

kinc , i.e.




))(,(

)1,(

))(,(

)1,(

),(

),(
1

),(

),(
1 inbpisbp

isbpl

inbpisbp

isbpj

linc

linc

jinc

kinc ,

and thus),(),(lisbpkisbp pp  .

We have 



))(,(

)1,(

),(),(0
inbpisbp

isbpp

pincjinc , and

thus we can write

1
),(

),(
0))(,(

)1,(






inbpisbp

isbpp

pinc

jinc
, i.e.

1
),(

),(
10))(,(

)1,(






inbpisbp

isbpp

pinc

jinc
, and hence

Studies in Informatics and Control, Vol. 21, No. 3, September 2012 http://www.sic.ici.ro 335



























1)(

1

),(

),(
10

))(,(

)1,(

inbp
pinc

jinc
inbpisbp

isbpp

1
1)(

1





inbp

which gives)(,...,1 ,10),(inbpjp jisbp 






























))(,(

)1,(
))(,(

)1,(

))(,(

)1,(

.

),(

),(
1

inbpisbp

isbpj
inbpisbp

isbpj

inbpisbp

isbpj
j

jinc

jinc
p

1)(

1
.

inbp



 



))(,(

)1,(1)(

1inbpisbp

isbpj inbp












))(,(

)1,(

))(,(

)1,(),(

),(

1)(

1
inbpisbp

isbpj

inbpisbp

isbpj jinc

jinc

inbp





1)(

)(

inbp

inbp




 
 



))(,(

)1,(
))(,(

)1,(

),(

),()1)((

1 inbpisbp

isbpj
inbpisbp

isbpj

jinc

jincinbp







 
 



))(,(

)1,(
))(,(

)1,(

),(

),()1)((

1

1)(

)(inbpisbp

isbpj
inbpisbp

isbpj

jinc

jincinbp
inbp

inbp

1
1)(

1

1)(

)(








inbpinbp

inbp

For 1)(inbp the proof is straightforward.

Remark 1 . The theorem actually shows that
the quantities psbp(i,k) define a probability
distribution.

The server entity is the m+n parallel stations
ensemble. We use the notation:

2i if,

1i if ,
)(









n

m
inrst

Any station is characterized by:

Ctime(sbp(i,j)) which is the serving finish event
time of sbp(i,j)-server; if the server is idle, then
Ctime(sbp(i,j))= ; sbp(i,j) is in laziness if:

Ctime(sbp(i,j))=  and nbp(i)=1.

For k {sbp(i,j),i{1,2},j {1,..,nbp(i))},
Tsc(k) is the service time of the kth station.

The bidimensional vector Ts(sbp(i,j),k)
contains the service time of the kth client joined
to station sbp(i,j), k {1,..,nc(sbp(i,j))}.

Remark 2 . The discrete events simulation is
based on the “next event” (or “minimum time”)
rule. In our case, the time of the next event is
given by: } ,=i,ip(i))/iCtime(sbp({Atime)21,min

where ip(i) is the index of the first server from
class i that finishes the service. The time of the
last event is denoted by Ltime. If

} ,i=(i,ip(i))/{Ctime(sbp Atime 21min

then the next event is an arrival and it will be
processed as follows: we generate the random
variable B, whose value i (i{1,2}),
corresponds to the category of the newly come
client. Then a value is generated for the random
variable X(i). If there is an idle server, this one
will immediately serve this client. The value
Stime is generated and the total servers laziness
time is updated. If there are inactive servers and
the adding of a new server condition is
fulfilled, i.e. if)()(inrstinbp  and

(i)l
inbp

jisbpinc
inbp

j max
)(

)),(,(
)(

1 



then an inactive station of the minimum index
will serve the new client and the total
customers waiting times per type is updated;
also, we add a new column to the
bidimensional array X(i) corresponding to the
newly added station sbp(i,nbp(i)), having the
associated probability 1/(nbp(i)-1). If the
condition corresponding to adding a new
station is not fulfilled, then the client joins to
the queue given by the selection value of the
variable X(i). If

