
Studies in Informatics and Control, Vol. 21, No. 1, March 2012 http://www.sic.ici.ro 49

 

1. Introduction and Literature Review 

The Travelling Salesman Problem (TSP) has 
several different variations. One of them is the 
stochastic variant called Probabilistic Traveling 
Salesman Problem (PTSP), which can be 
classified as a Stochastic Combinatorial 
Optimization Problem (SCOP). PTSP was 
proposed by Jaillet [19] and several authors have 
solved this model using different approaches. In 
[19] the PTSP is described as follows:  Consider 
a set of n points which must be visited with 
probability p. On any given instance of the 
problem only a subset consisting of k out of the 
n points (0<k<n) have to be visited. The k 
number is determined according to a known 
probability distribution (such as the binomial). 
An a priori tour through all n points has to be 
found. Each point must be included only once in 
the a priori tour. On any given instance of the 
problem, the present k points will then be visited 
in the same order as they appear in the a priori 
tour. The PTSP is usually tackled by an a priori 
optimization phase [4] which comprises two 
stages: First, as said above, an a priori solution 
is found. In the second stage, the a posteriori 
solution is derived from the a priori solution. 
For a posteriori solution, the edges are visited in 
the same order as in the a priori solution, but 
excluding the edges that do not require to be 
visited. Fig. 1 shows both different a priori and 
a posteriori tours. In the example only odd 
edges are visited in the a posteriori tour. The  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

problem of finding such an a priori tour which 
is of minimum length in the expected value 
sense is defined as a PTSP. 

 
(a) 

 

(b) 

Figure 1. (a) A priori tour for 16 edges.                  
(b) A posteriori tour after a realization. 

The problem appears when the information 
about customers demand is not available at the 
moment of tour generation and/or the tour re-
calculating cost is too elevated. In [19] the 
proposed model was solved by a well-known 
“hill climbing” algorithm. Thereafter, several 
authors have used different stochastic 
approaches in order to solve this optimization 
problem, e.g., in [5, 6] the authors solved the 
homogeneous PTSP using an Ant Colony 
Optimization (ACO) approach. In there, a 
variation of traditional ACO algorithm, called 
probabilistic Ant Colony System (pACS), 
raised very good solution for the PTSP, being 
as one of the more efficient strategies for 
stochastic routing problems. The most 
important difference between pACS and ACS 
is the set of arcs on which the pheromone is 
globally increased. One of the main 
conclusions of these works is that the pACS 
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algorithm is very competitive when the 
probabilities of the cities are far from 1. In this 
case (probabilities close to 1) the well-known 
ACS algorithm raised better solutions than 
pACS. In [26] the Expanding Neighborhood 
Search (ENS) is proposed for the resolution of 
the PTSP. The ENS is a variant of the well-
known Greedy Randomized Adaptive Search 
Procedure (GRASP) which obtained a very 
good solution for a theoretical dataset. In [25] 
the author proposed a set of initial solution 
generators under a genetic algorithm (GA) 
framework for solving the PTSP. These three 
initial solution generators allow the GA to 
reduce computational time without decreasing 
the quality of the best reached solution.  In [2, 
3], the authors present an Estimation-Based 
algorithm involving local search strategies. In 
both, the authors experiment with different 
metaheuristics applying an estimation-based 
customization strategy, to evaluate the solution 
cost of different PTSP instances, obtaining 
excellent results. In [27] an hybrid algorithm - 
nature inspired - based on PSO, GRASP and 
ENS strategy is proposed, for a solution of the 
PTSP. The GRASP and ENS strategies are 
used in order to improve the quality of initial 
solutions for the PSO algorithm, which have as 
main characteristic the use of multiple swarms, 
reducing considerably the required 
computational time.  

Finally, in [1] the authors describe a variant of 
particle swarm, called hybrid swarms, that 
incorporates an explicit selection mechanism 
similar to that used in more traditional 
evolutionary computations. The main author's 
conclusion is that the addition of selection 
supplies some advantage to particle swarm on 
certain functions. 

