
Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 155

1. Introduction

The most common technique for training neural
networks is by studying the variations of the
gradient descent. This technique suffers from
well known problems, essentially local minima.
Hence, there is a need for more efficient and
effective methods to determine network
weights and structure of NN. These methods
combine another biologically inspired
technique, the technique of genetic algorithms
with neural networks.

Developed by John Holland [3], a genetic
algorithm is a biologically inspired search
technique. In simple terms, the technique
involves generating a random initial population
of individuals, each of which represents a
potential solution to a problem. Members of the
population are then selected for reproduction
based upon fitness function, and a new
generation of potential solutions is generated.
The process of evaluation, selection, and
recombination is iterated until the population
converges to an acceptable solution.

Several hybridization of genetic algorithm and
neural network exist; the most common among
them are the determination of network weights
by the use of genetic algorithms [7], [11], [14]
and the evolutionary design of the network
architecture [1], [4], [l0], [12], [15].

Evolutionary methods have found applications
that span the range of architectures for intelligent

robotics. For example, evolutionary algorithms
have been used to learn rule sets for rule-based
autonomous agents, topologies and weights for
neural nets for robotic control [8], [9], [14],
[15] fuzzy logic control systems [19], and rules
for behaviour-based robots [13], [2].

In this paper, the NN is learned with EA and is
using Internal Model Control (IMC) structure
in order to benefit from performances of each
one of them to control a wheelchair for
disabled people. Inverse and direct neural
models of the wheelchair are elaborated and a
trajectory tracking is realised.

We have chosen IMC strategy of control
because it constitutes a powerful strategy of
control for complex systems, thanks to its
simplicity of implementation, its robustness
toward the errors of modelling and its facility
of adjustment. [20]

We make lateral control for position and
direction of the wheelchair for disabled people
from angle control u. The speed of the
wheelchair will be considered low and constant.
This is justified by the fact that the wheelchair is
not subject to run at variable and high speed.
Thus, dynamic model will not be considered.

Learning for modelling will be performed by
two techniques:

 Standard: back propagation gradient.

 Evolutionary: hierarchical genetic algorithm.

Evolutionary Method for Designing and Learning
Control Structure of a Wheelchair

Imen BEN OMRANE1,2, Abderrazak CHATTI1, Pierre BORNE2
1 Institut National des Sciences Appliquées et de Technologie INSAT,

Centre Urbain Nord BP 676, Tunis, 1080, Tunisia,
imenbo7@yahoo.fr, pierre.borne@ec-lille.fr.

2 Ecole Centrale de Lille ECLille,
Cité Scientifique Villeneuve-d'Ascq, Lille, 59650, France,
abderrazak_chatti@yahoo.fr

Abstract: This article describes an aspect of evolutionary robotics for trajectory tracking. We will combine genetic
algorithms with neural networks for modelling and controlling a wheelchair for disabled people. The interest of the
hybridization of Neural Networks (NN) with Evolutionary Algorithms (EA) in robotics is based on the observation that a
local search by a gradient descent method is replaced by a global search performed by EA. The gradient descent methods
are subject to variations in performance due to the initial position of the NN, which sometimes leads to a convergence
towards local minima. In contrast, the proposed evolutionary methods provide a global research of both the structure and
the weights of the neural net. The control structure used for robot trajectory tracking control is based on the Internal
Model Control (IMC) which direct neural model was learned with our new EA.

Keywords: Evolutionary Robotics, trajectory tracking, evolutionary algorithms, Neural Networks, direct neural model,
mobile robots, wheelchairs, Internal Model Control.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 156

The evolutionary method has simultaneously to
determine the structure of NN and to learn it by
minimizing the squared error





N

i
rd SSJ

1

2)(
2

1

Sd is a desired output and Sr a network output.

We will compare these two methods of learning
by simulating prediction error. Finally, we apply
the IMC using the models already developed.

2. Simulation Model of
the Wheelchair

For wheelchair model, we used the kinematic
model with differential drive, which is valid in
perfect adhesion conditions.

Figure 1. Wheelchair Model

Kinematics of a wheelchair with differential
drive is defined by a Jacobian matrix J(θ) that
transforms tangential and angular velocities
expressed in the coordinates of the wheelchair
base to its velocities expressed in global
Cartesian coordinates (Figure 1):

The coordinate (x,y) gives the position of the
wheelchair in the Cartesian space and  angle
position of the latter from the x-axis (Figure 1).

