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1. Introduction 

The term Multi-agent robots systems (MARS) 
means groups of autonomous robots 
coordinated to achieve cooperative tasks. 
Formation control is an important issue of 
motion coordination of MARS, specifically 
applied to groups of mobile wheeled robots. 
Applications include toxic residues cleaning, 
transportation and manipulation of large 
objects, exploration, searching and rescue tasks 
and simulation of biological entities behaviors 
[1]. The goal is to guarantee the convergence of 
the agents or robots to a particular formation 
pattern. The problem is complex because it is 
assumed that every robot does not possess 
global information. Therefore, the control 
strategies are decentralized and the main 
intention is to achieve desired global behaviors 
through local interactions [2].  

Some advantages of decentralized approaches 
are greater autonomy for the robots, less 
computational load in control implementations 
and its applicability to large scale groups [3]. 
Decentralized formation control strategies 
includes behavior-based [4], [5], [6] swarms 
stability [7], virtual structures [3] and Local 
Potential Functions (LPF) [8], [9]. The LPF 
method consists of applying the negative 
gradient of a potential function as control 
inputs of agents. The LPF's are designed 
according to the desired inter-agent distances 
and steer all agents to the desired formation. 
Formation Graphs (FG), are an important tool 
to guarantee convergence to the desired pattern 
[10], [11], [12]. The application of different 
FG's to the same group of robots produces 
different dynamic behaviors of the group in the  

 

 

 

 

 

 

 

 

 

 

 

closed-loop system. For example, [13] analyze 
the convergence of the complete FG, where 
every robot measures the position of the rest of 
the group. The cyclic pursuit FG is studied in 
[2] where every robot pursues the next robot 
and the last robot pursues the first one making a 
closed-chain configuration. A FG with 
bidirectional communication in the cyclic 
pursuit is analyzed in [14]. An analysis of 
convergence of all undirected FG's is presented 
in [10] where the communication between pair 
of robots is bidirectional. The convergence of 
some leader-followers schemes is analyzed in 
[15] for the case of the FG centered on a virtual 
leader and [16] for the open-chain or convoy 
configuration. Another approaches of leader-
followers schemes are found in [8], [17], [18]. 
Although the LPF and FG approaches are used 
commonly in the literature, there does not exist 
a general result about the convergence of the 
closed-loop system using an arbitrary formation 
graph. Inspired in [2], we analyze the 
convergence to the desired formation for any 
FG based on the Laplacian matrix of the FG 
and the Gershgorin circles Theorem [19]. Also, 
we analyze the conditions of the FG such that 
the centroid of positions remains constant for 
all time. To the best of our knowledge, the 
unique similar result is exposed in [2] for the 
cyclic pursuit FG only. The results originally 
were presented in [20] and selected for 
publication in this journal. 

The paper is organized as follows. Section 2 
introduces the problem statement and defines 
the notion of FG. Section 3 describes the 
formation control strategy based on LPF for the 
case of point-robots and the main result about 
the convergence to the desired formation. The 
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analysis of the centroid of positions is given in 
Section 4. The approach is extended to the case 
of unicycle-type robots in Section 5, together 
with some numerical simulations. Finally, 
concluding remarks are offered in Section 6.  

2. Problem Statement and 
Formation Graphs 

Denote by  1,..., nN R R , a set of n  agents 

moving in plane with positions 

     , ,  1,...,
T

i i iz t x t y t i n    . The 

kinematic model of each agent or robot iR is 

described by 

,  1,...,i iz u i n   (1) 

where   2
1 2,

T

i i iu u u   is the velocity of 

i th  robot along the X and Y axes. Let 

iN denote the subset of positions of the robots 

which are detectable for iR , where 

, 1,...,iN i n   . Let , ,
T

ij ij ijc h v     

ij N  denote a vector which represents the 

desired position of iR with respect to jR  in a 

particular formation. Thus, we define  the 
desired relative position of every iR  in the 

formation by 

   * 1
,

i

i i i j ji
j Ni

z N z c
n




    (2) 

where in  is the cardinality of iN . Thus, the 

desired relative position of iR  can be 

considered as a combination of the desired 
positions of iz with respect to the positions of 

all elements of iN . 

