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1. Introduction 

In this paper we approach the queuing system 
having a waiting queue to each station. When a 
new client arrives in the system, it chooses a 
random station based on a random process which 
takes into account the burden of the stations. 
Furthermore, we can consider that the clients 
themselves can be partitioned into classes and 
that for each class of clients there is a 
corresponding fixed set of deserving stations. A 
station from the clients’ class is randomly 
selected to serve this client. The client’s class and 
the station which will serve it are also randomly 
chosen. Inside a class, we will allow a client to 
migrate from a queue to another one that became 
empty. Here we suppose that there are two classes 
of clients, denoted as “privileged” and “regular”, 
respectively. From now on we will suppose that 
the number of stations in each class varies, 
according to the agglomeration degree of the 
stations in that class.  

In [3] we presented a simulation algorithm for 
waiting systems with a variable number of  
stations and with a single waiting queue, while 
in [4] we studied systems for which every 
working station has it own waiting queue and 
the probability of choosing a specific station is 
based on a random process. In [5] we 
considered the case for which the stations are 
clustered in two different classes, each station 
being devoted to a specific category and with a 
constant number of stations in each class. 

According to the status of each station, they are 
partitioned in three groups: busy, inactive and 
in laziness. Busy stations are those currently 
serving clients. Inactive stations are the ones 
removed from the system, due to a low number 
of clients. Finally, for every class of working 
stations there is at most a station in laziness, 
when no client is in the waiting queue.  

The essential difference between the model 
with a fixed number of parallel stations and the 
one that allows for a variable number is the 
approach of determining the laziness time of 
the stations. In the first case, all stations that are 
not currently working are in laziness while for 
the latter model, there is at most a single station 
in laziness when no other client is present in the 
same class and a potential arrival is expected. 

Motivation: In real world there are plenty of 
systems that can be abstracted as described 
above. For example in super-markets, the pay 
desks set can be seen as such a waiting system. 
This type of simulation is potentially useful for 
analyzing and predicting the behavior of client-
server based applications, when “organizations 
or resourceful individuals provide services via 
a set of loosely-coupled workstation nodes” [9]. 
We consider that simulation results are a 
starting point to perform load balancing for a 
set of resources that are accessed concurrently. 
Moreover, simulating different scenarios can 
assure decision support for making a choice 
between the two main types of scalability [6]: 
vertical scalability – adding more hardware to 
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the machine, which in our case is lowering the 
service time for a client - and horizontal 
scalability – which refers to adding more 
servers and in our case this is equivalent to 
adding more working stations. The main target 
is in this case middleware platforms that use 
clustered deployment not only for scalability 
but also for efficiently supporting multiple 
concurrent applications. From the same area of 
enterprise applications we also mention the 
load sensitivity which is an expression of how 
the response time varies with system’s load [6]. 
The concept of different classes of clients is 
encountered in marketing, for which successful 
strategy is a classification of the firm’s target 
markets. For example, in [10] a three tier 
classification system of potential and present 
clients is discussed. Thus our study based on 
different types of clients in the simulation 
mechanism has a strong connection with real-
world applications. 

2. The Model Entities and the 
Simulation Mechanism 

Simulation of the arriv als. The entity that 
generates random arrivals produces both the 
inter-arrival time values denoted by IntArriv , 
and the service time for each client, denoted 
as Stime . The global variable Atime  contains 
the event time of the next arrival. Initially, 
Atime  is set to 0 and after any generation the 
IntArriv  value is added to it.  

Generating the category of the newly arrived 
client. Let p  be the fixed probability that a 

type 1  client arrives in the system. The 
category corresponding to a newly arrived 
client is thus a Bernoulli random variable: 
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Choosing the serving sta tion. Let  nbp(i) be 
the number of the active stations from category 
i and let sbp(i,j) be the index of the jth active 
station of category i ( }1{},2,1{ ,..,nbp(i)ji  ). 

