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1. Introduction 

The meshless or meshfree methods are a family 
of new numerical techniques that do not require 
a mesh. In these methods, the body or domain is 
discretized by a collection of points or nodes. It 
is divided into local interpolation sub-domains, 
also called clouds, consisting of one central 
point, or star node, and several neighbouring 
points. Generally, these methods are 
computationally efficient and easy to implement 
and they have been successfully used in several 
problems of solid and fluid mechanics.  

A detailed review of the most relevant meshless 
methods and their connections is presented in 
[1]. An analysis and classification of the most 
important meshless methods is presented in [2]. 
Advantages and disadvantages of this 
techniques are also discussed. A review and 
important aspects of computer implementation 
are presented in [3].  

The Finite Point Method (FPM) was proposed in 
[4] with the initial purpose of solving convective 
transport and fluid flow problems. Later, its 
application was extended to advection-diffusion 
transport [5] and incompressible flow problems 
[6]. In the context of solid mechanics, FPM has 
been applied successfully in elasticity [7] and 
non-linear material behaviour problems [8]. The 
lack of dependence on a mesh or integration 
procedure is an important feature, which makes 
the FPM a truly meshless method. A crucial 
phase of the FPM is the definition of 
subdomains to perform the local 
approximations. This paper describes a 
technique that allows the formation and eventual 
corrections of the interpolation sub-domains, 

using Genetic Algorithms. The next section 
discusses the FPM. Then, in section 3, the 
Genetic Algorithms are briefly presented. Three 
sample problems were solved in section 4. 
Finally, in section 5, conclusions are depicted. 

2. The Finite Point Method 

The FPM approximates the local solution of a 
partial differential equation in each point of the 
discretized domain by means of a weighted least 
squares technique and a point collocation 
procedure in order to obtain the final system of 
discrete equations. Due to the local character of 
the approximation utilized by this method, it is 
necessary to define a sub-domain for each node 
that considers only the nearest nodes. This point 
collection is called a cloud and its referential 
central point is the star node. A relevant aspect 
in the definition of clouds is that their 
superposition must produce the whole domain: 

ڂ Ω୩
୬౦

୩ୀଵ ൌ Ω (1) 

where n୮ is the total number of nodes. 

Another important aspect in the definition of 
clouds, which is more difficult to quantify, is that 
the clouds associated with nearby nodes must 
overlap enough to ensure the global convergence 
of the local least-square approximations. 

Let ûሺxሻ be a local approximation of the 
function uሺxሻ in the cloud Ω୩associated with 
the star node x୩, as a linear combination of 
known functions pሺxሻ, 

uሺxሻ ؆ ûሺxሻ ൌ pTሺxሻ · α,      ׊x א Ω୩ (2) 
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where pሺxሻ is the basis of m linearly 
independent functions only valid in Ω୩and α is 
a vector of constant parameters. The elements 
of the interpolation base may belong to any 
functions family. Nevertheless, because of 
simplicity the m first monomial polynomials 
are used. 

Because Equation (2) is valid for each of the n 
points of the k-th sub-domain, the 
approximations ûሺXሻ conform a Vandermonde 
system given by the following relation: 

u൫X୩൯ ؆ û൫X୩൯ ൌ P൫X୩൯ · α (3) 

where 

X୩ ൌ ሾxଵ, … , x୬ሿT,  

uሺX୩ሻ ൌ ሾuሺxଵሻ, … , uሺx୬ሻሿT,  

uොሺX୩ሻ ൌ ሾûሺxଵሻ, … , ûሺx୬ሻሿT,  

PሺX୩ሻ ൌ ሾpሺxଵሻ, … , pሺx୬ሻሿT,  

α ൌ ሾαଵ, … , α୬ሿT  

In general, the number of points n conforming 
the cloud is greater than the number of 
functions m defining the basis, hence the matrix 
PሺX୩ሻ is usually rectangular, i.e. the 
interpolation property is lost and the problem is 
transformed into a numerical approximation. 
The coefficients of the vector α must be 
determined in such a way that the weighted 
sums of the square differences between the 
exact values uሺxሻand the approximated values 
ûሺxሻ of each point is minimized. This is shown 
in Figure 1 and established by the        
following expression: 

min ൛∑ wሺx୨ሻ
୬
୨ୀଵ · ሺu൫x୨൯ െ ûሺx୨ሻሻଶൟ (4) 

where wሺx୨ሻ is a fixed weighting function 
defined in Ω୩ and evaluated in the node x୨. 