} ,i=(i,ip(i))/{Ctime(sbp Atime 21min

then the next event is service finishing by one
of the two sbp(i,ip(i)) stations. In this case, the
following actions take place:

 if 1))(,((iipisbpnc (i.e. there are clients
in the queue of the respective station), then
the first client will be served;

 if 0))(,((iipisbpnc (i.e. there are no
clients in the queue of the respective
station), and 1)(inbp and

(i)l
inbp

jisbpinc
inbp

j min
)(

)),(,(
)(

1 



then this station will become inactive

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 336

 if 0))(,((iipisbpnc (i.e. there are no
clients in the queue of the respective
station) and 1)(inbp then the station will
be in laziness.

 if 0))(,((iipisbpnc , i.e. there are no
clients in the queue of the respective
station), and 1)(inbp and

(i)l
inbp

jisbpinc
inbp

j min
)(

)),(,(
)(

1 



then this station will serve one client from
other station. Thus we allow a client to
migrate to a different station.

Determining the station from which a client
migrates. For each active station sbp(i,j)
(j {1,..,nbp(i)}) we compute dij=|sbp(i,ip(i))-
sbp(i,j)|, the L1 distance between stations

sbp(i,ip(i)) and sbp(i,j). Let 



)(

1

inbp

j
iji dS . We

define

 1)(

1

),(












inbp

S

d

p i

ij

jisbp

as the probability of choosing a client currently
in the waiting queue of station sbp(i,j) as a
migrated client.

Theorem 2. The set

)))}(,()},(,...,1{/}{),(iipisbpiinbpjp jisbp 

defines a probability distribution. Moreover, if

 ijil dd  then),(),(jisbplisbp pp  .

Proof. As ,0 iij Sd  we obtain 10 
i

ij

S

d ,

that is 110 
i

ij

S

d . Dividing by nbp(i)-1,

we get 10),( jisbpp . Clearly,





)(

1
),(

inbp

j
jisbpp 1

1)(

1)(

1)(

1
)(

1











 inbp

inbp

inbp

S

d
inbp

j

i

ij

.

For the later statement of the theorem we note
that

ijil dd  yields
i

ij

i

il

S

d

S

d
 11 , which is

to say that),(),(jisbplisbp pp  .

The station providing the migrating client is a
the value generated by the random
variable Y(i).

For the later statement of the theorem we note

that ijil dd  yields
i

ij

i

il

S

d

S

d
 11 , which

is to say that),(),(jisbplisbp pp  .

The station providing the migrating client is a
the value generated by the random
variable Y(i).

Selecting the client to be served. Let),(lisbp
be the value of the random variable Y(i), i.e. the
index of the station from whose waiting queue
the client is to be migrated. The count of the
clients assigned to station),(lisbp is

1)),((lisbpnc . The index of the client to
migrate, is given by the random variable

}2,1{),(iiZ :

.
1)),((

1
..

1)),((

1
1)),((..1

)(


















lisbpnclisbpnc

lisbpnc
:iZ

that is any client from the waiting queue has the
same probability to migrate.

Remark 4. We define a simulation cycle as
being one of the two actions: updating the
arrival; finishing the service. The simulation
proceeds by the looping cycles, until the
number of simulated arrivals exceeds the given
value denoted by Tnra. Because the arrival
flow is less than the services flow (otherwise
the length of the queue increases indefinitely)
and if the value of Tnra is sufficiently large,
almost all clients will be served, and the
number of services is less than or equal with
Tnra. So, the maximum number of cycles is no
more than 2·Tnra.

Adding a new station. Let









2 if),(

1 if),(
)(

iinbpn

iinbpm
inlp

be the number of the inactive stations, let
slp(i,j) (i{1,2}, j{1,.., nlp(i)}) be the array
containing the indexes of inactive stations.
Choosing the station to be added can be
performed according to any of the following
two approaches:

 i) randomly, by considering that any inactive
station can be chosen with the same
probability. In this case we use:

Studies in Informatics and Control, Vol. 21, No. 3, September 2012 http://www.sic.ici.ro 337















)(

1
...

)(

1
))(,(...)1,(

)(
inlpinlp

inlpislpislp
:iT

The index of the station to be activated is the
actual value generated for the random
variable T(i).

ii) the first element from the vector slp(i)
is considered.