Also, let nc(i,j)( }2,1{i , 

))}(,(},...,1,{{ inbpisbpisbpj    be the number 
of clients that are in the waiting queue of 
station sbp(i,j), i.e. the total number of clients 
from the waiting queue plus the client which is 
currently served by the station sbp(i,j). When a 
new client arrival is generated, that client is 
randomly assigned to a station belonging to its 

category, according to the Bernoulli 
distribution. Let the index of this station be 
sbp(i,k) and the the probability for the client of 
class i to be assigned to station k is denoted as  

psbp(i,k) ( }2,1{i , ))}(,(),...,1,({ inbpisbpisbpk  ). 

Generating psbp(i,k) corresponds to generate the 
random variable X(i): 
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Proof. Firstly, we assume that }2,1{ ,1)(  iinbp . 
If ),(),( linckinc  , then we have the inequality 
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For 1)( inbp  the proof is straightforward. 

Remark 1 . The theorem actually shows that 
the quantities psbp(i,k) define a probability 
distribution.  

The server entity is the m+n parallel stations 
ensemble. We use the notation: 
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Any station is characterized by:  

Ctime(sbp(i,j)) which is the serving finish event 
time of sbp(i,j)-server; if the server is idle, then 
Ctime(sbp(i,j))= ; sbp(i,j) is in laziness if:  

Ctime(sbp(i,j))=   and  nbp(i)=1. 

For k {sbp(i,j),i{1,2},j {1,..,nbp(i))}, 
Tsc(k) is the service time of  the kth station. 

The bidimensional vector Ts(sbp(i,j),k) 
contains the service time of the kth client joined 
to  station sbp(i,j), k {1,..,nc(sbp(i,j))}. 

Remark 2 . The discrete events simulation is 
based on the “next event” (or “minimum time”) 
rule. In our case, the time of the next event is 
given by: } ,=i,ip(i))/iCtime(sbp({Atime )21,min  

where ip(i) is the index of the first server from 
class i that finishes the service. The time of the 
last event is denoted by Ltime. If 

} ,i=(i,ip(i))/{Ctime(sbp Atime 21min  

then the next event is an arrival and it will be 
processed as follows: we generate the random 
variable B, whose value i (i{1,2}), 
corresponds to the category of the newly come 
client. Then a value is generated for the random 
variable X(i). If there is an idle server, this one 
will immediately serve this client. The value 
Stime is generated and the total servers laziness 
time is updated. If there are inactive servers and 
the adding of a new server condition is 
fulfilled, i.e. if )()( inrstinbp  and  
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then an inactive station of the minimum index 
will serve the new client and the total 
customers waiting times per type is updated; 
also, we add a new column to the 
bidimensional array X(i) corresponding to the 
newly added station sbp(i,nbp(i)), having the 
associated probability 1/(nbp(i)-1). If the 
condition corresponding to adding a new 
station is not fulfilled, then the client joins to 
the queue given by the selection value of the 
variable X(i). If 

} ,i=(i,ip(i))/{Ctime(sbp Atime 21min  

then the next event is service finishing by one 
of the two sbp(i,ip(i)) stations. In this case, the 
following actions take place:  

 if 1))(,(( iipisbpnc (i.e. there are clients 
in the queue of the respective station), then 
the first client will be served; 
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clients in the queue of the respective 
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 if 0))(,(( iipisbpnc (i.e. there are no 
clients in the queue of the respective 
station) and 1)( inbp then the station will 
be in laziness. 

 if 0))(,(( iipisbpnc , i.e. there are no 
clients in the queue of the respective 
station), and 1)( inbp  and 
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then this station will serve one client from 
other station. Thus we allow a client to 
migrate to a different station. 

Determining the station from which a client 
migrates. For each active station sbp(i,j) 
(j {1,..,nbp(i)}) we compute dij=|sbp(i,ip(i))-
sbp(i,j)|, the L1 distance between stations 
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as the probability of choosing a client currently 
in the waiting queue of station sbp(i,j) as a 
migrated client.  

Theorem 2.  The set 
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For the later statement of the theorem we note 
that 
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The station providing the migrating client is a 
the value generated by the random         
variable Y(i). 

For the later statement of the theorem we note 
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is to say that ),(),( jisbplisbp pp  . 

The station providing the migrating client is a 
the value generated by the random          
variable Y(i). 