The main contribution of this article is the 
application of an hybrid technique on a SCOP, 
using a simple but effective sort algorithm 
which improves considerably the solution 
reached by the hybrid algorithm in a reasonable 
computational time. 

2. Mathematical Formulation 

The PTSP, as mentioned above, was introduced 
by Jaillet [19]. The following mathematical 
formulation is extracted from [4, 5, 6]: In the 
PTSP, it is unknown in advance whether a node 
requires to be visited, but its probability of 
requiring a visit is given. The most widely used 

approach to tackle the PTSP is to construct an a 
priori solution before knowing which nodes 
require to be visited. Let 

 / 1,2,........,N i i n   be a set of n customers. 

For each pair of customers  ,i j N ,  ,d i j  

represents the distance between i and j. In this 
case, it is assumed that the distances are 
symmetric, that is,    , ,d i j d j i . An a 

priori tour       1 , 2 ,......., n     is a 

permutation over N, that is, a tour visiting all 
customers exactly once. Given the independent 
probability pi that customer i requires a visit, 
qi=1-pi is the probability that i does not require 
a visit. Once the set of nodes that require to be 
visited is known, the a posteriori solution is 
derived by visiting the nodes that require to be 
visited in the order prescribed by the a priori 
solution and by skipping the nodes that do not 
require to be visited. As mentioned in section 1, 
the objective of the PTSP is to find an a priori 
solution, such that the expected cost of its 
associated a posteriori solution is minimized. 

The general case where customers probabilities 

ip  may be different, is referred to as 

heterogeneous PTSP, however, when all 
probabilities are equivalent ( ip p  for every 

customer i) the problem is called homogeneous 
PTSP. This article focuses on the homogeneous 
PTSP. The following convention for any 
customer index i is used: 

 mod       0  

              ,

i n iff i and i n
i

n otherwise

 



 (1) 

The reason for defining the above convention is 
that numbers from 1 to n (and not from 0 to n − 
1) were wanted to used as customer index and 
it was needed to make computations with the 
mod operator. 

The expected length of an a priori tour   can 
be computed in O(n2) time with the following 
expression derived by Jaillet [19]: 
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The following notation is used for any 

 , 1, 2,.......,i j n
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The expression for the objective function (2) 
has the following intuitive explanation: each 
term in the summation represents the distance 

between the thi  customer and the   thi r  

customer, weighted by the probability that the 
two customers require a visit    i i rp p   , while 

the r − 1 customer between them does not 

require a visit  1
1

i r
i q
 
 . 

In the homogeneous PTSP, where ip p  and 

iq q  for every customer i, the expression for 

the objective function still requires 

 2O n computation time, but it is a bit simpler 

than Eq. (2): 
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3. Hybrid Algorithm 

Particle Swarm Optimization and 
Simulated Annealing Algorithms.  

The PSO algorithm was proposed and 
developed by Kennedy and Eberhart [10, 11, 
20, 21, 22]. It is considered as a more-robust 
methodology in the context of Swarm 
Intelligence (SI), and has proven to be an 
excellent alternative in order to solve 
discontinuous combinatorial optimization 
problems (COP). In fact, several articles have 
used this technique to solve complex COPs, 
particularly the classical TSP and its extension 
PTSP. Example of these applications on both 
TSP and PTSP are [27, 33, 35] among others. In 
[27], a new hybrid algorithmic nature inspired 
approach based on Particle Swarm Optimization 
(PSO), Greedy Randomized Adaptive Search 
Procedure (GRASP) and Expanding 
Neighbourhood Search (ENS) Strategy is 
proposed for the solution of the PTSP.  