At the end of simulation, the system efficiency
factors are computed: the average of the
waiting time in the queue, the average of the
length of the queue, the average of the serving
time of the clients, the average of the laziness
coefficient of the stations.

3. The Algorithm’s Description and
the Complexity Study

The following procedure describes in
pseudocode the main part of the simulation
algorithm. The fine-grain actions are grouped
as procedures called from the main procedure.

The Arriv procedure below simulates new
arrival in the system. This procedure performs:
generation of a Bernoulli random value i
corresponding to the client’s class ([2]),
generation of a random value for X(i) giving
the station index that will serve the new client,
and finally generation of the delay to the next
arrival and the serving time for the client. Also,
the following variables are updated: the waiting
time of the existing clients, the laziness time for
the stations, the Ltime(i) and Atime
corresponding to the time of the last event for
class i and to the next arrival, respectively. If
necessary, a new station is added by calling the
AddStation method.

Procedure Sim(Tnra,lmax,lmin,…);
{block 1}{System initialization}
Read(Random generation Parameters);
sbp(1,1)1;sbp(2,1)m+1;
Atime0;Nra0;
for j=2 to m do slp(1,j)j endfor;
for j=m+2 to m+n do slp(2,j)j
endfor;
for i=1,2 do
 Tl(i)0;nbp(i)1;nc(sbp(i,1))0;
 Ctime(sbp(i,1));busy(sbp(i,1))0;
 Ltime(i)0
endfor;
for j=1 to m+n
 Tw(j)0;Tts(j)0;Nrs(j)0
endfor;
X(1)(1,1)1;X(1)(2,1)1;
X(2)(1,1)1;X(2)(2,1)1
{end block 1}
{block 2}
Arrival(B,X,IntArriv,Nra,Atime,Stime)
{end block 2}
{block 3}while NraTnra do
{ip(i)=the index of the first server
from class i that fin. its service}
 {block 3.1}
 for i=1,2 do ip(i)sbp(i,1);
 for j=2 to nbp(i) do
 if ctime(ip(i))>ctime(sbp(i,j))

 then ip(i)sbp(i,j)
 endif
 endfor
 endfor;
 {end block 3.1}
 {block 3.2}

 if Atimemin{Ctime(ip(i))/i=1,2}
 then {Arrival of a new client}
Arriv(B,X,IntArriv,Nra,Atime,Stime)

else
{a station finishes serv.a client}
 If Ctime(ip(1))<=Ctime(ip(2))

 then FinishService(1)
 else FinishService(2);
 endif;
 endif; {end block 3.2}
endwhile; {end block 3}
{block 4}{Comp. eficiency factors}
Ltmax{Ltime(1),Ltime(2)};
for j=1 to m+n
 MQueue(j)Tw(j)/Lt;{Avg. length of
the queue from the station j}
 MClen(j)Tlen(j)/Lt;{Laziness
coefficient for station j}
 MTs(j)TTss(j)/Tnrs(j); {Average of
serving time for station j}
 MTw(j)Tw(j)/Nrs(j);{Average of
waiting time for station j}
endfor;
Write(Mtw, MTs, MClen,Mqueue))
{end block 4}

Procedure Arriv
(B,X,IntArriv,Nra,Atime,Stime)
{The total waiting times updating}
{block 1}
for k=1,2 do
 for j=1,nbp(k) do
Tw(sbp(k,j))Tw(sbp(k,j))+
+nc(sbp(k,j))*(Atime-Ltime(k))
 endfor
endfor
{end block 1}
{block 2}Gen(IntArriv);Gen(B,i);
{i=client class}
Ltime(i)Atime; Nra Nra+1;
AtimeAtime+ IntArriv;Gen(Stime);
if (nbp(i)=1) and (Ctime(sbp(i,1)=∞))
 then {There is an idle server }
Tlen(sbp(i,1))Tlen(sbp(i,1))+
 +(Atime-Ltime(i))

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 338

The following AddStation procedure is
called when the new arrival is simulated. It
computes the number of clients that are in the
station’s i queue and it decides whether a new
station should be added. The choice upon
which free station should be activated is made
by the procedure Choice.