Selecting the client to be served. Let ),( lisbp  
be the value of the random variable Y(i), i.e. the 
index of the station from whose waiting queue 
the client is to be migrated. The count of the 
clients assigned to station ),( lisbp is 

1)),(( lisbpnc . The index of the client to 
migrate, is given by the random variable 
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that is any client from the waiting queue has the 
same probability to migrate. 

Remark 4. We define a simulation cycle as 
being one of the two actions: updating the 
arrival; finishing the service. The simulation 
proceeds by the looping cycles, until the 
number of simulated arrivals exceeds the given 
value denoted by Tnra. Because the arrival 
flow is less than the services flow (otherwise 
the length of the queue increases indefinitely) 
and if the value of Tnra is sufficiently large, 
almost all clients will be served, and the 
number of services is less than or equal with 
Tnra.  So, the maximum number of cycles is no 
more than 2·Tnra. 

Adding a new station. Let  
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be the number of the inactive stations, let 
slp(i,j) (i{1,2}, j{1,.., nlp(i)}) be the array 
containing the indexes of inactive stations. 
Choosing the station to be added can be 
performed according to any of the following 
two approaches: 

 i) randomly, by considering that any inactive 
station can be chosen with the same 
probability. In this case we use: 
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The index of the station to be activated is the 
actual value generated for the random    
variable T(i). 

ii) the first element from the vector slp(i)         
is considered. 

At the end of simulation, the system efficiency 
factors are computed: the average of the 
waiting time in the queue, the average of the 
length of the queue, the average of the serving 
time of the clients, the average of the laziness 
coefficient of the stations. 

3. The Algorithm’s Description and 
the Complexity Study 

The following procedure describes in 
pseudocode the main part of the simulation 
algorithm. The fine-grain actions are grouped 
as procedures called from the main procedure.  

 

 

The Arriv procedure below simulates new 
arrival in the system. This procedure performs: 
generation of a Bernoulli random value i 
corresponding to the client’s class ([2]), 
generation of a random value for X(i) giving 
the station index that will serve the new client, 
and finally generation of the delay to the next 
arrival and the serving time for the client. Also, 
the following variables are updated: the waiting 
time of the existing clients, the laziness time for 
the stations, the Ltime(i) and Atime 
corresponding to the time of the last event for 
class i and to the next arrival, respectively. If 
necessary, a new station is added by calling the 
AddStation method. 

 

Procedure Sim(Tnra,lmax,lmin,…); 
{block 1}{System initialization} 
Read(Random generation Parameters); 
sbp(1,1)1;sbp(2,1)m+1; 
Atime0;Nra0; 
for j=2 to m do slp(1,j)j endfor; 
for j=m+2 to m+n do slp(2,j)j 
endfor; 
for i=1,2 do 
 Tl(i)0;nbp(i)1;nc(sbp(i,1))0; 
 Ctime(sbp(i,1));busy(sbp(i,1))0;
 Ltime(i)0 
endfor; 
for j=1 to m+n  
 Tw(j)0;Tts(j)0;Nrs(j)0 
endfor; 
X(1)(1,1)1;X(1)(2,1)1; 
X(2)(1,1)1;X(2)(2,1)1 
{end block 1} 
{block 2} 
Arrival(B,X,IntArriv,Nra,Atime,Stime) 
{end block 2} 
{block 3}while NraTnra do 
{ip(i)=the index of the first server 
from class i that fin. its service} 
   {block 3.1} 
   for i=1,2 do     ip(i)sbp(i,1);  
     for j=2 to nbp(i) do  
      if ctime(ip(i))>ctime(sbp(i,j)) 

 then ip(i)sbp(i,j)  
       endif    
     endfor 
   endfor; 
    {end block 3.1} 
    {block 3.2} 

  if Atimemin{Ctime(ip(i))/i=1,2}  
     then {Arrival of a new client} 
Arriv(B,X,IntArriv,Nra,Atime,Stime) 

else 
{a station finishes serv.a client} 
 If Ctime(ip(1))<=Ctime(ip(2))  

 then FinishService(1) 
  else FinishService(2); 
 endif; 
  endif; {end block 3.2} 
endwhile; {end block 3} 
{block 4}{Comp. eficiency factors} 
Ltmax{Ltime(1),Ltime(2)}; 
for j=1 to m+n 
 MQueue(j)Tw(j)/Lt;{Avg. length of  
the queue from the station j} 
 MClen(j)Tlen(j)/Lt;{Laziness 
coefficient for station j} 
 MTs(j)TTss(j)/Tnrs(j); {Average of 
serving time for station j} 
 MTw(j)Tw(j)/Nrs(j);{Average of 
waiting time for station j} 
endfor;          
Write(Mtw, MTs, MClen,Mqueue)) 
{end block 4} 

