
Studies in Informatics and Control, Vol. 21, No. 1, March 2012 http://www.sic.ici.ro 41

1. Introduction

Constraint programming is a modern
programming paradigm devoted to the efficient
resolution of Constraint Satisfaction Problems
(CSP). A CSP is a formal problem
representation that mainly consists of a
sequence of variables holding a domain and a
set of constraint over such variables. The goal
is to find a variable-value assignment that
satisfies the whole set of constraints.

In the past years, several programming
languages and libraries have been designed for
CP, for instance, ECLiPSe [24], ILOG
SOLVER [14], and OZ [16]. In these
approaches, a host language is used to state
control operations, a constraint language is
used for modeling the variables and constraints,
and a strategy language may be used to tune the
solving process.

The expertise required by CP languages led to
the development of modeling languages such as
OPL [23]. Here, a higher-level of abstraction is
provided. There is no need for dealing with
operational concerns of the host language. The
user states the model and the system solves it
by means of a fixed underlying solver.

A recent concern is to separate the modeling
language from the underlying solver [12, 7]. To
this end, a three-layered architecture is
proposed, including a modeling language, a1
solver, and a middle tool mapping models (with
a high level of abstraction) to executable solver
code (with a low-level of abstraction). Among
others, this architecture gives the possibility to
plug-in new solvers and to process a same
model with different solvers.

An important inconvenience of this architecture
is the lack of a mechanism for updating the
modeling language. For instance, if a new
functionality such as a new method, predicate
or global constraint is added in the solver, the
unique way to use it from the modeling layer is
to update the grammar of the modeling
language and to recompile it by hand.
Likewise, the mapping tool needs to be
modified. The translation of the new
functionality from the modeling language to the
solver language must be included.

In this paper, we present a simple description
language to extend the syntax of a modeling
language in order to make the architecture

* A shorter version of this paper was also published in the
proceedings of the 21st Workshop on (Constraint) Logic
Programming with the title "Dynamic Parser Cooperation for
Extending a Constrained Object-Based Modeling Language” [18].

Syntax Extensions for a Constrained-Object Language
via Dynamic Parser Cooperation*

Ricardo Soto1, 2, Broderick Crawford1, Eric Monfroy3, Fernando Paredes4
1 Pontificia Universidad Católica de Valparaíso,

Av. Brasil 2950, Valparaíso, Chile
ricardo.soto@ucv.cl;

2 Universidad Autónoma de Chile,
Pedro de Valdivia 641, Santiago, Chile
broderick.crawford@ucv.cl

3 Universidad Técnica Federico Santa María,
Avenida España 1680, Valparaíso, Chile
eric.monfroy@inf.utfsm.cl

4 Escuela de Ingeniería Industrial, Universidad Diego Portales,
Manuel Rodríguez Sur 415, Santiago, Chile,
fernando.paredes@udp.cl

Abstract: A modern feature of constraint languages is the ability of compiling a model into a set of solver languages. This
allows one to model a problem in a single language and to execute it in a set of solver engines. The idea is to facilitate
experimentation as well as model sharing. The common architecture to support this task is composed of three layers: an
upper layer for the modeling language, a bottom layer for the solver language, and a middle one for performing the
mapping process. However, this architecture has an important inconvenience: there is no mechanism for updating the
modeling language. This paper addresses this concern by introducing a simple description language for extending the
syntax of the modeling language. The goal is to make the architecture adaptable to further upgrades of the solver layer.

Keywords: Constraint Programming, Programming Languages, Modeling Languages.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 1, March 2012 42

adaptable to further upgrades of the solvers. In
addition we present an interesting parsing
system for an efficient handling of this
extension process. The extension language has
been designed as part of the s-COMMA system
[4], a three-layered architecture for modeling
constrained objects (objects subject to
constraints on their attributes [17]). In this
architecture constraint satisfaction and
optimization models [21, 22] can be translated
to three native solver models: ECLiPSe [24],
Gecode/J [20] and RealPaver [11].

The s-COMMA modeling language is built
from a combination of a constraint language
and an object-oriented framework. In this
work, we will focus on extending just the
constraint language of s-COMMA. We see no
apparent necessity for extending the object-
oriented framework.