The FinishService procedure from below
performs updates when a station finishes
serving a client. The following are updated: the
total waiting time values, the total serving time
values for each station, the total number of
served clients for that station, the time of the
last event.

 Tw(sbp(k,j))Tw(sbp(k,j))+
 nc(sbp(k,j))*
 *(Ctime(ip(i))- Ltime(i))
 endfor endfor;{end block 1}
{block 2}
Ltime(i)Ctime(ip(i));
{Updat. the total working time and the
number of services}
Nrs(ip(i))Nrs(ip(i))+1;
Ttss(ip(i))Ttss(ip(i))+ +Tsc(ip(i));
If (nc(ip(i))>1) then {1}
{ip(i) will serve the first client
from its queue}{block 2.1}

 Ctime(ip(i))Ctime(ip(i))+
 + Ts(ip(i),1)

 Tsc(ip(i))Ts(ip(i),1)
{the client to be served is
removed from the queue}

 for j:=1 to nc(ip(i))-1 do
 Ts(ip(i),j) Ts(ip(i),j+1)
 endfor
 nc(ip(i))nc(ip(i))-1

{end block 2.1}
{block 2.2}{Upd.the var. X]
if nbp(i)>1 then

{2}{Many active Stations}
 for j:=1 to nbp(i) do
 X(i)(2,j)

((1-nc(sbp(i,j)))/ Sum(nc,sbp(i))/
(nbp(i)-1)
 endfor

else
{2}{a single active station}

 X(i)(2,nbp(i))1
endif{2}{end block 2.2}
else

{1}{Empty queue of the station ip(i)}
{block 2.3} if nbp(i)=1 then
{3}{the station ip(i) becomes lazy}
 sbp(i,1)ip(i);Ctime(ip(i))

 else{3}
if Sum(nc,sbp(i))/nbp(i)<lmin(i)and
(nbp(i)>1) then
 {4}{the stat.ip(i) becomes inactive}
 Ctime(ip(i)); j1
 while(jnbp(i))and (sbp(j)<>ip(i))do
 jj+1
 endwhile
{ip(i) is added to the inact. stat.}
 nlp(i)nlp(i)+1;slp(nlp(i))ip(i)
{ip(i) is rem.from the active stat.}
 for k=j,nbp(i)-1 do

sbp(i,k)sbp(i,k+1);
nc(i,k)nc(i,k+1)

 endfor
 nbp(i)nbp(i)-1 {Updating X(i)}
 for j:=1 to nbp(i) do
 X(i)(1,j)sbp(i,j);
 X(i)(2,j)((1-nc(sbp(i,j)))
/Sum(nc,sbp(i)))/(nbp(i)-1)
 endfor
 else {4}{the station’s index
from which a client is moved}

S(i)0;
for j=1,nbp(i) do

{Total laziness time of the servers
updating; the newly arrived customer
will be immediately served}
 Ctime(sbp(i,1))Atime+Stime;
 Tsc(sbp(i,1))Stime

else
AddStation(X(i));
{update r.v. X}
Gen(X(i),k);{k= the station that
will serve the arr. client}
if nc(sbp(i,k)))=0 then

Tsc(sbp(i,k))Stime
{immediately served}

 else
{the client is queued at station k}

nc(sbp(i,k))))nc(sbp(i,k)))+1;
Ts(sbp(i,k),nc(sbp(i,k)))Stime
 endif;

endif.

Procedure AddStation(i)
Sum0;
{The total number of clients at the
station class i}
for k=1,nbp(i) do
SumSum+nc(i,sbp(i,k))
endfor;
if i=1 ttsm else ttsn endif;
if nbp(i)<tts and Sum/nbp(i)>lmax(i)
 then
 nbp(i)nbp(i)+1;c(sbp(i,nbp(i)))0;
 sbp(i,nbp(i)))Choice(i);
 X(i)(nbp((i),1) sbp(i,nbp(i)));
 X(i)(nbp(i),2)1
endif.
Procedure Choice(i)
for k=1,nlp(i) do

 Z(i)(1,k)slp(i,k);
 Z(i)(2,k)(1/nlp(i));

endfor;
return(Gen(Z(i))

Procedure FinishService(i)
{The total waiting times is updated}
{block 1}for k=1,2 do
 for j=1,nbp(k) do

Studies in Informatics and Control, Vol. 21, No. 3, September 2012 http://www.sic.ici.ro 339

The full computation of the simulation’s
complexity is given in the extended version of
this paper (see
http://cs.unitbv.ro/~lmsasu/pub
lications/artflo2012.pdf).The total
complexity of the simulation is O(Tnra2).