Problem Statement. The control goal is to 

design a control law     i i iu t f N t  for 

every robot iR , such that 

 *lim 0,  1,..., .i i
t

z z i n


    

Remark 1. It is important to point out that the 
inter-agent collisions problem is not considered 
in this work. Some analysis of the non-collision 
for some FG's are presented in [10], [14]       
and [15].  

According to [10], [11], [12], the desired 
formations of a group of agents can be 
represented by a FG defined by: 

Definition 1. A Formation Graph 

 , ,G Q E C  is a triplet  that consists in (i) a 

set of vertices  1,..., nQ R R  related to the 

team members, (ii) a set of edges 

  , , ,E i j Q Q i j     containing pairs of 

nodes that represent inter-agent 

communications, therefore  ,j i E  iff 

ij N  and (iii) a set of vectors 

   , ,jiC c j i E    that specify the desired 

relative position between agents i  and j , i.e. 
2 ,i j jiz z c    ,  ii j j N    in a desired 

formation pattern. 

If  ,j i E , then the vertices i  and j are said 

to be adjacent. The degree ig  of the i th  

vertex is defined as the number of its adjacent 
vertices. A path from a vertex i  to a vertex j  

is a sequence of distinct vertices starting with i  
and ending with j  such that consecutive 
vertices are adjacent. The underlying graph of a 
FG, is a new graph where for every edge 

 , ,i j E  a new edge  ,j i  is added, if it did 

not appear on the original FG. If there is a path 
between any two vertices of the underlying 
graph of FG, then the FG is connected. A FG is 
said to be well defined if it satisfies the 
following conditions: (1) the graph is 
connected and (2) the desired vectors of 
positions establish a closed-formation, i.e., if 
there exist the vectors 

1 1 2 2 3
, , ,..., ,

rjm m m m m m jc c c c  

then thy must satisfy 

1 1 2 2 3
... 0.

rjm m m m m m jc c c c      (3) 

The previous condition establishes that some 
position vectors form closed-polygons and it is 
related to the feasibility formation [10]. Note 
that (3) implies that if , ,ij jic c C  then 

.ij jic c   

The Laplacian matrix of a FG captures many 
fundamental topological properties of the graph 
and it is defined bellow: 

Definition 2. The Laplacian matrix of a FG G  
is the matrix 
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( ) ,dL G A    (4) 

where  1,..., ndiag g g  , where ig  is the 

degree of the vertex i , n n
dA R   is called the 

adjacency matrix with elements 

 1, if ,
.

0, otherwiseij

j i E
a

 
 


 (5) 

For a connected FG, the Laplacian has a single 
zero eigenvalue and the corresponding 

eigenvector is  1,...,1
T n  [10]. Figure 1 

shows an example of FG. The vertices are 
represented by circles and the arrows are the 
vectors jic . The circled elements of the 

Laplacian matrix are the degrees ig . It is clear 

that ,  i=1,...,n.i ig n  

A FG is said to be directed if  , ,j i E   

then  ,i j E  (or ij N  implies ji N ), 

undirected if  , ,j i E   then  ,i j E  (or 

ij N  implies ji N ) and mixed otherwise. 

For instance, the FG of Figure 1 is mixed. For 
the case of undirected FG, the Laplacian is 
always a symmetric positive semidefinite 
matrix. Figure 2 shows some examples of FG 
topologies commonly found in the literature 
and their respective Laplacian matrices. The 
cyclic pursuit FG (Figure 2b) is directed and 
the rest are undirected. Also, we observe that 
the Laplacian matrix describes completely the 
configuration of every FG.  
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Figure 1. Example of a Formation Graph. 