The outline of this paper is as follows. In
Section 2 we give an overview of the s-
COMMA language. Section 3 describes the
extension language. The parsing system is
presented in Section 4. The process of updating
the architecture is described in Section 5,
followed by the related work and conclusions.

2. A Tour of the s-COMMA Language
In order to explain the means of extensions and
the way to use it, let us first show the
components of an s-COMMA model by using
the well-known Social Golfers Problem. This
problem considers a group of n social golfers
which play golf once a week, and always in
groups of size g. The goal is to arrange a
schedule for these players for w weeks, such that
no two golfers play together more than once.

An s-COMMA model is represented by a set of
classes. Each class is defined by attributes and
constraints. Attributes may represent decision
variables or constrained objects. Decision
variables must be declared with a type (Integer,
Real or Boolean). Constants are given in a
separate data file. A set of constraint zones can
be encapsulated into the class with a given
name. A constraint zone can contain constraints,
loops, conditional statements, optimization
statements, and global constraints. There is no
need for object constructors to state a class;
direct variable assignment can be done in the
constraint zone. Figure 1 depicts the data file of
this problem. It consists of one enumeration and
three constants. The enumeration contains the
name of the golfers and the constants hold the

size of groups, the number of weeks, and the
quantity of groups playing per week.

Figure 1. Data file of the Social Golfers Problem

The model file is divided into three classes (see
Figure 2): one to model the groups, one to
model the weeks, and a main class to arrange
the schedule of the social golfers. The Group
class owns the players attribute corresponding
to a set of golfers playing together, each golfer
being identified by a name given in the
enumeration from the data file. In this class, the
constraint zone groupSize restricts the size
of the golfers group. The Week class has an
array of Group objects and the constraint zone
playOncePerWeek ensures that each golfer
takes part of a unique group per week. Finally,
the SocialGolfers main class has an array
of Week objects and the constraint zone
differentGroups states that each golfer
never plays two times with the same golfer
throughout the considered weeks. For a detailed
presentation and additional features of s-
COMMA please refer to [4] [19].

Figure 2. Model file of the social golfers problem.

1. import SocialGolfers.dat;
2.
3. class Group {
4. name set players;
5. constraint groupSize {
6. card(players) = s;
7. }
8. }
9.
10. class Week {
11. Group groupSched[g];
12. constraint playOncePerWeek {
13. forall(g1 in 1..g, g2 in g1+1..g)
14. card(groupSched[g1].players
15. intersect
16. groupSched[g2].players)= 0;
17. }
18. }
19.
20. main class SocialGolfers {
21.
22. Week weekSched[w];
23.
24. constraint differentGroups {
25. forall(w1 in 1..w, w2 in w1+1..w)
26. forall(g1 in 1..g, g2 in 1..g)
27. card(weekSched[w1].
28. groupSched[g1].players
29. intersect
30. weekSched[w2].
31. groupSched[g2].players) <= 1;
32. }
33. }
34. }

1. enum name := {a,b,c,d,e,f,g,h,i};
2. int s := 3; //size of groups
3. int w := 4; //number of weeks
4. int g := 3; //groups per week

Studies in Informatics and Control, Vol. 21, No. 1, March 2012 http://www.sic.ici.ro 43

3. Extending s-COMMA

In order to present the extensibility features of
s-COMMA, we continue with the social golfers
problem. Let us consider that a programmer
adds to the solver layer (specifically to
Gecode/J) a new global constraint to enforce
the lexa b< lexicographic ordering. This
constraint operates over a set

0 1{ , , , }na x x x=  and a set 0 1{ , , , }nb y y y= 

of n integer values, ensuring that: 0 0x y< ;

1 1x y< when 0 0x y= ; 2 2x y< when 0 0x y=

and 1 1 1 1; ; n nx y x y- -= < when

0 0 1 1, , ,x y x y= =  and 2 2n nx y- -= , [8]. The

lexa b< constraint will be used to remove the
symmetries [10] (eliminate redundant
solutions) of the already presented social
golfers model. To use this new constraint we
can extend the semantics of the s-COMMA
constraint language. This can be achieved by
defining an extension file where the rules of the
translation are stated. Such a file may be
composed of one or more main blocks (see
Figure 3). Main blocks hold the translation
rules and denote the solver to which the
mapping must be performed. For instance, the
first main block defines the mapping rules for
the Gecode/J solver.