4. An OO Implementation
While the pseudocode presented in section 3 is
suitable for understanding the whole process
and for computing the algorithm’s complexity,
it is obvious that when performing a concrete
implementation, an object-oriented (OO)
design is a more productive approach compared
to classical procedural programming.
Conceiving the classes as being responsible for
well-defined behavior allows one to obtain a
natural design of the problem domain. In the
extended version of this paper (see
http://cs.unitbv.ro/~lmsasu/pub
lications/artflo2012.pdf), we give
a full description of the classes that resulted
from the OO design.

5. Validity of the Algorithm and
Practical Considerations

In the following we consider 30000 arrivals
simulated. Also, we use the denotations
specified around the paper. The inter-arrival

time and serving time are exponential negative
distributed, with λ respectively μ parameters.
The above mentioned implementation was used
to obtain the statistics for various scenarios. We
considered five scenarios.

i) Case 1. m=1, n=1, p=0.5, λ=0.5,
μ=1;lmin(1)=lmin(2)=lmax(1)= =lmax(2)=1.

Table 1. The results for case 1

Efic. factor Class 1 Class 2
Length Avg 0.0007 0.0006
LazCoefAvg 0.9749 0.9749
ServTimeAvg 1.0049 1.0048
WaitTimeAvg 0.0260 0.0259

ii)Case2.m=3,n=2,p=0.6,λ=0.5,μ=0.2
lmin(1)=lmin(2)=2,lmax(1)= lmax(2)=5.

Table 2. The results for case 2.

Eficiency factor Class 1 Class 2
Length Avg 0.938 0.788
LazCoefAvg 0.018 0.092

ServTimeAvg 4.989 4.984
WaitTimeAvg 9.130 7.930

iii) Case 3. m=3,n=2,p=0.5,λ=0.5,
μ=0.2,lmin(1)=lmin(2)=2,lmax(1)=lmax(2)=5.

Table 3. The results for case 3

Eficiency factor Class 1 Class 2
Length Avg 0.745 1.196
LazCoefAvg 0.031 0.048

ServTimeAvg 4.987 4.977
WaitTimeAvg 8.337 9.544

iv) Case 4. m =3,n=2,λ=0.5, μ=0.2, p=0.5,
lmin(1)=lmin(2)=2,
lmax(1)=lmax(2){5,…,10}. The results are
given in figures 1, 2 and 3 (see
http://cs.unitbv.ro/~lmsasu/publications/artflo2
012.pdf).

v) Case 5. m=3,n=2,p=0.5,λ=0.5,
μ=0.2;lmax(1)=lmax(2)=8,lmin(1)=lmin(2){
2,…,7}.The results are given in figures 4, 5 and
6 (see
http://cs.unitbv.ro/~lmsasu/publications/artflo2
012.pdf).

Remark 4.
 in i), the results are approximately equal
with those obtained for the corresponding
model with fixed number of stations considered
in [5].

 by comparing the results corresponding to
cases 2 and 3 for the first class of clients, it can
be seen that the average length of the waiting
queue and the average value of the waiting time
for iii) are smaller than the corresponding ones

 d(i,j) abs(sbp(i,j)-
 -sbp(i,ip(i)));

 S(i)S(i)+d(i,j)
endfor

 for j=1,nbp(i) do
 Y(i)(1,j)sbp(i,j);

 Y(i)(2,j)
(1-d(i,j)/S(i))/nbp(i)-1)

 endfor
 Gen(Y(i),sbp(i,l));
{Generates the client to be served}

for j=1,nc(sbp(i,l))-1 do
Z(i)(1,j) j;

 Z(i)(2,j)1/(nc(sbp(i,l))-1)
 endfor

Gen(Z(i),p);
Ctime(ip(i))Ctime(ip(i))+
+Ts(sbp(i,l),p)

