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1. Introduction 

The most common technique for training neural 
networks is by studying the variations of the 
gradient descent. This technique suffers from 
well known problems, essentially local minima. 
Hence, there is a need for more efficient and 
effective methods to determine network 
weights and structure of NN. These methods 
combine another biologically inspired 
technique, the technique of genetic algorithms 
with neural networks. 

Developed by John Holland [3], a genetic 
algorithm is a biologically inspired search 
technique. In simple terms, the technique 
involves generating a random initial population 
of individuals, each of which represents a 
potential solution to a problem. Members of the 
population are then selected for reproduction 
based upon fitness function, and a new 
generation of potential solutions is generated. 
The process of evaluation, selection, and 
recombination is iterated until the population 
converges to an acceptable solution. 

Several hybridization of genetic algorithm and 
neural network exist; the most common among 
them are the determination of network weights 
by the use of genetic algorithms [7], [11], [14] 
and the evolutionary design of the network 
architecture [1], [4], [l0], [12], [15]. 

Evolutionary methods have found applications 
that span the range of architectures for intelligent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

robotics. For example, evolutionary  algorithms 
have been used to learn rule sets for rule-based 
autonomous agents, topologies and weights for 
neural nets for robotic control [8], [9], [14], 
[15] fuzzy logic control systems [19], and rules 
for behaviour-based robots [13], [2]. 

In this paper, the NN is learned with EA and is 
using Internal Model Control (IMC) structure 
in order to benefit from performances of each 
one of them to control a wheelchair for 
disabled people. Inverse and direct neural 
models of the wheelchair are elaborated and a 
trajectory tracking is realised. 

We have chosen IMC strategy of control 
because it constitutes a powerful strategy of 
control for complex systems, thanks to its 
simplicity of implementation, its robustness 
toward the errors of modelling and its facility 
of adjustment. [20] 

We make lateral control for position and 
direction of the wheelchair for disabled people 
from angle control u. The speed of the 
wheelchair will be considered low and constant. 
This is justified by the fact that the wheelchair is 
not subject to run at variable and high speed. 
Thus, dynamic model will not be considered. 

Learning for modelling will be performed by 
two techniques: 

 Standard: back propagation gradient. 

 Evolutionary: hierarchical genetic algorithm. 
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The evolutionary method has simultaneously to 
determine the structure of NN and to learn it by 
minimizing the squared error 
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Sd is a desired output and Sr a network output. 

We will compare these two methods of learning 
by simulating prediction error. Finally, we apply 
the IMC using the models already developed. 

2.  Simulation Model of                 
the Wheelchair 

For wheelchair model, we used the kinematic 
model with differential drive, which is valid in 
perfect adhesion conditions. 

 
Figure 1. Wheelchair Model 

Kinematics of a wheelchair with differential 
drive is defined by a Jacobian matrix J(θ) that 
transforms tangential and angular velocities 
expressed in the coordinates of the wheelchair 
base to its velocities expressed in global 
Cartesian coordinates (Figure 1): 

 

The coordinate (x,y) gives the position of the 
wheelchair in the Cartesian space and  angle 
position of the latter from the x-axis (Figure 1). 

(xr,yr) is the reference position in cartesian 
space, θr is the reference robot orientation, and 
vr is the reference tangential velocities. 

3. Evolutionary Algorithms 
Proposed to Simultaneously 
Determine Weights and 
Structure of a Neural Network 
for ROBOTIC 

The natural evolution has created very complex 
biological systems adapted to many conditions. 
Its mechanisms are based on the principle of 
competition between individuals. The best 
adapted individuals survive and can create 
descendants who spread their genes. 

Instead of using back propagation to train the 
networks over and over again, it seems to be a 
valid idea to have the evolutionary algorithm 
(EA) search for both structure and          
weights simultaneously. 