Figure 3. Adding constraints to s-COMMA.

Within the GecodeJ block, a Constraint
block has been defined. This block owns the
mapping rule of the new constraint to be added.
This rule consists of two parts. The left part of
the rule defines the statement used to call the
new function from the s-COMMA language,
and the right part defines the statement used to
call the new built-in method from the solver
file. In this way, the rule states that
lexorder(a,b) will be translated to
gecode JLexicalOrdering(a,b) in the
mapping process from s-COMMA to Gecode/J.
To facilitate the translation of the input
parameters, variables (a and b) must be tagged

with ‘$' symbols. In the example, the first
parameter and the second parameter of the new
s-COMMA constraint will be translated as the
first parameter and the second parameter of the
Gecode/J method call, respectively. The use of
the new constraint in the social golfers problem
is shown in Figure 4.

Figure 4. Removing symmetries from the social.

4. Adding Functions

To present the usefulness of this feature, let us
introduce the Sudoku problem. This problem
consists in filling a 9x9 matrix so that each
column, each row, and each of the nine 3x3 sub-
matrices contains different digits from 1 to 9.

A model for this problem is depicted in Figures
5 and 6. The data file is composed of two
constants and a variable assignment. The
constant n defines the size of the matrix and s
the size of the sub-matrices. The variable
assignment is used to fill some of the cases of a
two-dimensional array called puzzle. This
array is stated at line 5 of the model file and
represents the matrix of the problem. The
constraint zones of the model are defined next.

The differentInRowsAndColumns
constraint zone ensures that every row and
column of the matrix contains different values,
and different InSubMatrices

1. import lexOrderings.ext;
2. ...
3.
4. main class SocialGolfers {
5.
6. Week weekSched[w];
7.
8. constraint differentGroups {
9. forall(w1 in 1..w, w2 in w1+1..w)
10. forall(g1 in 1..g, g2 in 1..g)
11. card(weekSched[w1].groupSched[g1].
12. players intersect weekSched[w2].
13. groupSched[g2].players) <= 1;
14. }
15.
16. constraint removeSymmetries {
17. forall(w1 in 1..weeks, g1 in 1..
18. groups-1)
19. lexOrder(weekSched[w1].
20. groupSched[g1].players,
21. weekSched[w1].
22. groupSched[g1+1].players);
23.
24. forall(w1 in 1..weeks-1)
25. lexOrder(weekSched[w1].
26. groupSched[1].players,
27. weekSched[w1+1].
28. groupSched[1].players);
29. }
30.}

1. GecodeJ {
2. Constraint {
3. lexOrder(a,b)->
4. "gecodeJLexicalOrdering(a,b);";
5. }
6. }
7.
8. ECLiPSe {
9. Constraint {
10. ...
11. }
12. ...

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 1, March 2012 44

guarantees that all the 3x3 sub-matrices get
different values.

Figure 5. Data file for the Sudoku problem.

Figure 6. Model file for the Sudoku problem.

Let us now consider that three new functions
operating over two-dimensional arrays are
added to Gecode/J: a function to get the rows,
another to get the columns and a third one to
get sub-matrices. Figure 7 depicts the
corresponding extension file. The parameter
mat corresponds to the matrix on which the
function acts, i and j are the indexes of the
row and of the column to be obtained,
respectively. The third function has four
parameters, the pair (i1,j1) represents the
coordinates of the upper-left corner of the sub-
matrix and the pair (i2,j2) represents the
lower-right corner of the sub-matrix.

Figure 7. Adding new functions.

The resulting model using these new functions
is depicted in Figure 8. Here, we can see that
the model has been defined in a more concise
and elegant way. In addition, the use of the
alldifferent [1] constraint will improve the
resolution process of the problem.

Figure 8. Using the new functions in the
Sudoku problem.

5. Dynamic Parser Cooperation

The s-COMMA system is written in Java and
the ANTLR [13] tool has been used for
generate lexers, parsers and tree walkers. The
system is supported by a three layered
architecture: a modeling layer, a mapping layer
and a solving layer (see Figure 10). The
compiling system is composed by three
compilers. One for the s-COMMA language,
one for the data and another for the extension
files. This system is the basis of the mechanism
to extend the constraint language.