The minimization process described by 
Equation (4) leads to the following expression 
for the vector α: 

α ൌ  Aିଵ൫X୩൯B൫X୩൯uሺX୩ሻ (5) 

where 

A൫X୩൯ ൌ P൫X୩൯W൫X୩൯PTሺX୩ሻ  

B൫X୩൯ ൌ PT൫X୩൯W൫X୩൯  

W൫X୩൯ ൌ ሾwሺxଵሻ, … , wሺx୬ሻሿT  

Finally, replacing Equation (5) in (2), the 
following relation is obtained: 

uොሺxሻ ൌ  NTሺxሻ uሺX୩ሻ (6) 

with 

Nሺxሻ ൌ pTሺxሻCሺX୩ሻ  

C൫X୩൯ ൌ Aିଵ൫X୩൯B൫X୩൯  

The weighting function is built in order to have 
unit values near the star node and zero values 
outside the Ω୩ sub-domains. The common 
selection in the FPM is the normalized 
Gaussian given by: 

w൫x୨൯ ൌ ൞

ୣషౚౠ ౙ⁄
ିୣష౨ ౙ⁄

ଵିୣష౨ ౙ⁄           if  d୨ ൑ r

0                               if  d୨ ൐ ݎ

  (7) 

with d୨being the distance between the star node 
and the point x୨, d୫ୟ୶ (max. of d୨) as a 
reference distance and c = βr. A detailed 
description of the effects of the parameters q 
and β on the numerical approximation and 

 

Figure 1. Concept of fixed weighted least squares interpolation. 
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some guidelines for their setting has been 
presented in [9]. Other possibilities for 
selecting the function wሺx୨ሻ can be found         
in [10]. 

Discretization of the equations system 

Let ΩS be the solution domain of a boundary 
value problem and Γ ൌ  Γ୲ ׫ Γ୳be the 
boundary. Let us assume that the problem is 
governed by the following set of equations: 

Aሺuሻ ൌ b, in  ΩS  

Bሺuሻ ൌ t, in  Γ୲ሺNeumannᇱs conditionሻ (8) 

u െ u୮ ൌ 0, in  Γ୳ሺDirichletᇱs conditionሻ  

where A and B are differential operators, u is 
the unknown function, b and t represent a 
forcing function in ΩS and Γ୲, and u୮ are 
prescribed values ݑ in Γ୳. A general procedure 
for solving this class of problems is the 
Weighted Residual Method (WRM) [10]. In the 
FPM a point collocation scheme is used, in this 
way the following set of discrete equations     
are obtained: 

ሾAሺuොሻሿ୧ െ b୧ ൌ 0  

ሾBሺuොሻሿ୨ െ t୨ ൌ 0  (9) 

uො୩ െ u୮ ൌ 0  

where uො୧: 

uො୧ ൌ ∑ N୨
Tu୧

୬౦

୨ୀଵ   (10) 

where n୮ is the total number of nodes and the 

shape function N୨
T is built according to the least 

squares formulation shown in the previous section. 

A stabilized form of the governing equation is 
derived from the Finite Calculus (FIC) 
procedure. The FIC method is based on 
imposing the typical balance laws over a 
domain of finite size. The unknown fields are 
then approximated within the finite domain 
using a Taylor series expansion, retaining 
higher order terms than those used in the 
standard infinitesimal approach [4]. This 
introduces new terms in the governing 
differential equation which has stabilizing 
features. The stabilized forms of Equation (8) 
using the FIC method are [11]. 

ቂAሺuොሻ െ
ଵ

ଶ
h୩

பAሺ୳ෝሻ

ப୶ౡ
ቃ

୩
െ b୩ ൌ 0  

ቂBሺuොሻ െ
ଵ

ଶ
h୩n୩Aሺuොሻቃ

୩
െ b୩ ൌ 0  (11) 

uො୩ െ u୮ ൌ 0  

where n୩ are the components of the unit normal 
to the boundary Γ୲and h୩ are characteristic 
length parameters. The efficiency of the FIC 
stabilization procedure, in the context of FPM, 
has been shown in [4,11]. 