3. Control Strategy 

For system (1), LPF's are defined by 

2
, , 1,..., .

i

i i j ji i
j N

z z c j N i n


        (6) 

The functions i  are always positive and reach 

their minimum ( 0i  ) when 

, 1,..., , .i j ji iz z c i n j N     Using these 

LPF's, we define a control law given by 
1

, 1,..., , ,
2

i
i

i

u k i n k
z


   


  (7) 
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Figure 2. Topologies of a Formation Graphs. 
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Theorem 1.  Consider the system (1) and the 
control law (7). Suppose that 0k   and the 
desired formation is based on a well defined 
FG. Then, in the closed-loop system (1)-(7) the 
agents converge exponentially to the desired 
formation, i.e.  *lim 0,i i

t
z z


   1,..., .i n  

The proof requires some preliminary lemmas. 

Lemma 1. (Gershgorin circles Theorem [19]) 

Let n nA  , if around of every principal 
diagonal element iia  we draw a circle with 

radius the sum of the absolute values of the 
other elements on the same row, i.e. 

1,

,
n

i ij
j j i

r a
 

   then every eigenvalue of A lies 

in one of these circles. 

Lemma 2. If n nA   has eigenvalues 

1,..., ,n  then, the eigenvalues of matrix 

,  kA k   are given by 1,..., .nk k   

Proof of Theorem 1. The closed-loop system 

(1)-(7) has the form 

  2 ,z k L G I z c        (8) 

where  L G  is the Laplacian matrix of the FG, 

 1,..., ,
T

nz z z    denotes the Kronecker 

product [10], 2I  is the 2 2  identity matrix 

and 
1

1,..., .
n

T

j jn
j N j N

c c c
 

 
  
 
   Define the 

formation errors as 

 

*

1
   , 1,..., .

i

i i i

i j ji
j Ni

e z z

z z c i n
g 

 

   
  (9) 

The dynamics of every error ie  is given by 

, 1,..., .
i

j
i i j

j N i

g
e k e e i n

g

 
    

 
  (10) 

Rewritten in matrix form, we obtain 

 2 ,e k B I e    (11) 

where  1,...,
T

ne e e  and the matrix 
n nB   has elements: 

, if 

, if ,

0, if ,

i

j
ij i

i

i

g i j

g
b i j j N

g

i j j N



   

  

 (12) 

It is clear that 0e   is an equilibrium point of 
the closed-loop system (11) and that 

 1 ,PBP L G   (13) 

where the similarity matrix is simply given by 
 1,..., .nP diag g g  Thus, the convergence of 

the formation errors can be analyzed through 

the eigenvalues of  .L G  Based on Lemma 1, 

from matrix   ,L G  we can draw n  circles 

where the center of every circle ,  1,...i i n  is 

0ig   and its radio is equal to .ig  On the 

other hand, as mentioned above, a connected 
FG has a Laplacian matrix with exactly one 
eigenvalue equal to zero. Therefore, if 

1,..., n   are eigenvalues of   ,L G  then 

1 0   and    2Re ,..., Re 0n    where 

 Re i  denote real part of eigenvalue .i  

Thus, the matrix  L G  is always positive 

semidefinite with rank equal to ( 1).n   Using 
Lemma 2, we know that the eigenvalues of 

matrix  kL G  are multiple of the 

eigenvalues of  .L G  If we choose 0,k   the 

matrix  kL G  has eigenvalues 1,..., nk k   

where 1 0k   and 

   2Re ,...,Re 0.nk k    Thus, the 

remaining  1n   eigenvalues lie on the open 

left-half complex plane and the formation 
errors of the system (11) converge 
exponentially to zero. 