The s-COMMA compiler (see Figure 11) is
composed of one parser per constraint domain
(Integer, Real, Boolean and Objects), one
parser for constraints involving more than one
domain (Mixed parser) and one base parser for

1. main class Sudoku {
2.
3. int puzzle[n,n] in [1,n];
4.
5. constraint differentInRowsAndColumns {
6. forall(i in 1..n) {
7. alldifferent(getColumn(puzzle, i));
8. alldifferent(getRow(puzzle, i));
9. }
10. }
11.
12. constraint differentInSubMatrices {
13. forall(i in 1..s, j in 1..s)
14. alldifferent(getSubMatrix(puzzle,
15. (i-1)*s + 1,i*s,(j-1)*s + 1,j*s));
16. }
17. }

1. import Sudoku.dat;
2.
3. main class Sudoku {
4.
5. int puzzle[n,n] in [1,n];
6.
7. constraint differentInRowsAndColumns
{
8. forall(k in 1..n, i in 1..n, j in
9. i+1..n) {
10. puzzle[k,i] != puzzle[k,j];
11. puzzle[i,k] != puzzle[j,k];
12. }
13. }
14.
15. constraint differentInSubMatrices {
16. forall(x1 in 1..s, y1 in 1..s, x2
in
17. 1..s) {
18. forall(y2 in 1..s, x3 in 1..s,
y3
19. in 1..s) {
20. if(x2 != x3 and y2 != y3)
21. puzzle[(x1 - 1) * s + x2,
22. (y1 - 1) * s + y2] !=
23. puzzle[(x1 - 1) * s + x3,
24 (y1 - 1) * s + y3];
25. }
26. }
27. }
28.}

1. int s := 3;
2. int n := 9;
3. int Sudoku.puzzle :=
 [[_, _, _, _, _, _, _, _, _],
 [_, 6, 8, 4, _, 1, _, 7, _],
 [_, _, _, _, 8, 5, _, 3, _],
 [_, 2, 6, 8, _, 9, _, 4, _],
 [_, _, 7, _, _, _, 9, _, _],
 [_, 5, _, 1, _, 6, 3, 2, _],
 [_, 4, _, 6, 1, _, _, _, _],
 [_, 3, _, 2, _, 7, 6, 9, _],
 [_, _, _, _, _, _, _, _, _]];

1. GecodeJ {
2. Constraint {
3. lexOrder(a,b) ->
4. "gecodeJLexicalOrdering(a,b);";
5. }
6. Function {
7. getRow(mat,i) ->
8. "gecodeJGetRow(mat,i);";
9. getColumn(mat,j) ->
10. "gecodeJGetColumn(mat,j);";
11. getSubMatrix(mat,i1,i2,j1,j2) ->
12. "gecodeJGetSubMatrix(mat,$i1$,
13. $i2$,$j1$,$j2$);";
14. }
15.}
16.....

Studies in Informatics and Control, Vol. 21, No. 1, March 2012 http://www.sic.ici.ro 45

the rest of the language (classes, import and
control statements).

In order to get the abstract syntax tree (AST)
from the parsing process, several cooperations
between those parsers are performed at running
time. A control engine manages this
cooperation by sending each line of the s-
COMMA model to the correct parser. Lines are
syntactically checked by the parser and then
transformed into an AST which is returned to
the control engine. The control engine takes
this AST and attaches it to the AST of
previously parsed lines. Let us clarify this
process by means of a simple example.

Figure 9. Attributes from different domains

Figure 9 depicts an s-COMMA class called
Coop which has attributes from different
domains. The parsing process of this file is as
follows: At line 1 the class is declared. This is
part of the base language, so the base parser
builds the corresponding AST for this line.
Then, the control engine detects at line 2 an
int type, this line is sent to the integer parser
which builds the corresponding AST. The
control engine takes this AST and appends it at
the end of the previous AST. Once the AST of
the model is complete, a semantic checking is
performed by means of two tree walkers which
check types, class names, variable names,
inheritances and compositions. Then, the AST
is transformed into a Java object storing the

model information, data information and
extensions information using efficient
representations. Finally, this Java object is
translated to the executable solver file.