3. Genetic Algorithms 

The basic concepts of Genetic Algorithms 
(GA) were developed by Holland [12].  GAs 
have been successfully used to solve a variety 
of optimization problems [13, 14, 15, 16, 17]. 
Combinatorial problems constitute a class of 
problems particularly difficult to solve. Every 
solution to the addressed problem is called a 
chromosome. A chromosome is a string of 
binary bits or numbers. The pool of solutions is 
called the population. New candidates are 
generated gradually from a set of renewed 
populations by applying genetic operators 
selected from strategies based on the survival 
of the fittest principle, after repeatedly using 
operators of crossover and mutation. GAs need 
only a fitness or objective function value to 
lead the optimization process. 

The main advantage of GAs lies in the fact 
that derivatives or gradients are not necessary. 
In addition, GAs use probabilistic transition 
rules to find new design points for exploration 
rather than deterministic rules based on 
gradient information to find these new points. 
A random initial population initiates the 
evolutionary process. Each chromosome is 
assigned a positive value called fitness 
proportional to the quality of the solution. 
Based on their fitness value, subsets of the 
chromosomes of the current population are 
selected for reproduction. The reproduction is 
accomplished by applying a set of genetic 
operators, called crossover and mutation, to 
the chromosomes. To promote the evolution 
of the population best adapting to the problem 
solution, it is necessary to establish the degree 
of goodness of each individual and compare it 
to the rest of the population. Therefore, a 
fitness function is to be defined as a means of 
comparison and classification between the 
individuals of the population. 

 Implementation 

In this work e୩ represents the star node 
associated to the cloud Ω୩. A n୩ ൈ n matrix is 
used to represent the global set of sub-domains 
made up by n points, 
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genetic operations have been performed is that 
which does not admit a given point or node 
can be repeated in a given cloud. Those 
unfeasible individuals have to be repaired. 

 Cloning 

Because of the use of the aforementioned 
genetic operators, there is no certainty the best 
individuals subsist from one offspring to the 
next. This fact may cause the loss of some 
desirable characteristics that well fitted 
individuals have presented before the application 
of the genetic operators. The preservation of the 
best individuals, from a previous generation, 
into the next offspring is called elitism. To avoid 
the loss of that important genetic information, an 
elitist strategy was implemented. That strategy is 
called cloning, which involves copying the best 
fitted individual of the generation into the next 
offspring. The whole process is summarized in 
Figure 5. 

 

Figure 5. Proposed Genetic Algorithm flowchart 

There are a number of parameters to be 
specified in the development and 
implementation of a GA. The population size 
(a discrete positive integer). It is well-known 
that a very small population may result in 
premature convergence, while a very large 
population may result in a slow convergence 
rate. Both the crossover and mutation rates are 
continuous variables within [0, 1]. These two 
values are important for controlling the 
balance between exploration and exploitation. 
Therefore, prior to the use of a GA, an 
adjustment of its parameters is to be 
performed (parameter tuning). This tuning is 
intended to obtain a better understanding of 
the effect that population size change, the 
crossover and mutation parameters may cause 

in the performance of the GA. To perform that 
tuning, a test function was used. This test 
function corresponds to the differential 
equation defined by: 

u୶୶ ൅ u ൌ 2,     0 ൑ x ൑
ଷ஠

ଶ
  (15) 

and 

u ൌ 2   x ൌ 0 

u ൌ 3  x ൌ
ଷ஠

ଶ
 

where the exact solution of this equation is 
(Figure 6): 

u ൌ െ sinሺxሻ ൅ 2  (16) 

 

Figure 6. Exact Solution, Test (Tunning) function. 

To obtain the exact solution through the use of 
FPM, the following parameters were used: 

x א Ω,                    Ω ൌ ሾ0, 5ሿ  

- Ω domain discretization with 15  
equidistant points. 

- Clouds generation using the minimum 
distance criteria [4].  

- Clouds with 5 points each. 

The global error presented by the approximated 
solution of the FPM is Lଶ = 0.0039. By 
comparing the global errors obtained by the 
application of the GA with the exact solution, it 
was possible to determine which parameters 
presented a better performance. The values of 
each parameter used in this tuning process are 
listed below: 

Q = [50, 100, 150] 

Pc = [20, 40, 60, 80, 90, 100] 

Pm = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.5, 2.0] 

Considering all possible combinations, a set of 
198 test problems were run (3 x 6 x 11). Table 1 
shows the global results of the tuning 

u = - sen(x)+2 
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experiment. Note the results that are better than 
those obtained by the FPM are named as 
“Number of success”.  