(xr,yr) is the reference position in cartesian
space, θr is the reference robot orientation, and
vr is the reference tangential velocities.

3. Evolutionary Algorithms
Proposed to Simultaneously
Determine Weights and
Structure of a Neural Network
for ROBOTIC

The natural evolution has created very complex
biological systems adapted to many conditions.
Its mechanisms are based on the principle of
competition between individuals. The best
adapted individuals survive and can create
descendants who spread their genes.

Instead of using back propagation to train the
networks over and over again, it seems to be a
valid idea to have the evolutionary algorithm
(EA) search for both structure and
weights simultaneously.

EA have different classes which differ only on
the implementation details of operators and the
procedures for selection and population
replacement. In our work, we used a class of
EA, which is the hierarchical genetic algorithm
(HGA). This choice based on that HGA is used
for optimization of both the weights and
structure of NN. The advantage of this
approach is that genes of chromosome are
classified into two categories (hierarchy). This
is representing the order relations between:

 network layers,

 number of neurons (input, hidden, output)

 connection weights

Each chromosome consists of two types of genes:

 control genes (bits or integer) for the
activation of neurons in the hidden layer,

 genes connections (real) for the
determination of synaptic weights

3.1 Wheelchair neuronal model

The neural control structure that we apply,
IMC, requires direct and inverse models of the
wheelchair. Direct model was learned using
standard back propagation gradient and
evolutionary technique which is HGA. Then,
we compare the performance of the various
individuals to select the one with the nearest
behaviour to the real system.

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 157

3.1.1 Direct neural model

Identify direct neural model which can
reproduce outputs x, y,  close to those of a
wheelchair for the same control angle u.

Figure 2. Direct Model wheelchair

To design a model of the wheelchair, we follow
the steps indicated below in making the
necessaries choices;

 Choice of representation: Input Output
representation

 Choose of noise assumption: we choose
NARX model,

 Choice of model order: it is a system of
order greater than one we choose for those
two previous outputs and two previous
inputs in the regressor.

a) Choice of network architecture

The system model is a multivariable, (MIMO)
one. It contains one input and three outputs
coupled. So we have selected a network
composed of three sub-networks, each one
related to a given output, and which takes into
account the coupling between the three outputs.
See Figure 3.

The network predictor performs three
functions. The nonlinear regressor of each of
these functions contains the past values of the
control input and of three output variables as
follows:

xr(k)=1 (x(k-1), x(k-2),y(k-1), y(k-2), (k-1),
(k-2), u(k-1), u(k-2); C1)

yr(k)= 2 (x(k-1), x (k-2), y(k-1), y(k-2), (k-
1), (k-2), u(k-1), u(k-2); C2)

r(k)= 3 (x(k-1), x(k-2), y(k-1), y(k-2), (k-1),
(k-2), u(k-1), u(k-2); C3)

Where:

 xr, yr, r: neural outputs,

 x, y, : system outputs,

 1, 2, 3: functions of network,

 C1, C2, C3: sub network parameters.

b) Back propagation learning

The value of learning rate is chosen μ = 0.1 and
the maximum number of iterations is 500.

Validation of the model is found after learning
by applying to the network inputs the test
sequence and comparing outputs with the
desired one.

We evaluate the performance of the model
found by calculating the prediction error for
each output which represents the generalization
error of each sub-network.

Figure 3. Neural Network Architecture

Wheelchair Direct
Model

x
y u



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 158

Figure 4 represents respectively the vectors of
inputs and outputs and also shows the
prediction error on each output.

We note that network outputs follow the
evolution of the references, but they have
several differences. Indeed, the prediction error
goes up to 0,6 m for x and y, and 20 rd for .

The difference was large enough to prove the
bad quality of the model. So we will try to train
this direct model by using another method
which is HGA.

c) Hierarchical genetic algorithm learning

We construct a HGA which generates various
structures and selects a structure of a Multi

Layer Perceptron (MLP) with one hidden layer.
The MLP selected would be the best one that
satisfies the criterion.

The number of neurons in the hidden layer and
the different weights of the connections are
given after evaluation of a cost function. This
function to minimize corresponds to the
following quadratic criterion:

 
2

1

1



N

i
idi yy

N
J (3)

Figure 4. Back Propagation: inputs/outputs sequences and prediction error

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 159

with:

 N: Number of examples,

 ydi: process Output,

 yi: neural network output of neurone i.