Procedure Arriv 
(B,X,IntArriv,Nra,Atime,Stime) 
{The total waiting times updating} 
{block 1} 
for k=1,2 do  
 for j=1,nbp(k) do   
Tw(sbp(k,j))Tw(sbp(k,j))+ 
+nc(sbp(k,j))*(Atime-Ltime(k)) 
  endfor 
endfor 
{end block 1} 
{block 2}Gen(IntArriv);Gen(B,i); 
{i=client class} 
Ltime(i)Atime; Nra Nra+1; 
AtimeAtime+ IntArriv;Gen(Stime); 
if (nbp(i)=1) and (Ctime(sbp(i,1)=∞)) 
    then {There is an idle server } 
Tlen(sbp(i,1))Tlen(sbp(i,1))+ 
               +(Atime-Ltime(i)) 
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The following AddStation procedure is 
called when the new arrival is simulated. It 
computes the number of clients that are in the 
station’s i queue and it decides whether a new 
station should be added. The choice upon 
which free station should be activated is made 
by the procedure Choice. 

 

The FinishService procedure from below 
performs updates when a station finishes 
serving a client. The following are updated: the 
total waiting time values, the total serving time 
values for each station, the total number of 
served clients for that station, the time of the 
last event.  

  

    Tw(sbp(k,j))Tw(sbp(k,j))+ 
    nc(sbp(k,j))*  
    *(Ctime(ip(i))- Ltime(i)) 
 endfor endfor;{end block 1} 
{block 2} 
Ltime(i)Ctime(ip(i)); 
{Updat. the total working time and the 
number of services} 
Nrs(ip(i))Nrs(ip(i))+1; 
Ttss(ip(i))Ttss(ip(i))+ +Tsc(ip(i));
If (nc(ip(i))>1) then {1} 
{ip(i) will  serve the first  client 
from its queue}{block 2.1} 

 Ctime(ip(i))Ctime(ip(i))+       
 + Ts(ip(i),1) 

    Tsc(ip(i))Ts(ip(i),1) 
{the client to be served is 
removed from the queue} 

    for j:=1 to nc(ip(i))-1 do  
     Ts(ip(i),j) Ts(ip(i),j+1)    
    endfor 
    nc(ip(i))nc(ip(i))-1 

{end block 2.1} 
{block 2.2}{Upd.the var. X]  
if nbp(i)>1 then  

{2}{Many active Stations} 
 for j:=1 to nbp(i) do  
   X(i)(2,j)  

((1-nc(sbp(i,j)))/ Sum(nc,sbp(i))/ 
(nbp(i)-1)  
  endfor 

else  
{2}{a single active station} 

        X(i)(2,nbp(i))1 
endif{2}{end block 2.2} 
else  

{1}{Empty queue of the station ip(i)} 
{block 2.3}  if nbp(i)=1 then  
{3}{the station ip(i) becomes lazy} 
      sbp(i,1)ip(i);Ctime(ip(i)) 

 else{3} 
if Sum(nc,sbp(i))/nbp(i)<lmin(i)and 
(nbp(i)>1) then 
 {4}{the stat.ip(i) becomes inactive} 
     Ctime(ip(i));  j1 
 while(jnbp(i))and (sbp(j)<>ip(i))do 
       jj+1   
 endwhile 
{ip(i) is added to the inact. stat.} 
   nlp(i)nlp(i)+1;slp(nlp(i))ip(i)
{ip(i) is rem.from the active stat.} 
  for k=j,nbp(i)-1 do 

sbp(i,k)sbp(i,k+1);        
nc(i,k)nc(i,k+1) 

  endfor 
   nbp(i)nbp(i)-1 {Updating X(i)} 
  for j:=1 to nbp(i) do 
    X(i)(1,j)sbp(i,j); 
    X(i)(2,j)((1-nc(sbp(i,j))) 
/Sum(nc,sbp(i)))/(nbp(i)-1) 
   endfor 
   else {4}{the station’s index 
from which a client is moved} 