Table 1. Summary of best results obtained from the 
tuning experiment. 

Q=50 Q=100 Q=150 

Number of success 3 29 48 

% of success 4,5 43,9 72.7 

Best L2 average 0,0033 0,0022 0,0019 

Best Std.Dev. of L2 0,0004 0,0004 0,0002 
Optimal  
Parameters 

Pc=90 
Pm=0,6 

Pc=90 
Pm=0,6 

Pc=90 
Pm=0,6 

4. Numerical Examples 

1D Poisson problem 

This problem can be found in ref. [18] where is 
clearly shown the solution changes abruptly in 
the vicinity of x = 0. The following differential 

equation is solved: 

‐uxxൌ6x‐൫40000x2‐200൯e‐100x2
, x א ሾെ1,1ሿ (17) 

with essential boundary conditions given by 

uሺെ1ሻ ൌ 2 ൅ eିଵ଴଴,      uሺ1ሻ ൌ eିଵ଴଴  (18) 

and the exact solution: 

uTሺxሻ ൌ 1 െ xଷ െ eିଵ଴଴୶మ
  (19) 

Figures 7, 8 and 9 show a Peak convergence 
of FPM and AG for discretization of 15, 20 
and 25 points, respectively, which is 
explained by the use of a small quantity of 
points in the domain discretization. Despite 
the low convergence obtained through both 
methods, we can observe a better 
performance of AG with respect to the 
approximation by the FPM, which may       
be appreciated in a low absolute error     
value and a more uniform distribution of   
such parameter. 

 

Figure 7. a) Solution convergence for 1D Poison equation.  
b) Convergence of the relative error for n ൌ 15 pts. 

 

Figure 8. a) Solution convergence for the 1D Poison equation. 
b)  Convergence of the relative error for  n ൌ 20 pts. 



Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 197

Figures 10, 11 and 12 clearly show the 
reduction of Lଶ as the generation number 
increases, which directly affects the 
evolutionary process of AG on the 

individuals conforming the population, 
through the association of points for the 
generation of better-quality clouds. 

 

Figure 9. a) Solution convergence for the 1D Poison equation. 
b) Convergence of the relative error for n ൌ 25 pts. 

Figure 10. Convergence of the Lଶ –norm for the 1D 
Poison equation for n ൌ  15 pts. 

Figure 11. Convergence of the  Lଶ –norm for the 
1D Poison equation for  n ൌ  20 pts. 

 

Figure 12. Convergence of the  Lଶ –norm for the 1D Poison equation for  n ൌ 25 pts. 

 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 198

Table 2 shows a summary of the results 
obtained in the resolution of the 1D Poison 
equation using different number of points       
per domain. 

Table 2. Main results for the 1D Poison equation. 

Number of Points in Domain 

15 20 25 
L2(GA) 0,2733 0,0321 0,0453 

L2(FPM) 1,3233 0,0462 0,0413 

maxer(%) 81,1 8,75 13,96 

time[s] 7,47 631,20 732,70 

Pm(%) 0,6 0,8 1,0 

Pc(%) 100 100 100 

No.ofGener. 22 700 700 

Q 50 100 100 

 Temperature distribution on an 
isolated boundary rectangular plate 

The temperature distribution in stable state for 
a rectangular plate, where the boundaries are 
thermally isolated from the exterior 
environment, is reduced to the resolution of the 
Laplace equation subjected to Neumann and 
Dirichlet-type boundary conditions.   

 

Figure 13. Boundary conditions for a rectangular 
plate with isolated boundaries 

The example developed involves a 
rectangular plate (Figure 13), which 
temperature in stable state Tሺx, yሻ is 
described by the following equation: 

T୶୶ ൅ T୷୷ ൌ 0,       0 ൑ x ൑ 1, 0 ൑ y ൑ 1 (20) 

with the following boundary conditions: 

 

T୶ሺx, 0ሻ ൌ 0, 0 ൑ x ൑ 1  
T୷ሺx, 1ሻ ൌ 0, 0 ൑ x ൑ 1  (21) 
Tሺ0, yሻ ൌ 1 െ y, 0 ൑ y ൑ 1  
Tሺ1, yሻ ൌ 0, 0 ൑ y ൑ 1  

The analytical solution for this problem is 
obtained as serial development given by: 

Tሺx, yሻ ൌ
ଵ

ଶ
x ൅  

൅ 
ଶ

஠మ ∑ ଵିሺଵሻ౤

୬మ ୱ୧୬ሺ୬஠ሻ
ஶ
୬ୀଵ sinሺnπxሻ cosሺnπyሻ  (22) 

 

Figure 14. Relative error distribution.  Rectangular 
plate with isolated boundaries,  n = 36 pts. 