Our algorithm will go to several architectures
of neural network and will train it.

a. Coding

Our chromosome is represented by a matrix.
The first line is encoded in binary: "1" if the
hidden layer neuron is considered and "0" if it
is ignored. Remaining lines contain real
numbers that represent the input and output
weights of our NN.

When knowing the system inputs and outputs
number, the matrix size is fixed. The direct
neural model (DNM) that will be trained has 8
inputs and 3 outputs (Figure 5).

The maximum number of neurons (number of
columns) that may contain the hidden layer is
set by the user. We have considered a
maximum of 15 hidden neurons.

For creating the sub network, we will make
some treatment: we consider the activated
hidden neurons and we distribute it for outputs
(x, y and )

We have started with an initial population of
100 individuals, each of which represents a
structure of NN.

For each individual, we calculated the cost
function J. Only the best 10% individuals pass
to the next generation, 70% following
individuals were created by crossing and the
remaining 20% by mutation. Figure 6 illustrates
the obtained results.

b. Initial population

It is necessary to create and maintain sufficient
genetic diversity in the population. For this
reason, the initial population should be as
heterogeneous as possible to prevent premature
convergence. So, we have opted to randomly
generate n individuals of the initial population.

But not having a search space far from the
minimum desired and to minimize the search
time, we decided to inject into the initial
population a number of individual from
backpropagation learning.

c. Selection.

We select groups of individuals based on their
evaluation by the function J. Individuals having
the lowest cost function will be selected.

d. Crossover and mutation

The genetic operators we create can change
both the structure of the NN and the weights of
the various existing connections. This produces
different architectures taken into consideration
during the learning.

We have used 2 crossover types:

The first one was called INTRA. This one
changes both; structure and weights of NN.

Example:

We choose randomly 2 parents and a crossover
point to create 2 children. See Figure 6.

The children created present 2 different NN in
the population.

The second one was called INTER. This
crossover will only change weights of NN but
not the structure of NN. The structure which is

Figure 5. Illustration of the chromosome coding

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 160

presented by the first line of chromosome is
still unchanged. See Figure 7.

For mutation, we choose to modify the
structure only by changing one bit (which
represents neuron) in the first line of
chromosome (0 to 1 or 1 to 0). See Figure 8.

e. Results

We have run our HGA for 200 generations. So it
creates 200*100=20000 individuals, which
means 20000 structures of NN. The best solution
is illustrated in Figure 9. The number of
considered hidden neurons is 15 and the outputs
connections of hidden layer were changed. S

 Crossover point

Parent1 Parent2

1 0 0 1 1

W11e W21e W31e W41e W51e

W12e W22e W32e W42e W52e

W1s1 W1s2 W1s3 W1s4 W1s5

0 1 0 0 1

W11e W21e W31e W41e W51e

W12e W22e W32e W42e W52e

W1s1 W1s2 W1s3 W1s4 W1s5

Child1 Child2
1 1 0 0 1

W11e W21e W31e W41e W51e

W12e W22e W32e W42e W52e

W1s1 W1s2 W1s3 W1s4 W1s5

0 0 0 1 1

W11e W21e W31e W41e W51e

W12e W22e W32e W42e W52e

W1s1 W1s2 W1s3 W1s4 W1s5

Figure 6. Illustration of “Crossover INTRA”

Parent Child

1 1 0 0 0 1 0

W11e W21e W31e W41e W51e W11e W21e

W12e W22e W32e W42e W52e W12e W22e

1 1 0 0 0 1 0

W12e W22e W32e W42e W51e W11e W21e

W11e W21e W31e W41e W52e W12e W22e

Figure 7. Illustration of “Crossover INTER”

Parent Child
1 0 0 1 1

W11e W21e W31e W41e W51e

W12e W22e W32e W42e W52e

W1s1 W1s2 W1s3 W1s4 W1s5

1 0 1 1 1

W11e W21e W31e W41e W51e

W12e W22e W32e W42e W52e

W1s1 W1s2 W1s3 W1s4 W1s5

Figure 8. Illustration of “Mutation”

Figure 9. New Neural Network Architecture

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 161

The validation of the model is found after
learning by applying the test sequence to the
network input and comparing output with the
desired one.

We evaluate the performance of the obtained
model by calculating the prediction error for
each output which represents the generalization
error of each sub-network.