 Tsc(ip(i))Ts(sbp(i,l),p)
{remove from the queue the client to
be served}
 for j=p,nc(sbp(i,l))-2 do
 Ts(sbp(i,l),j)Ts(sbp(i,l),j+1)
 endfor
{Update the variable X}
 X(i)(2,nbp)1
 endif{4}
 endif{3}{block 2.3}
endif{1}

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 340

from ii), while the average of the waiting time
is lower for ii). This is explained by the higher
probability for a client to belong to the first
category for ii), and hence the same number of
working stations can be required by a larger
number of clients.

 if Lmax(i) decreases, then both the
average length of the queue (Figure 1) and the
average value of the waiting time (Figure 2)
decrease. In turn, the laziness coefficient grows
(see Figure 2). This is explained as follows:
when Lmax(i) decreases the frequency of
adding a new station increase and so the
number of effectively working stations grows.

 If lmin(i) grows then generally the
average length of the queue (Figure 4) and the
average of waiting time (Figure 6) grows. In
turn, the laziness coefficient decreases (Figure
5). This occurs because a station will become
inactive more frequently.

6. Conclusions
In this paper we have presented a simulation
algorithm for queuing system in which every
station has its own queue and in function of the
client’s type, the stations are divided in two
categories. Also, we have a dynamic number of
the active servers. This model can be extended,
by considering any number of station
categories. So, besides the considered Bernoulli
distribution, whose generated selection value
indicates the chosen station category, any
discrete random variable of the form

 2
 ..

1... 0

10








 



k
pp

k

k

, in which)1,..,0( kipi

represents the probability of choosing of the i
station category and, obviously the choosing
category will be a generated value of this variable.

For this queuing system type there aren’t
analytical solutions; so the simulation study is
the only possible way. Also, two possible ways
have been taken in consideration in the
finishing of the serving station: the station
becomes idle or it will serve a different client
from other station’s queues, the station and the
client being selected based on a random
mechanism. The simulation results show that
the efficiency factors of the system have better
values in the second case.

REFERENCES

1. CORMEN, T. H., C. E. LEIRSON, R. L.
RIVEST, Introductions to Algorithms ,
MIT Press, Cambridge, 2001.

2. DEVROYE, L., Non-Uniform Ran dom
Variate Gen eration, New York, Springer
Verlag, 1986.

3. FLOREA, I., One Algorithmic Appro ach
of First-C ome-First-Served Queu ing
Systems, Bucharest University Annals,
Informatics, ANO XLIX, 2000, pp. 41-58.

4. FLOREA, I., A. CARSTEA, A Simulation
Algorithm f or Queuing Systems with
Parallel Working Stations Having one’s
Own Queue for Every Station, Bulletin of
the Transilvania University of Brasov, vol.
12(47), 2005, pp. 115-123.

5. FLOREA, I., A. CARSTEA, An
Alghoritmic Approach of the Queuing
Systems wit h Differ ent Station Classes ,
Studies in Informatics and Control, vol.
15(4), March 2006, pp. 391-402.

6. FOWLER, M., Patterns of Enter prise
Application Architecture , Addison-
Wesley, 2002.

7. GAMMA, E, R. HELM, R. JOHNSON, J.
VLISSIDES, Design Patterns: El ements
of Reusable Object-Ori ented Software ,
Addison-Wesley, 1994.

8. GROSS, D., C. HARRIS, Fundamentals
of Queuing Theory, John Wiley & Sons,
New York, 1998.

9. PETROU, D., K. AMIR, G. RANGER, G.
GIBSON, Easing the Management of
Data-parallel Systems Via Adaptation ,
Proceedings of the 9th ACM SIGOPS
European Workshop, Denmark, September
17-20, 2000.

10. RADER, C., R. COMISH, D. BURCKEL,
L. TURPIN, Adapting Marketing
Strategies to Customer Buying Processes
in the Context of Customer I mportance
to the Firm , Proceedings of American
Society for Business and Behavioral
Sciences, Volume 16, no 1, February 2009.

11. TANNER, M., Practical Queuing Analysis,
McGraw-Hill Book Company, 1995.