EA have different classes which differ only on 
the implementation details of operators and the 
procedures for selection and population 
replacement. In our work, we used a class of 
EA, which is the hierarchical genetic algorithm 
(HGA). This choice based on that HGA is used 
for optimization of both the weights and 
structure of NN. The advantage of this 
approach is that genes of chromosome are 
classified into two categories (hierarchy). This 
is representing the order relations between: 

 network layers, 

 number of neurons (input, hidden, output) 

 connection weights 

Each chromosome consists of two types of genes: 

 control genes (bits or integer) for the 
activation of neurons in the hidden layer, 

 genes connections (real) for the 
determination of synaptic weights 

3.1 Wheelchair neuronal model 

The neural control structure that we apply, 
IMC, requires direct and inverse models of the 
wheelchair. Direct model was learned using 
standard back propagation gradient and 
evolutionary technique which is HGA. Then, 
we compare the performance of the various 
individuals to select the one with the nearest 
behaviour to the real system. 
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3.1.1 Direct neural model 

Identify direct neural model which can 
reproduce outputs x, y,  close to those of a 
wheelchair for the same control angle u. 

 
 
 
 

Figure 2. Direct Model wheelchair 

To design a model of the wheelchair, we follow 
the steps indicated below in making the 
necessaries choices; 

 Choice of representation: Input Output 
representation 

 Choose of noise assumption: we choose 
NARX model, 

 Choice of model order: it is a system of 
order greater than one we choose for those 
two previous outputs and two previous 
inputs in the regressor. 

a) Choice of network architecture 

The system model is a multivariable, (MIMO) 
one. It contains one input and three outputs 
coupled. So we have selected a network 
composed of three sub-networks, each one 
related to a given output, and which takes into 
account the coupling between the three outputs. 
See Figure 3. 

 

 

The network predictor performs three 
functions. The nonlinear regressor of each of 
these functions contains the past values of the 
control input and of three output variables as 
follows: 

xr(k)=1 (x(k-1), x(k-2),y(k-1), y(k-2), (k-1),    
(k-2), u(k-1), u(k-2); C1) 

yr(k)= 2 (x(k-1), x (k-2), y(k-1), y(k-2), (k-
1), (k-2), u(k-1), u(k-2); C2) 

r(k)= 3 (x(k-1), x(k-2), y(k-1), y(k-2), (k-1), 
(k-2), u(k-1), u(k-2); C3) 

Where: 

 xr, yr, r: neural outputs, 

 x, y, : system outputs, 

 1, 2, 3: functions of network, 

 C1, C2, C3: sub network parameters. 

b) Back propagation learning  

The value of learning rate is chosen μ = 0.1 and 
the maximum number of iterations is 500. 

Validation of the model is found after learning 
by applying to the network inputs the test 
sequence and comparing outputs with the 
desired one. 

We evaluate the performance of the model 
found by calculating the prediction error for 
each output which represents the generalization 
error of each sub-network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Neural Network Architecture

Wheelchair Direct 
Model 

x
y u 

 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 158 

Figure 4 represents respectively the vectors of 
inputs and outputs and also shows the 
prediction error on each output. 

 

We note that network outputs follow the 
evolution of the references, but they have 
several differences. Indeed, the prediction error 
goes up to 0,6 m for x and y, and 20 rd for . 

The difference was large enough to prove the 
bad quality of the model. So we will try to train 
this direct model by using another method 
which is HGA. 

c) Hierarchical genetic algorithm learning  

We construct a HGA which generates various 
structures and selects a structure of a Multi  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layer Perceptron (MLP) with one hidden layer. 
The MLP selected would be the best one that 
satisfies the criterion.  

The number of neurons in the hidden layer and 
the different weights of the connections are 
given after evaluation of a cost function. This 
function to minimize corresponds to the 
following quadratic criterion: 
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Figure 4. Back Propagation: inputs/outputs sequences and prediction error  
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with: 

 N: Number of examples, 

 ydi: process Output, 

 yi: neural network output of neurone i. 

Our algorithm will go to several architectures 
of neural network and will train it. 

a. Coding 

Our chromosome is represented by a matrix. 
The first line is encoded in binary: "1" if the 
hidden layer neuron is considered and "0" if it 
is ignored. Remaining lines contain real 
numbers that represent the input and output 
weights of our NN.  

When knowing the system inputs and outputs 
number, the matrix size is fixed. The direct 
neural model (DNM) that will be trained has 8 
inputs and 3 outputs (Figure 5).  

The maximum number of neurons (number of 
columns) that may contain the hidden layer is 
set by the user. We have considered a 
maximum of 15 hidden neurons. 