Figure 10 represents respectively the vectors of
inputs and outputs, and also shows the
prediction error on each output.

We note that the three outputs of the network
follow the crowd of references. The neural
direct model was very much improved;
however, we note the presence of one or two
gaps in the prediction error.

Comment: To learn our NN, HGA running
takes several times as a consequence of size
of the chromosome and size of population.
But, by considering the considerable
minimisation of the error compared to
standard Back propagation learning, we can
consider that the time is a false problem.

3.2 Inverse neural model

The aim is to approximate the inverse model of
the wheelchair: the function giving the control

instruction from the desired displacement.

The principle of the model development is to
provide for every step t the angle d
(difference between reference orientation and

Figure 10. HGA: inputs/outputs sequences and prediction error

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 162

current orientation of the robot) and the
distance r to be performed by the robot to reach
the reference point of the trajectory, and to
determine the control u to apply.

Figure 11. Moving the robot

on the reference trajectory

Figure 12. Inverse model

For the conception of the MNI, we will make
the necessary choices including: for the
regressor: [r (k) r (k-1) r (k-2) dθ (k) dθ (k-1)
dθ (k-2) u(k-1) u (k-2)] and for the architecture,
a multilayer MLP network.

Simulations

We have represented the results of simulation
of the network output for the test sequence and
the generalization error for a value of μ = 0.2
and a maximum number of iterations equal to
100. Figures 13a and 13b show respectively the
simulation results and the variance of the error
for a simple version of the gradient.

According to these figures, we note that the
network output follows the desired output well
with back propagation algorithm. It gives quite
good results with an error variance of 0.033.

1.3 Internal model control for the
wheelchair path tracking

Since 1982, the Internal Model Control
constitutes a powerful strategy of control for
complex systems, thanks to its simplicity of
implementation, its robustness toward the errors
of modeling and it facility of adjustments.

We apply, in what follows, the robot controller
for the wheelchair trajectory tracking. We use
for this the inverse and direct models generated
previously. We use the direct model improved
by HGA.

a) b)

Figure 13. Inverse Model Validation

Figure 14. Structure for Internal Model Control

Inverse Model r

d

u

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 163

Internal Model Control is a structure that
allows the error feedback to reflect the effect of
disturbance and system mis-modeling.

So as not to clutter the diagram, we will present
only one control loop on a single output y. See
Figure 14.

The output y(t) is the output of the physical
system, which is the sum of the ideal signal
y*(t) and additive noise on its output d(t).

The dotted block calculates the entries from the
INM reference to y*ref and the ideal output of
the system represented by the output of DNM.

In our case, there is no noise output since it uses
a simulation model, d(t) = 0, then we have:

e(t) = y(t) - y(t) = y*(t) - y(t).

The bloc Calculation of r and dθ made the
following equation

2 2r x y= D +D

Where Δx = xref – x and Δy = yref – y

tan()

ref

ref

d

y
a

x

q q q

q

= -

D
=

D

INM output is the control command u(t) which
makes the movement of wheelchair.

Figure 15 shows the trajectory tracking for
internal model control using the direct model
established by HGA and the inverse one
learned by backpropagation.

Figure 15. Tracking Z trajectory

A second simulation for a circular path has
been made and shows that the robot reaches the
trajectory and follows properly Figure 16.

Figure 16. Tracking circular trajectory

We note that the trajectory followed by the
wheelchair is perfect, showing that the wheelchair
follows the form of the desired trajectories.

4. Conclusion

Usually, the modelling errors of direct model
whose outputs are not ideal influence the
outcome of the control. Indeed, for the direct
model, we tried to improve learning and avoid
local minimum. The evolutionary approach,
which enables to improve both the structure
and the weights of the network, allowed us to
lead to very good results. As shown in Figure 4
and Figure 10, HGA decreased the prediction
error, compared to that of backpropagation
gradient. So a local minimum was avoided and
the DNM improved.

So having established a “perfect” direct model
with our approach HGA, we observe from
Figure 15 that the trajectory tracking is very
satisfying. It realizes a good tracking of the
desired trajectory.

REFERENCES

1. ANGELINE, P. J., G. M. SAUNDERS, J.
B. POLLACK, An Evolutionary
Algorithm that Constructs Recurrent
Neural Networks, IEEE Transactions on
Neural Networks, Vol. 5, No. I, 1994.