The main difference of this algorithm from the 
ones that uses more than one swarm is a 
feedback procedure that is used to, initially 

distribute the information (i.e., the good 
solutions of each swarm) in all other swarms 
and, afterwards, to help all the particles of all 
swarms to follow this information in order to 
finally find a new better solution. However, this 
multi-swarm approach requires a considerable 
computational time for its execution. For this 
reason, the authors hybridize the algorithm with 
two different procedures, one as a speeding up 
technique (the ENS) and one for the production 
of good initial solutions (the ENS-GRASP). In 
[33], two PSO-based algorithms are presented. 
The first one to solve the classic TSP and the 
other one to solve the generalized TSP. In both, 
the main characteristic is the use of an 
uncertain searching strategy and a crossover 
eliminated technique to accelerate the 
convergence speed. The use of this strategy 
allows the algorithm to solve problems with 
more cities compared with the SI existing 
algorithms for solving TSP. In [35], a PSO 
algorithm is applied to the TSP. The main 
characteristic of this implementation is the 
improvement produced by the introduction of 
both, the information communication strategy 
among the particles and the dynamic work 
allocation among the classes of particles swarm 
defined by the author. The first strategy is 
based on the Greddy’s idea in order to 
strengthen the diversity of the particles and to 
speed the convergence process. The dynamic 
work allocation is implemented in addition to 
the first strategy, in order to promote the 
searching efficiency and solution quality. The 
main characteristic of this strategy is the 
definition of a sub-set of particle which have 
different searching strategies and tasks. 

Other recent application of PSO can be found 
in [13, 24, 32, 36]. In [24] a time varying PSO 
is used in order to solve a problem of the 
industrial drives. This approach simplifies the 
fuzzy logic controller tuning procedure (used 
for finding feasible solutions), that reduces the 
amount of time needed for the problem 
resolution and provides good system 
performance. In [32], a simple PSO algorithm 
is applied to the Neutron Images Restoration 
problem. The solutions raised by the PSO 
algorithm were compared with other 
mathematics-based techniques. The 
experiments showed that the PSO algorithm 
reached excellent results and good efficiency in 
noisy image restoration. In [13] the authors 
proposed an original PSO algorithm which 
consists in using the concept of proportional 
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likelihood with modifications, a technique that 
is used in data mining applications, instead of 
the standard vector of velocities. In [36] the 
authors applied a PSO algorithm on a flow-
shop problem, obtaining very competitive 
results compared to GA implementations from 
the literature. 

Nevertheless, the PSO algorithm may be 
trapped into local optima, if the global best and 
local best positions are equal to the position of 
the particle over a number of iterations [29, 
34]. Unlike other evolutionary algorithms, PSO 
does not use the “survival” concept. This is 
because all particles are kept "alive" throughout 
the algorithm execution time, and their survival 
is threatened. 

In the PSO algorithm, the particles move 
around in the D-dimensional search space. The 
ith particle is represented as 

 1 2, ,....., D
i i i iX x x x . The positions of 

individual particles are adjusted according to 
their previous best positions and the 
neighborhood best or the global best.  The best 
previous position of the ith particle is recorded 

and represented as  1 2, ,....., D
i i i iP p p p . The 

index of the best particle among all the 
particles in the population is represented by the 
symbol g. The rate of the position change 
(velocity) for particle i is represented as 

 1 2, ,....., D
i i i iV v v v .  

The searching procedure based on this concept 
can be described by 

 
 

1

'
2

( 1) ( ) ( ) ( )

( ) ( )

d d d d
i i i i

d d
g i

v t v t c p t x t

c p t x t

 



   

 
 (5) 

( 1) ( ) ( )d d d
i i ix t x t v t    (6) 

where 'and   are two different random 

numbers between 0 and 1; constants 1c and 2c  

are weight factors. Low values of 1c and 2c  

permit particles to travel far from the goal 
region before being togged back. On the other 
hand, high values result in rapid forward or 
backward movements, from the goal region. 
Eq. (6) is similar to a mutation operation, the 
PSO algorithm is similar to the evolutionary 
programming algorithm since neither algorithm 
performs a crossover operation.  