S(i)0; 
for j=1,nbp(i) do 

{Total laziness time of the servers 
updating; the newly arrived customer 
will be immediately served} 
  Ctime(sbp(i,1))Atime+Stime; 
  Tsc(sbp(i,1))Stime 

else 
AddStation(X(i)); 
{update r.v. X} 
Gen(X(i),k);{k= the station that 
will serve the arr. client} 
if nc(sbp(i,k)))=0 then  

Tsc(sbp(i,k))Stime 
{immediately served} 

   else  
{the client is queued at station k} 

nc(sbp(i,k))))nc(sbp(i,k)))+1; 
Ts(sbp(i,k),nc(sbp(i,k)))Stime 
 endif; 

endif. 

Procedure AddStation(i) 
Sum0; 
{The total number of clients at the 
station class i} 
for k=1,nbp(i) do 
SumSum+nc(i,sbp(i,k)) 
endfor; 
if i=1 ttsm else ttsn endif; 
if nbp(i)<tts and Sum/nbp(i)>lmax(i)  
  then 
 nbp(i)nbp(i)+1;c(sbp(i,nbp(i)))0;
 sbp(i,nbp(i)))Choice(i); 
 X(i)(nbp((i),1) sbp(i,nbp(i))); 
 X(i)(nbp(i),2)1 
endif. 
Procedure Choice(i) 
for k=1,nlp(i) do  

 Z(i)(1,k)slp(i,k); 
 Z(i)(2,k)(1/nlp(i)); 

endfor; 
return(Gen(Z(i)) 

Procedure FinishService(i) 
{The total waiting times is updated} 
{block 1}for k=1,2 do 
  for j=1,nbp(k) do           
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The full computation of the simulation’s 
complexity is given in the extended version of 
this paper (see 
http://cs.unitbv.ro/~lmsasu/pub
lications/artflo2012.pdf).The total 
complexity of the simulation is O(Tnra2). 

4. An OO Implementation 
While the pseudocode presented in section 3 is 
suitable for understanding the whole process 
and for computing the algorithm’s complexity, 
it is obvious that when performing a concrete 
implementation, an object-oriented (OO) 
design is a more productive approach compared 
to classical procedural programming. 
Conceiving the classes as being responsible for 
well-defined behavior allows one to obtain a 
natural design of the problem domain. In the 
extended version of this paper (see 
http://cs.unitbv.ro/~lmsasu/pub
lications/artflo2012.pdf), we give 
a full description of the classes that resulted 
from the OO design.  

5. Validity of the Algorithm and 
Practical Considerations 

In the following we consider 30000 arrivals 
simulated. Also, we use the denotations 
specified around the paper. The inter-arrival 

time and serving time are exponential negative 
distributed, with λ respectively μ parameters. 
The above mentioned implementation was used 
to obtain the statistics for various scenarios. We 
considered five scenarios. 

i) Case 1. m=1, n=1, p=0.5, λ=0.5, 
μ=1;lmin(1)=lmin(2)=lmax(1)= =lmax(2)=1. 

Table 1. The results for case 1 

Efic. factor Class 1 Class 2 
Length Avg 0.0007 0.0006 
LazCoefAvg 0.9749 0.9749 
ServTimeAvg 1.0049 1.0048 
WaitTimeAvg 0.0260 0.0259 

ii)Case2.m=3,n=2,p=0.6,λ=0.5,μ=0.2 
lmin(1)=lmin(2)=2,lmax(1)= lmax(2)=5. 

Table 2. The results for case 2. 

Eficiency factor Class 1 Class 2 
Length Avg 0.938 0.788 
LazCoefAvg 0.018 0.092 

ServTimeAvg 4.989 4.984 
WaitTimeAvg  9.130 7.930 

iii) Case 3. m=3,n=2,p=0.5,λ=0.5, 
μ=0.2,lmin(1)=lmin(2)=2,lmax(1)=lmax(2)=5. 