Figure 3 and 4 show an example of the 
convergence to the desired formation with 

4,  1n k   using the FG and desired vectors 
of positions given by Figure 1. The initial 
positions in Figure 3 (denoted by circles) are 

   1 0 0, 1 ,   z      2 0 1,0 ,   z    

   3 0 4, 1z     and    4 0 1, 3 .z   We 

observe that the formation errors shown in 
Figure 4 converge to zero and therefore, all 
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agents converge to the desired formation. The 

eigenvalues of  kL G  are  0, 1, 2, 2 .    

4.  Analysis of the Centroid            
of Positions 

Definition 3. The centroid of positions  z t  is 

the mean of the positions of all robots in the 
group, i.e. 

      1

1
... nz t z t z t

n
     (14) 

We observe in Figure 3a that the centroid of 
positions (denoted by X) does not remain 
constant. However, in some cases of FG, this 
centroid remains time-invariant. This property 
is interesting because, regardless of the 
individual goals of the agents, the dynamics of 
group remains centered at the position of the 
centroid. The second main contribution of this 
paper is to establish the condition of the FG 
topology to comply with the previous property. 

Proposition 1. Consider the system (1) and the 
control law (7). Suppose that 0k   and the 
desired formation is based on a well defined 
FG. Then, in the closed-loop system (1)-(7), the 
centroid of positions remains constant, i.e. 

   0 , 0z t z t    iff the FG topology 

satisfies the condition 

     1,...,1 0,...,0 .L G    (15) 

Proof. The dynamics of every iR  in the closed-

loop system (1)-(7) are given by 

  ,

      1,...,
i i

i i i j ji
j N j N

z t k g z z c

i n

 

 
     

 


 
 (16) 

 

 

Figure 3. Formation using the FG of Figure 1. 

Thus, the dynamics of the centroid of positions 
is given by 

 
1 1 1i i

n n n

i i j ji
i i j N i j N

k
z t g z z c

n     

 
     

 
    (17) 

Since that the FG satisfy the closed-formation 

condition (3), then  
1

0.
i

n

ji
i j N

c
 

   

Thus equation (17) can be reduced to 

 
1

.
i

n

i i j
i j N

k
z t g z z

n  

 
    

 
   (18) 

The term , 1,..., ,
i

i i j
j N

g z z i n


   corresponds to 

the i th  element of the column vector 

  2 .L G I z   Thus, Eq. (18) is the sum of the 

elements of    2L G I z  multiplied by .
k

n
  

Therefore Eq. (18) is equivalent to (19) 

 

 

 

 

 

 

 

 

 

  

Figure 4. Formation errors 
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     21,...,1 ( )
k

z t L G I z
n

    (19) 

It is clear that   0, 0z t t    iff condition 

(15) holds. 

All the undirected graphs, the cyclic pursuit FG 
and some mixed FG satisfy the condition (15). 
Figure 5 and 6 show a numerical simulation 
with the undirected cyclic pursuit FG of Figure 
2c with 5n   and 1.k   The desired vectors 
of position are given by  

 21 32

2 2
10,0 , 10cos , 10sin ,

5 5
c c

        
 

43 54

3 3 3 3
10sin , 10cos , 10sin ,10cos ,

10 10 10 10
c c

              
  

and 
15

2 2
10cos ,10sin

5 5
c

     
 (pentagon with 

side equal to 10 ). The eigenvalues of  L G  

result in  0,-1.38, -1.38, -3.61, -3.61 . We 

observe that the formation errors of Figure 6 
converge to zero and therefore the agents 
converge to the desired formation. Also, the FG 
satisfies the condition (15), therefore, the 
centroid of positions remains constant at 

   0, 2 .z t    

 

 

Figure 5. Formation control using the FG of   
Figure 2c. 