From Eq. (5), the velocity of a particle is 
determined by three factors: 

 -  d
iv t , which serves as a momentum term 

to prevent excessive oscillations in search 
direction. 

 -  1 ( ) ( )d d
i ic p t x t  , referred to as the 

cognitive component. This component 
represents the distance that a particle is 

from the best solution, ( )d
ip t , found by 

itself. The cognitive component represents 
the natural tendency of individuals to return 
to environments where they experienced 
their best performance. 

 -  '
2 ( ) ( )d d

g ic p t x t  , referred to as the 

social component. This component 
represents the distance from a (given) 
particle to the best position found by its 
neighborhood. It represents the tendency of 
individuals to follow the success of other 
individuals. 

In [18] the author proposed the parameter   
into the PSO equation to improve its 
performance. The appropriate selection of 
inertia weight   in Eq. (7) provides a balance 
between the global and local positions. As 
originally developed, ω often decreases linearly 
from about 0.9 to 0.4 during a run. Generally ω 
is defined by  

max min
max

max

( 1)t t
t

 
 


    (7) 

SA algorithm is a popular local search meta-
heuristic used to address discrete and 
continuous optimization problems. The interest 
began with the work of Kirkpatrick [23] and 
Cemy [9]. They showed how a model for 
simulating the annealing of solids, as proposed 
by Metropolis [28], could be used for problem 
optimization, where the objective function to be 
minimized corresponds to the energy of the 
state of the solid. In fact Cemy [9] was one of 
the first who applied SA over classical TSP. In 
[7] a Stochastic Annealing algorithm has been 
proposed in order to solve a PTSP. In there the 
authors proposed a proof-of-concept stochastic 
simulated annealing for the PTSP, in which the 
annealing schedule is controlled by the 
sampling error of the cost estimation. Unlike 
that approach, our work does not use the 
concept of error in the SA heuristics, it is used 
only for controlling the behavior of PSO 
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algorithm. Furthermore, in [7] the stochastic 
annealing approach was only tested on very 
small instances, and its performance has not 
been evidenced in medium and large size 
instances. Several other implementations of SA 
can be found in the literature. In [2], two 
estimation-based SA algorithms were 
developed using different acceptance criterion. 
In [16], the authors use the powerful global 
search capability of GA and the powerful 
partial search capability of SA, an improved 
SAGA is proposed in order to solve an specific 
problem in mining. Other SA hybridization can 
be found in [30, 31].  

As mentioned above, SA is based on the 
Metropolis acceptance criterion [28], which 
models how a thermodynamic system moves 
from the current solution (state)   to a 

candidate solution  ' N  , in which the 

energy content is minimized. The candidate 
solution '  is accepted as the current solution 
based on the acceptance probability [17]. 
Below, an abstract is presented about main 
characteristics of the SA algorithm, extracted 
from [17]. For more details, Eglese [12] and 
Ingber [18] give a complete overview. 

        

   
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exp ' 0

1 ' 0

k

f f
if f f
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if f f
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 

 
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   
   


 

 (8) 

Where P is the probability of accept ' as a 
next solution. Define kt  as a temperature 

parameter in iteration k, such that 

0 lim 0k k
k

t for all k and t


   (9) 

This acceptance probability is the basic element 
of the search mechanism in simulated 
annealing. If the temperature is reduced 
sufficiently slowly, then the system can reach 
equilibrium (steady state) at each iteration k. 

Let  f  and  'f  denote the energies 

(objective function values) associated with the 

solutions   and  ' N   respectively. 