The independence of parsers has been done for
three reasons. (1) It gives us the adequate
modularity to easily maintain the parsing
engine. (2) It avoids us to recompile the base
parser (and parsers not involved in the
extension) each time a new extension is added.
This leads to a faster extension process since it
is not necessary to update and recompile the
whole language; we recompile just the updated
domain. (3) This is a necessary condition to
avoid ambiguities between identifier tokens
that may arise from new extensions added. For
instance, the same function defined for two
different domains.

6. Updating the Architecture

A control engine is able to automatically update
the necessary parsers when a new relation or
function is added as an extension. The process
is as follows: when a new extension file is
detected by the base parser in a model, the
extension compiler is called. The extension file
is parsed, and then translated to an ANTLR
grammar. This grammar is merged with the
previous domain grammar to generate a new
grammar from which the ANTLR tool
generates the parser in Java code. The new
parser for the updated domain is compiled and
then it replaces the previous domain parser (See
Figure 12).

Figure 10. The s-COMMA Architecture

class Coop {
 int a;
 real b;
}

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 1, March 2012 46

The control engine adds the new tokens to a
table of symbols. The rules of translation are
stored in a XML file. This file is used to
perform the translation of the new
functionalities, from the s-COMMA language
to the solver file. The control engine manages
ambiguities by checking the new tokens of the
extension with the existing tokens in the
symbol table.

7. Related Work

Extensibility has been studied widely in the
area of programming languages. Language
extensions can define new language constructs,
new semantics, new types and translations to
the target language. Many techniques support
each of these extensions. Some examples are
syntactic exposures [2], hygienic macro
expansions [5] and adaptable grammars [3].

These approaches are in general dedicated to
extend the whole syntax of a language;
consequently they provide a bigger framework
than we need. For this reason we have chosen
term rewriting [6] as the base of our extension
language. This technique allows one to define a
clear correspondence between two sets of terms,

exactly as we use in our extension language: The
initial terms are transformed into the target
language terms (initial-terms -> target-language-
terms). As far as we know, this is the first
attempt to make syntax-extensible a modeling
language for constraint-based problems.

8. Conclusion and Future Work

We have shown by means of a practical
example how the constraint language of s-
COMMA can be extended using a simple
description language. The process of extending
the constraint language is handled by a control
engine and a set of independent parsers. The
parser independence provides us the adequate
modularity to avoid recompiling the whole
language each time a new extension is added.
This leads to a faster extension process since
just the updated domain is recompiled.

The work done in this extension language may
be improved adding customizable functions.

For instance, functions for which the priority and
the notation (prefix, infix, postfix) can be defined,
such as math operators (+,*,-,/). An extension
manager may be useful to control which
functionalities could be eliminated or maintained.

Figure 11. The compiling process

Figure 12. The extension process

Studies in Informatics and Control, Vol. 21, No. 1, March 2012 http://www.sic.ici.ro 47

REFERENCES

1. BESSIÈRE, C., E. HEBRARD, B. HNICH,
T. WALSH, The Complexity of Global
Constraints. In proceedings of AAAI,
2004, pp. 112-117.

2. CHIBA, S., A Metaobject Protocol for
C++. In proceedings of OOPSLA, 1995,
pp. 285–299.

3. CHRISTIANSEN, H., A Survey of
Adaptable Grammars. SIGPLAN
Notices, vol. 25, no.11, 1990, pp. 35–44.

4. CHENOUARD, R., L. GRANVILLIERS,
R. SOTO, Model-driven Constraint
Programming. In proceedings of the 10th
International ACM SIGPLAN Conference
on Principles and Practice of Declarative
Programming (PPDP), ACM Press, 2008,
pp. 236-246.

5. CLINGER, W., J. REES, Macros that
Work. In proceedings of the 8th ACM
Symposium on Principles of Programming
Languages (POPL), 1991, pp. 155–162.

6. DERSHOWITZ, N., J. JOUANNAUD,
Rewrite Systems. In Handbook of
Theoretical Computer Science, vol. B:
Formal Models and Sematics (B), 1990,
pp. 243–320.