5.  Extension to the Case                   
of Unicycles 

In this section, the control laws developed so 
far are extended to the case of unicycles-type 
robot formations. The kinematic model of each 
agent or robot ,iR  as shown in Figure 7, is 

given by (20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Formation errors. 
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where iu  is the longitudinal velocity of the 

midpoint of the wheels axis and iw   is the 

angular velocity of the robot. It is known [21] 
that the dynamical system (20) cannot be 
stabilized by continuous and time-invariant 
control law. Because of this restriction, we will 
analyze the dynamics of the coordinates 

 ,i i ip q   shown in Figure 7 instead 

coordinates  , .i ix y  The coordinates i  are 

given by 

cos
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i i i
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i i i
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The dynamics of (20) are given by 
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  (22)  

where the so-called decoupling matrix  i iA   

is non-singular. The idea of controlling 
coordinates i  instead of the center of the 

wheels axis is frequently found in the mobile 
robot literature in order to avoid singularities in 
the control law. Following the control strategy 
of the Section 3, the desired position of iR  is 

given by  * 1
.

i

i j ji
j Ni

c
g

 


   Then, the 

formation control strategy is defined as 

 11
, 1,..., ,

2
i i

i i
i i

u
kA i n

w




  
     


  (23) 

where 
i

i ij
j N

 


    with ij  similar to (6) but 

related to coordinates .i  

Corollary 1. Consider the system (20) and the 
control law (23). Suppose that 0k   and the 
desired formation is related to a well defined 
FG. Then, in the closed-loop system (20)-(23), 
the robots converge to the desired formation, 

i.e.  *lim 0.i i
t

 


   

Proof. The dynamics of the coordinates i  for 

the closed-loop system (20)-(23) is given by 

1
, 1,..., .
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 The closed-loop dynamics of the coordinates 

i  has the form 

  2 ,k L G I c        (24) 

where   1,...,
T

n    and  L G  and C  

were previously defined for system (8). It is 
clear that the closed-loop system (24) is the 
same that (8) for the case of point agents. The 
result follows. 

Remark. The control law (23) steers the 
coordinates i  to a desired position. However, 

the angles i  remain uncontrolled. These 

angles do not converge to any specific value. 
Thus, the control law (23) is to be considered 
as a formation control without orientation. 

Figures 8 and 9 show a simulation for the 
closed-loop system (20)-(23) for 4,  1n   , 

and 1k   and the complete FG shown in 
Figure 2a where the desired formation is a 

square with  21 0,10 ,c    31 10,10 ,c    

 41 32 10,0 ,c c     42 10, 10c     and 

 43 0, 10 .c    The initial conditions are given 

by  10 10 10

3
, , 10, 10, ,

2
x y

      
 

 20 20 20

5
, , 10, ,0 ,

2
x y      

 

 30 30 30

10
, , ,10, ,

3 2
x y

     
  

 40 40 40

5
, , 10, , .

2
x y       

  

Thus, the initial positions of coordinates i  are 

given by  10 10, 11 ,      20 11, 2.5 ,    

 30 6.6667,11   and  40 11, 2.5 .     We 

observe in Figure 9 that the formation errors, 
now related with the coordinates i  converge 

to zero. Therefore, the coordinates i  converge 
to the desired formation and the centroid of 
positions remains constant. It is important to 
note that the agents do not converge with the 
same orientation. 
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Figure 7. Kinematic model of unicycles. 

Figure 8. Agent trajectories in plane at a) 0,t  b) 1.5.t   Continuous line represents                  

the position of  , .i ix y  

 

Figure 9. Formation errors. 
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6. Conclusions 

This paper presents a formation control strategy 
based on LPF's and the FG approaches. The 
main contribution is a formal proof about the 
global convergence to the desired formation 
applied to any well-defined FG based on the 
properties of the Laplacian matrix. Also, the 
topological feature of a FG which ensures that 
the centroid of positions remains stationary is 
established. This property is interesting because 
the dynamics of the group remains centered at 
the position of the centroid, although every 
agent obeys a decentralized control strategy.  

The main contributions are extended to the case 
of unicycle-type robots including some 
numerical simulations. In further research the 
problem of inter-agent collision and 
experimental work will be addressed. 
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