This equilibrium follows the Boltzmann 
distribution, which can be described as the 
probability of the system being in state   

with energy  f   at temperature T such as 

 
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exp

''
exp

k

k

f
t

P
f

t
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  
    


 
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Hybrid PSO and SA Algorithm 

As previously mentioned, PSO and SA 
algorithms have been applied to both TSP and 
PTSP problems separately. Recently, an hybrid 
algorithm of PSO-SA was used in order to 
solve a classical TSP [14], but there is no 
evidence in the literature about the application 
of an hybrid PSO-SA algorithm applied to 
PTSP. In [14], the fast optimal search ability of 
PSO and the probabilistic diversification 
property of SA are combined. The main 
difference between our algorithm and the 
proposed in [14] is the frequency in the use of 
SA algorithm for increasing the diversification 
level: In [14] SA only is used in the first 
particle search. By the other side, our PSO-SA 
algorithm uses the SA algorithm along all PSO 
algorithm iterations. Moreover, in our approach 
a simple sort algorithm is used, which performs 
a more efficient particle movement. Fan and 
Fang [15] developed another hybrid algorithm 
of PSO and SA named Niche Particle Swarm 
Optimization (NPSO) algorithm, which 
integrates SA and niche technique into PSO, 
using the rapid local search ability of PSO and 
global convergence of SA. 

The SA algorithm is used in order to avoid 
being trapped into local minimum and to 
increase the diversity of particles.  

The PSO-SA algorithm defines, as parameters, 
a NxN integer matrix (with N = #edges) which 
contains the distance between edge i and j. A 
PxN integer matrix called Particle was 
implemented. The P value corresponds to the 
number of particles that will be used in the 
algorithm. Each row of this matrix corresponds 
to the vision of the particle about each city and 
its neighbors. In fact, each row is a feasible 
solution for the PTSP. Each row can be 
considered as a cycle vector. 

The step 1 of the hybrid algorithm is the 
initialization of the particles. For that, each 
particle (row in the Particle matrix) is initialized 
using a random value for each position. The 
unique constraint in this assignation is that the 
value is in the [0, N-1] interval and cannot be 
repeated in the same row. 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 1, March 2012 54 

Then, SA is introduced in order to obtain a 
good solution from each particle. For this, the 
energy function E was considered, such that 
f(Si) represents the length of the tour in particle 
Si. Then,    new oldf f S f S E     is 

defined, which corresponds to the energy gap 
between the particle ( oldS ) in the swarm and its 

neighbor ( newS ). This neighbor is generated 

using a simple random swap move between two 
edges. Figure 2 shows this movement. 

 

Figure 2. SA neighborhood movement. 

The acceptance or rejection of the neighbor and 
update of particle tour depends on the 
following expression, which corresponds to our 
implementation of Eq. (11) 

exp 0

1 0
k

f
if f

P t

if f

  
   

  
  

 (11) 

Once each particle finds its best neighbour tour 
bestNeighbor
iS  (using SA strategy) the best particle 

is selected from the Particle matrix, bestNeighbor
globalS . 

Then, each particle iS , in the Particle matrix, is 

updated applying crossing operation on both 
bestNeighbor
iS and bestNeighbor

globalS . Finally, the 

temperature T is calculated using the   
following equation 

0
iT T T   (12) 

where cooling coefficient α is a random 
constant in a range [0, 1], i is the number of 
iteration so far, 0T  is the initial temperature 

and T  is a limit value for end criterion.  

As mentioned above, the main difference 
between our algorithm and the proposed by 
Fang in [14] is the frequency in the use of SA 
algorithm in order to increase the 
diversification level. In [14], SA is only used in 
the first particle search. By the other side, our 
PSO-SA algorithm uses the SA algorithm along 
all PSO algorithm iterations. Moreover, in our 
algorithm a simple sort strategy was used for 
the edges when the Si particle is updated. In 
[14] the edges are considered in the same order 
that they have in the array (particle). In our 

case, the well known bubble sort algorithm was 
used for ordering the edges from the particle Si: 
first the edges nearest the selected edge and 
finally the edges farthest the selected edge. The 
most important improvements related with this 
difference are the execution time and the 
quality of the solution obtained by the          
PSO-SA algorithm. 