7. FRISCH, A., W. HARVEY, C.
JEFFERSON, B. MARTÍNEZ-
HERNÁNDEZ, I. MIGUEL, Essence: A
Constraint Language for Specifying
Combinatorial Problems. Constraints,
vol. 13, no. 3, 2008, pp. 268-306.

8. FRISCH, A., B. HNICH, Z. KIZILTAN, I.
MIGUEL, T. WALSH, Global
Constraints for Lexicographic
Orderings. In proceedings of the 8th
International Conference of Principles and
Practice of Constraint Programming (CP),
vol. 2470 of LNCS, 2002, pp. 93-108.

9. GAMBINI, I., Quant aux carrés carrelés.
PhD thesis, L’Université de la
Méditerranée aix-Marseille II, 1999.

10. GENT, I., B. SMITH, Symmetry
Breaking in Constraint Programming. In
proceedings of 14th European Conference
on Artificial Intelligence (ECAI), 2000,
pp. 599-603.

11. GRANVILLIERS, L., F. BENHAMOU,
Algorithm 852: Realpaver: An Interval

Solver using Constraint Satisfaction
Techniques. ACM Trans. Math. Softw.,
vol. 32, no. 1, 2006, pp. 138–156.

12. MARRIOTT, K., N. NETHERCOTE, R.
RAFEH, P. J. STUCKEY, M. GARCIA
DE LA BANDA, M. WALLACE, The
Design of the Zinc Modelling Language.
Constraints, vol. 13, no. 3, 2008,
pp. 229-267.

13. PARR, T., K. FISHER, LL(*): The
Foundation of the ANTLR Parser
Generator. In proceedings of the 32th
ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI), ACM Press, 2011,
pp. 425-436.

14. PUGET, J. F., A C++ Implementation of
CLP. In proceedings of SCIS,
Singapore, 1994.

15. RAFEH, R., M. GARCÍA DE LA
BANDA, K. MARRIOTT, M. WALLACE,
From Zinc to Design Model. In
proceedings of 9th International Symposium
on Practical Aspects of Declarative
Languages (PADL), vol. 4354 of LNCS,
2007, pp. 215–229.

16. SMOLKA, G., The Oz Programming
Model. In Computer Science Today, vol.
1000 of LNCS, 1995, pp. 324–343.

17. SOTO, R., L. GRANVILLIERS, The
Design of COMMA: An Extensible
Framework for Mapping Constrained
Objects to Native Solver Models. In
proceedings of the 19th International
Conference on Tools with Artificial
Intelligence (ICTAI), IEEE Computer
Society, 2007, pp. 243-250.

18. SOTO, R., L. GRANVILLIERS, Dynamic
Parser Cooperation for Extending a
Constrained Object-Based Modeling
Language. In proceedings of the 21st
Workshop on (Constraint) Logic
Programming (WLP), Technical Report
434, University of Würzburg, 2007,
pp. 70-78.

19. SOTO, R., Controlling Search in
Constrained-Object Models. In
proceedings of the 12th Ibero-American
Conference on Artificial Intelligence
(IBERAMIA), vol. 6433 of LNAI, 2010,
pp. 582-591.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 1, March 2012 48

20. SCHULTE, C., G. TACK, Perfect Derived
Propagators. In proceedings of
International Conference of Principles and
Practice of Constraint Programming (CP),
vol. 5202 of LNCS, 2008, pp. 571-575.

21. TALMACIU, M., E. NECHITA, Some
Combinatorial Optimization Problems
for Weak-Bisplit Graphs. Studies in
Informatics and Control, ICI Publishing
House, vol. 19, no. 4, 2010, pp. 427-434.

22. TANGOUR, F., P. BORNE, Presentation
of Some Metaheuristics for the
Optimization of Complex Systems.
Studies in Informatics and Control, ICI
Publishing House, vol. 17, no. 2, 2008,
pp. 169-180.

23. VAN HENTENRYCK, P., The OPL
Optimization Programming Language.
The MIT Press, 1999.

24. WALLACE, M., S. NOVELLO, J.
SCHIMPF, Eclipse: A Platform for
Constraint Logic Programming,
Technical Report IC-Parc, Imperial
College, 1997.