Table 3. The results for case 3 

Eficiency factor Class 1 Class 2 
Length Avg 0.745 1.196 
LazCoefAvg 0.031 0.048 

ServTimeAvg 4.987 4.977 
WaitTimeAvg  8.337 9.544 

iv) Case 4.  m =3,n=2,λ=0.5, μ=0.2, p=0.5, 
lmin(1)=lmin(2)=2, 
lmax(1)=lmax(2){5,…,10}. The results are 
given in figures 1, 2 and 3 (see 
http://cs.unitbv.ro/~lmsasu/publications/artflo2
012.pdf). 

v) Case 5. m=3,n=2,p=0.5,λ=0.5, 
μ=0.2;lmax(1)=lmax(2)=8,lmin(1)=lmin(2){
2,…,7}.The results are given in figures 4, 5 and 
6 (see 
http://cs.unitbv.ro/~lmsasu/publications/artflo2
012.pdf). 

Remark 4.   
 in i), the results are approximately equal 
with those obtained for the corresponding 
model with fixed number of stations considered 
in [5]. 

 by comparing the results corresponding to 
cases 2 and 3 for the first class of clients, it can 
be seen that the average length of the waiting 
queue and the average value of the waiting time 
for iii) are smaller than the corresponding ones 

        d(i,j) abs(sbp(i,j)-    
        -sbp(i,ip(i))); 

  S(i)S(i)+d(i,j) 
endfor 

     for j=1,nbp(i) do 
      Y(i)(1,j)sbp(i,j); 

 Y(i)(2,j) 
(1-d(i,j)/S(i))/nbp(i)-1) 

      endfor 
      Gen(Y(i),sbp(i,l)); 
{Generates the client to be served} 

for j=1,nc(sbp(i,l))-1     do 
Z(i)(1,j) j;  

   Z(i)(2,j)1/(nc(sbp(i,l))-1) 
      endfor 

Gen(Z(i),p); 
Ctime(ip(i))Ctime(ip(i))+       
+Ts(sbp(i,l),p) 

 Tsc(ip(i))Ts(sbp(i,l),p) 
{remove from the queue the client to 
be served} 
 for j=p,nc(sbp(i,l))-2 do             
    Ts(sbp(i,l),j)Ts(sbp(i,l),j+1) 
 endfor 
{Update the variable X} 
  X(i)(2,nbp)1 
  endif{4} 
 endif{3}{block 2.3} 
endif{1} 
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from ii), while the average of the waiting time 
is lower for ii). This is explained by the higher 
probability for a client to belong to the first 
category for ii), and hence the same number of 
working stations can be required by a larger 
number of clients. 

 if Lmax(i) decreases, then both the 
average length of the queue (Figure 1) and the 
average value of the waiting time (Figure 2) 
decrease. In turn, the laziness coefficient grows 
(see Figure 2). This is explained as follows: 
when Lmax(i) decreases the frequency of 
adding a new station increase and so the 
number of effectively working stations grows.  

 If lmin(i) grows then generally the 
average length of the queue (Figure 4) and the 
average of waiting time (Figure 6) grows. In 
turn, the laziness coefficient decreases (Figure 
5). This occurs because a station will become 
inactive more frequently. 

6. Conclusions 
In this paper we have presented a simulation 
algorithm for queuing system in which every 
station has its own queue and in function of the 
client’s type, the stations are divided in two 
categories. Also, we have a dynamic number of 
the active servers. This model can be extended, 
by considering any number of station 
categories. So, besides the considered Bernoulli 
distribution, whose generated selection value 
indicates the chosen station category, any 
discrete random variable of the form 

 2
 ..

1...   0

10





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

 



k
pp

k

k

, in which )1,..,0(  kipi  

represents the probability of choosing of the i 
station category and, obviously the choosing 
category will be a generated value of this variable.  

For this queuing system type there aren’t 
analytical solutions; so the simulation study is 
the only possible way. Also, two possible ways 
have been taken in consideration in the 
finishing of the serving station: the station 
becomes idle or it will serve a different client 
from other station’s queues, the station and the 
client being selected based on a random 
mechanism. The simulation results show that 
the efficiency factors of the system have better 
values in the second case. 
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