4. Experiments and Computational 
Results  

This section shows the most relevant results 
obtained with our Hybrid PSO-SA algorithm 
for PTSP. First, a comparison among the hybrid 
algorithm with the PSO algorithm is provided. 
Then, the results obtained by the hybrid PSO-
SA are shown for both well known PTSP 
instances obtained from TSPLIB[37]: eil101 
and KroA200. These instances have 101 and 
200 edges respectively and consider Euclidean 
distance between cities. The instances supply 
the coordinates of each city. These instances 
were solved using an homogeneous probability 
of {0.25; 0.50; 0.75} and compared with the 
results presented in [8]. 

Figure 3 shows the improvement obtained by 
the SA strategy on the PSO algorithm. 

 
Figure 3. Comparison between PSO and PSO-SA 

algorithms for eil101 instance. 

As can be seen, the PSO algorithm converges 
rapidly and is trapped on a local minimum 
being unable to escape from minimum. 
However, when SA strategy is included, the 
algorithm can exit from this local minimum and 
explore other surfaces, getting better solutions 
than those obtained by the simple PSO 
algorithm. Table I shows the behaviour of the 
algorithm when the number of particles vary. 
As Table I shows, for most of the instances the 
best result was obtained using 40 particles. 
Furthermore, the results show the stability of 
the PSO-SA algorithm which has a standard 
deviation of only 12.135 for probability of 0.5, 
and 17.2135 for probability of 0.75, which 
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corresponds to 1.94% and 2.36% respectively 
in relation with the mean (for eil101 instance).  

 

The main factor to explain this behaviour is 
that the SA algorithm allows the PSO algorithm 
to exit from local optimal solutions and to 
increase the exploration level of PSO 
algorithm. Furthermore, as depicted in Table I, 
the increase in the number of iterations causes a 
decrement in the standard deviation. This 
situation can be explained by the increase in the 
exploration level obtained by the greater 
number of iterations. 

Table II shows the values raised for the PSO-
SA algorithm for two instances of PTSP, 
compared with 4 different algorithms. The first 
three algorithms were developed in [8].  The 
first one, called the Depth-based heuristic, is 
based on increasing overall solution quality 
implied by a local decision during tour 
construction. The next one heuristic takes the 
angle between adjacent edges of the tour into 
consideration and is called Angle-based 
heuristic [8]. The last one is called TSP-ACO, 
which is an adaptation of ACO algorithm for 
TSP that uses only the distance as a heuristic 

guidance omits the information about the 
probability of the current or the target city  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

actually being a part of the later realization of 
the problem instance [8].Furthermore, as in [8], 
has been included in the comparison one of the 
currently best performing heuristics: HS/1-
Shift. Basically, HS/1-Shift is deterministic and 
terminates when it can no longer find a 1-Shift 
improving the solution [8]. In addition, the 
computational time of HS/1-Shift is negligible. 

Our algorithm behaved in a stable way at all 
instances; however it did not improve the best 
results reported in [8]. Despite the above, in 
several instances the hybrid algorithm 
improved the best solution raised by the HS-
1Shift algorithm. 

 