 

 

For creating the sub network, we will make 
some treatment: we consider the activated 
hidden neurons and we distribute it for outputs 
(x, y and ) 

We have started with an initial population of 
100 individuals, each of which represents a 
structure of NN. 

For each individual, we calculated the cost 
function J. Only the best 10% individuals pass 
to the next generation, 70% following 
individuals were created by crossing and the 
remaining 20% by mutation. Figure 6 illustrates 
the obtained results. 

b. Initial population 

It is necessary to create and maintain sufficient 
genetic diversity in the population. For this 
reason, the initial population should be as 
heterogeneous as possible to prevent premature 
convergence. So, we have opted to randomly 
generate n individuals of the initial population.  

But not having a search space far from the 
minimum desired and to minimize the search 
time, we decided to inject into the initial 
population a number of individual from 
backpropagation learning. 

c. Selection. 

We select groups of individuals based on their 
evaluation by the function J. Individuals having 
the lowest cost function will be selected. 

d. Crossover and mutation 

The genetic operators we create can change 
both the structure of the NN and the weights of 
the various existing connections. This produces 
different architectures taken into consideration 
during the learning. 

 

 

 

 

 

 

 

 

 

 

We have used 2 crossover types: 

The first one was called INTRA. This one 
changes both; structure and weights of NN.  

Example: 

We choose randomly 2 parents and a crossover 
point to create 2 children. See Figure 6. 

The children created present 2 different NN in 
the population. 

The second one was called INTER. This 
crossover will only change weights of NN but 
not the structure of NN. The structure which is 

 
Figure 5. Illustration of the chromosome coding 
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presented by the first line of chromosome is 
still unchanged. See Figure 7.  

For mutation, we choose to modify the 
structure only by changing one bit (which 
represents neuron) in the first line of 
chromosome (0 to 1 or 1 to 0). See Figure 8. 

 

 

e. Results 

We have run our HGA for 200 generations. So it 
creates 200*100=20000 individuals, which 
means 20000 structures of NN. The best solution 
is illustrated in Figure 9. The number of 
considered hidden neurons is 15 and the outputs 
connections of hidden layer were changed. S 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Crossover point 

 
Parent1 Parent2 

1 0 0 1 1 

W11e W21e W31e W41e W51e 

W12e W22e W32e W42e W52e 

W1s1 W1s2 W1s3 W1s4 W1s5 
 

0 1 0 0 1 

W11e W21e W31e W41e W51e 

W12e W22e W32e W42e W52e 

W1s1 W1s2 W1s3 W1s4 W1s5 
 

Child1 Child2 
1 1 0 0 1 

W11e W21e W31e W41e W51e 

W12e W22e W32e W42e W52e 

W1s1 W1s2 W1s3 W1s4 W1s5 
 

0 0 0 1 1 

W11e W21e W31e W41e W51e 

W12e W22e W32e W42e W52e 

W1s1 W1s2 W1s3 W1s4 W1s5 
 

Figure 6. Illustration of “Crossover INTRA” 

Parent Child 

1 1 0 0 0 1 0 

W11e W21e W31e W41e W51e W11e W21e

W12e W22e W32e W42e W52e W12e W22e
 

1 1 0 0 0 1 0 

W12e W22e W32e W42e W51e W11e W21e

W11e W21e W31e W41e W52e W12e W22e
 

Figure 7. Illustration of “Crossover INTER” 

Parent Child 
1 0 0 1 1 

W11e W21e W31e W41e W51e 

W12e W22e W32e W42e W52e 

W1s1 W1s2 W1s3 W1s4 W1s5 
 

1 0 1 1 1 

W11e W21e W31e W41e W51e 

W12e W22e W32e W42e W52e 

W1s1 W1s2 W1s3 W1s4 W1s5 
 

Figure 8. Illustration of “Mutation” 

 

Figure 9. New Neural Network Architecture 
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The validation of the model is found after 
learning by applying the test sequence to the 
network input and comparing output with the 
desired one. 

We evaluate the performance of the obtained 
model by calculating the prediction error for 
each output which represents the generalization 
error of each sub-network. 

Figure 10 represents respectively the vectors of 
inputs and outputs, and also shows the 
prediction error on each output. 