Bidimensional domains on which the following 
problem will be analyzed will be discretized on 
rectangular domains of: 

Pm = 0.7% and 0.4% 
Pc = 100% 
Cloning operator 
Q = 70 individuals 

Results obtained for discretization of 36, 49 
and 64 points (Figures 14, 15 and 16) allow 
observing an erratic distribution of the AG 
absolute error compared to FPM.  However, the 
maximum error values for AG (max e୰ሺ%ሻ 
AG), Table 3, are always smaller than the 
maximum error values obtained for FPM (max 
e୰ሺ%ሻ FPM), Table 3, which have a direct 
effect on the global error values of the problem 
assessed through the Lଶ norm.  In each studied 
discretization of the FPM a chaotic growth of 
the local error can be observed in those areas 
with a high gradient as a result of the joint 
imposition of the Neumann and Dirichlet 
conditions in these areas. 

 

Figure 15. Relative error distribution.  Rectangular 
plate with isolated boundaries,  n = 49 pts. 
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Figure 16. Relative error distribution.  Rectangular 
plate with isolated boundaries,  n = 64 pts. 

Table 3. Main results for the rectangular plate with 
isolated boundaries. 

Number of Points in Domain 

15 20 25 

L2(GA) 0,0557 0,0387 0,0393 

L2(FPM) 0,0984 0,0717 0,0547 

maxer(%) GA 12,79 8,84 10,13 

maxer(%) FPM 19,40 17,42 16,05 

time[s] 248 845 2796 

Pm(%) 0,4 0,4 0,4 

Pc(%) 100 100 100 

No.ofGenerat. 180 279 700 

Q 60 70 70 

Figure 17 shows the behavior of Lଶ as the 
generation number varies. That variation 
clearly affects the evolutionary process of AG 
on the individuals of the population (through 
the association of points for the generation of 
better-quality clouds). 

 

Figure 17. Convergence of the Lଶnorm, rectangular 
plate with isolated boundaries for  n = 49 pts. 

 

 

5. Conclusion 

A methodology basedon Genetic Algorithms 
has been presented for the development of 
interpolation sub-domains for the application of 
meshless methods.  The characteristics of an 
AG have been defined in order to represent 
efficiently the problem of cloud generation on 
domains regularly discretized. The performance 
of the suggested methodology was 
subsequently studied for the solution of 1D and 
2D problems applied to linear elasticity, heat 
transfer andresolution of differential equations 
in partial derivatives. 

In general terms, the developed strategy has 
shown an adequate performance in the solution 
of approached problems; the latter in the light 
of the positive results based on the analysis of 
both the relative and global error of the 
established solutions.  Therefore, this work 
allows establishing the following conclusions: 

The significance of a proper mechanism 
generating clouds results clear in order to 
improve the quality of the Solutions found 
through meshless methods, especially the FPM. 

The determination of the mutation and 
crossover parameters must be studied a priori to 
determine the best configuration for an 
adequate performance of the AG. 

The encoding(using an integer code) properly 
adjusts to the configuration presented by the 
phenotype in the developed problems. 

The increase in the point numbers where the 
domain is discretized negatively affects the 
performance of AG, thus increasing the 
convergence periods of the solution and 
consequently the computational cost. 

The generation of interpolation sub-domains 
for the minimal distance criteria does not 
provide the best solutions for the domains 
discretized with a low quantity of points. 

The implemented technique allows the quality 
improvement of the solutions, especially in 
those areas where the Neumann and Dirichlet 
conditions are imposed. 

Future directions of our research point to the 
application of other metaheuristics for 
defining the subdomains. Comparisons will be 
made between Genetic Algorithms, Particle 
swarm Optimization, Simulated annealing, 
among others. 
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