Table I. Behaviour of the PSO-SA Algorithm when the Number of Particles Vary 

 50 Iterations 75 Iterations 100 Iterations 

Prob. 10 part 20 part 40 part 10 part 20 part 40 part 10 part 20 part 40 part

0.5 654.29 624.98 618.66 609.76 622.13 623.05 624.13 616.26 626.27 

0.5 617.98 613.61 625.3 633.95 620.05 605.02 608.29 622.9 615.64 

0.5 608.42 592.73 614.71 627.8 628.99 627.32 589.05 619.4 621.17 

0.5 618.88 624.31 622.97 663.81 600.93 621.68 628.96 624.35 610.56 

0.5 627.28 602.23 622.81 627.12 627.08 627.77 627.98 620.53 611.99 

0.5 622.54 619.19 607.56 624.79 623.28 613.65 626.52 596.93 599.6 

0.5 624.25 625.79 614.71 598.59 623.72 603.23 615.38 618.9 604.22 

0.5 614.91 627.6 613.65 607.16 596.11 595.29 617.91 627.21 625.98 

0.5 624.25 618.5 613.41 611.92 616.47 617.95 626.74 627.83 597.89 

0.5 626.67 620.78 625.37 617.05 622.54 610.28 625.58 628.51 618.26 

0.75 695.98 738.59 703.08 701.34 708.79 670.21 686.22 688.99 674.89 

0.75 706.64 689.25 678.81 696.1 657.04 709.2 723.04 703.55 696.52 

0.75 750.17 700.29 689.85 722 677.71 710.02 739.55 686.97 699.21 

0.75 716.57 695.51 720.83 711.55 693.79 685.25 712.76 696.82 672.56 

0.75 728.97 715.8 693.2 733.55 691.38 698.8 696.76 718.01 684.35 

0.75 735.3 717.22 723.55 695.95 731.91 674.44 692.01 680.62 687.34 

0.75 724.61 732.24 698.17 701.12 723.77 710.23 736.74 674.34 683.63 

0.75 727.21 679.29 724.43 741.21 691.5 677.55 708.15 689.38 681.08 

0.75 740.19 701.42 720.14 747.96 711.43 692.16 683.53 730.47 695.99 

0.75 746.81 683.71 692.16 710.57 732.55 712.3 700.85 670.21 685.35 
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These results demonstrate the potential of the 
hybrid PSO-SA algorithm in order to solve 
SCOPs, in general, and PTSP specifically. In 
this sense, it is worth noting that the best results 
for these instances have been obtained with the 
Ant Colony Optimization (ACO) based 
algorithm which has demonstrated its 
effectiveness in several deterministic routing 
problems. On the other hand, PSO based 
algorithms do not get their best performance for 
these kind of problems. Despite the above, the 
hybrid PSO-SA algorithm obtains promising 
results. The Dif. column shows how our PSO-
SA algorithm is quite close to the best solution 
found for each instance. Additionally, this 
column shows the stability of the algorithm, 
which has not considerable variations across 
the different instances. 

Table II shows how the PSO-SA algorithm 
reaches its best performance (compared with the 
best solution) when probability p = 0.75. This 
situation can be explained by the diversification 
strategy. This is because when probability p 
increases, the search space also increases. 

5. Conclusions 

The results showed an improvement over 
previously obtained solutions. That 
improvement is obtained by the SA algorithm 
which supplies an additional diversification 
strategy to the PSO based algorithm. This 
hybridization had been implemented earlier for 
several deterministic combinatorial optimization 
problems. However, no evidence in the literature 
was found about other PSO-SA hybrid algorithm 
applied over PTSP or any other SCOP. In 
addition, a simple sort strategy was implemented 
using the bubble sort algorithm, which obtained 
important improvements in both execution time 
and cost. This behaviour confirms that simple 
PSO algorithm needs of some diversification  

 

 

 

 

 

 

 

 

strategy in order to exit of local optimal solution. 
This paper shows that PSO with SA 
diversification strategy can solve a SCOP 
obtaining good solutions. Other diversification 
strategies, as to use other local search heuristic 
e.g. Tabu Search, could be implemented in order 
to improve current results. The preliminary 
results were improved implementing a 
neighbourhood insertion analysis strategy. 
Comparative experiments were made between 
the proposed algorithm and simple PSO. The 
computational results validate the effectiveness 
of the proposed approach for SCOPs. 

As future work, we expect to apply our hybrid 
PSO-SA algorithm to other SCOPs, such as a 
probabilistic VRP and its variants, among 
others. On the other hand, improvements to the 
hybrid algorithm can be made; in this sense, 
other SA implementations can be used in order 
to supply better diversification strategies to the 
PSO based algorithm. In addition, a more 
complex sorting algorithm, e.g. quick sort, 
could be implemented for long size SCOPs, in 
order to minimize the execution time.  
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