 

We note that the three outputs of the network 
follow the crowd of references. The neural 
direct model was very much improved; 
however, we note the presence of one or two 
gaps in the prediction error. 

Comment: To learn our NN, HGA running 
takes several times as a consequence of size 
of the chromosome and size of population. 
But, by considering the considerable 
minimisation of the error compared to 
standard Back propagation learning, we can 
consider that the time is a false problem. 

3.2 Inverse neural model 

The aim is to approximate the inverse model of 
the wheelchair: the function giving the control  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

instruction from the desired displacement. 

The principle of the model development is to 
provide for every step t the angle d 
(difference between reference orientation and 

 

 

Figure 10. HGA: inputs/outputs sequences and prediction error  
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current orientation of the robot) and the 
distance r to be performed by the robot to reach 
the reference point of the trajectory, and to 
determine the control u to apply. 

 
Figure 11. Moving the robot  

on the reference trajectory 

 
 
 
 
 

Figure 12. Inverse model 

For the conception of the MNI, we will make 
the necessary choices including: for the 
regressor: [r (k) r (k-1) r (k-2) dθ (k) dθ (k-1) 
dθ (k-2) u(k-1) u (k-2)] and for the architecture, 
a multilayer MLP network. 

 

Simulations 

We have represented the results of simulation 
of the network output for the test sequence and 
the generalization error for a value of μ = 0.2 
and a maximum number of iterations equal to 
100. Figures 13a and 13b show respectively the 
simulation results and the variance of the error 
for a simple version of the gradient. 

According to these figures, we note that the 
network output follows the desired output well 
with back propagation algorithm. It gives quite 
good results with an error variance of 0.033. 

1.3 Internal model control for the 
wheelchair path tracking 

Since 1982, the Internal Model Control  
constitutes a powerful strategy of control for 
complex systems, thanks to its simplicity of 
implementation, its robustness toward the errors 
of modeling and it facility of adjustments. 

We apply, in what follows, the robot controller 
for the wheelchair trajectory tracking. We use 
for this the inverse and direct models generated 
previously. We use the direct model improved 
by HGA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
a) b) 

Figure 13. Inverse Model Validation 

 

Figure 14. Structure for Internal Model Control 

Inverse Model  r

d  

u 
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Internal Model Control is a structure that 
allows the error feedback to reflect the effect of 
disturbance and system mis-modeling. 

So as not to clutter the diagram, we will present 
only one control loop on a single output y. See 
Figure 14. 

The output y(t) is the output of the physical 
system, which is the sum of the ideal signal 
y*(t) and additive noise on its output d(t). 

The dotted block calculates the entries from the 
INM reference to y*ref and the ideal output of 
the system represented by the output of DNM. 

In our case, there is no noise output since it uses 
a simulation model, d(t) = 0, then we have: 

e(t) = y(t) - y(t) = y*(t) - y(t). 

The bloc Calculation of r and dθ made the 
following equation 

2 2r x y= D +D  

Where  Δx = xref – x and  Δy = yref – y 

tan( )

ref

ref

d

y
a

x

q q q

q

= -

D
=

D

 

INM output is the control command u(t) which 
makes the movement of wheelchair. 

Figure 15 shows the trajectory tracking for 
internal model control using the direct model 
established by HGA and the inverse one 
learned by backpropagation. 

 

Figure 15. Tracking Z trajectory 

A second simulation for a circular path has 
been made and shows that the robot reaches the 
trajectory and follows properly Figure 16. 

 

Figure 16. Tracking circular trajectory 

We note that the trajectory followed by the 
wheelchair is perfect, showing that the wheelchair 
follows the form of the desired trajectories. 

4. Conclusion 

Usually, the modelling errors of direct model 
whose outputs are not ideal influence the 
outcome of the control. Indeed, for the direct 
model, we tried to improve learning and avoid 
local minimum. The evolutionary approach, 
which enables to improve both the structure 
and the weights of the network, allowed us to 
lead to very good results. As shown in Figure 4 
and Figure 10, HGA decreased the prediction 
error, compared to that of backpropagation 
gradient. So a local minimum was avoided and 
the DNM improved.  

So having established a “perfect” direct model 
with our approach HGA, we observe from 
Figure 15 that the trajectory tracking is very 
satisfying. It realizes a good tracking of the 
desired trajectory. 
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