2. IMEN, A., A. CHATTI, Reactive Control
Using Behavior Modelling of a Mobile
Robot, International Journal of Computers,
Communications & Control, Vol. II, No. 3,
2007, pp 217-228.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 164

3. HOLLAND, J., Adaptation in Natural
and Artificial Systems. Ann Arbor: The
University of Michigan Press, 1975.

4. ESPARCIA-ALCDZAR, A., K. SHARMAN,
Evolving Recurrent Neural Network
Architectures by Genetic Programming.
In Genetic Programming 1997: Proceedings
of the Second Annual Conference.

5. FATTOUH, A., Y. DADAM, D. PAHM,
Matlab Based 3D Dynamic Model of a
Powered Wheelchair, Innovative
Production Machines and Systems
Conference, 2008.

6. BONCI, A., S. LONGHI, A. MONTERIU,
M. VACCARINI, Navigation System for
a Smart Wheelchair, Journal of Zhejiang
University SCIENCE, 2005.

7. KRISHNAN, R., V. B. CIESIELSKI,
2DELTA-GANN: A New Approach to
Training Neural Networks Using Genetic
Algorithms. In Proceedings of the Fifth
Australian Conference on Neural
Networks, 1994.

8. MEYER, J. A., Evolutionary Approaches
to Neural Control in Mobile Robots,
Systems, Man, and Cybernetics, IEEE
International Conference Vol. 3, 1998,
pp. 2418-2423

9. GREFENSTETTE, J. J., Evolutionary
Algorithms in Robotics. In International
Symposium on Robotics and
Manufacturing, New York, 1994.

10. MILLER, G. F., P. M. TODD, S. U.
HEGDE, Designing Neural Networks
using Genetic Algorithms. In Proceedings
of the Third international Conference on
Genetic Algorithms, 1989 (ICGA-89).

11. MONTANA, D. J., L. D. DAVIS,
Training Feedforward Networks using
Genetic Algorithms. In Proceedings of the
international Joint Conference on Artificial
intelligence, 1989 (IJCAI-89).

12. MORIARTY, D., R. MIIKKULAINEN,
Hierarchical Evolution of Neural
Networks. Technical Report A196-242,
Department of Computer Sciences, The
University of Texas, at Austin, Texas,
USA, 1996.

13. PASSOLD, F., Applying RBF Neural
Nets for Position Control of an
Inter/Scara Robot, International Journal
of Computers, Communications & Control,
Vol. IV, No. 2, 2009, pp. 148-157.

14. NADI, A., S. S. TAYARANI-BATHAIE,
R. SAFABAKHSH, Evolution of Neural
Network Architecture and Weights
Using Mutation Based Genetic
Algorithm, Proceedings of the 14th
International CSI Computer Conference
(CSICC09),

15. BEN OMRANE, I., A. CHATTI, Training
a Neural Network Using Hierarchical
Genetic Algorithm for Modeling and
Controlling a Nonlinear System of
Water Level Regulation, Nonlinear
Dynamics and Systems Theory, Vol. 10,
N° 1, 2010, pp. 65-76.

16. OSORIO, R., J. A. ROMERO, M. PEÑA,
I. LÓPEZ-JUÁREZ, Intelligent Line
Follower Mini-Robot System,
International Journal of Computers,
Communications & Control Vol. I, No. 2,
2006, pp. 73-83.

17. CHATTI, A., I. AYARI, P. BORNE, M.
BENREJEB, On the Use of Neural
Techniques for Path Following Control
of a Car-like Mobile Robot, Studies in
Informatics and Control: Vol. 14, No. 4,
2005, pp. 221-234.

18. TANGOUR, F., P. BORNE, Presentation
of Some Metaheuristics for the
Optimization of Complex Systems,
Studies in Informatics and Control : Vol.
17, No. 2, 2008, pp. 169-180.

19. ALASTY, A., H. N. PISHKENARI, S. H.
MAHBOOBI, Trajectory Tracking of a
Mobile Robot Using Fuzzy Logic Tuned
by Genetic Algorithm, International
Journal of Engineering Vol. 19, No. 1,
November 2006, pp. 95-104.

20. BEL HADJ, S. A. NAOUI, D. JARBI, M.
BENREJEB, Neural Internal Model
Control of a Mobile Robot, Journal of
Automation & Systems Engineering, Vol.
2, Issue 3, September 2008.

