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1. Introduction 

In the field of Mathematical Finance –i.e., the 
branch of Applied Mathematics that aims to 
model the behavior of variables in a financial 
system– it is of great interest to quantify the 
stability of an asset given its realized returns. A 
measure of this stability is the so-called 
volatility, which refers to the standard deviation 
of the continuously compounded returns of a 
financial instrument. 

From a Bayesian standpoint, it is possible to 
relate the volatility to the observed returns by a 
state-space model, and in order to account for 
the returns stylized facts, such as higher order 
moments and volatility clustering, this model 
should include non-linearities, non-Gaussian 
innovations, and unobservable states. A structure 
that is commonly used to model volatility of 
financial instruments is the Generalized 
AutoRegressive Conditional Heteroskedasticity 
(GARCH) model proposed by [1], which 
assumes that the volatility evolves in a 
deterministic fashion given the observations. 

On the other hand, the stochastic volatility 
model considers that the volatility is a hidden 
state driven by an innovation process. Although 
the models that consider stochastic variables 
allow representing the uncertainty of some 
observed phenomena, the identification of its 
parameters is not straightforward due to a 
likelihood function defined as an intractable 
integral. Moreover, even if a suitable set of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parameters is available, when the model is non-
linear/non-Gaussian the estimation of the 
hidden states turns out into a difficult issue, 
since for this kind of structures there is no 
algorithm that guarantees optimal estimation as 
the Kalman filter does for the linear/Gaussian 
case. Consequently, sub-optimal filtering and 
identification approaches are needed to 
overcome the estimation of the volatility when 
a hidden-state, non-linear/non-Gaussian model 
is used. 

The implementation of numerical techniques to 
estimate unobserved components has received 
the attention of several scientific disciplines 
due to the high computational power, and 
increasing storage capacity, developed 
throughout the last decades. Among the 
suboptimal techniques for state estimation, 
particle filters (PF) have recently caught the 
attention of the scientific community [2]-[5]. 
These methods are capable to approximate 
expectations w.r.t. a sequence of time-varying, 
growing dimension, probability density 
functions (pdf) through a finite set of weighted 
samples. In the case of the filtering problem, 
this pdf is the posterior density of the state. PF 
have been widely used –particularly in 
Financial Mathematics– due to their flexibility, 
and capability to be implemented along 
dynamical models characterized, for instance, 
by non-linearities, jump-diffusions, and non-
Gaussian or multiplicative noise [6]-[9]. 
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This paper is organized as follows. Section 2 
introduces the concept of volatility, and presents 
two important classes of volatility models. 
Section 3 proposes a novel stochastic volatility 
model based on the structure of a widely used 
deterministic model, while Section 4 presents 
the results of both the previous and the 
introduced approach. Finally, Section 5 states 
the concluding remarks and suggests areas of 
further study according to the results obtained. 

2. Volatility Models 

In the field of Mathematical Finance, the term 
volatility is known as the standard deviation of 
the –continuously compounded– returns of a 
financial instrument (e.g., a share price, an 
equity index, or an exchange rate) and it is 
representative of the instrument’s risk. The 
volatility σt is given by the expression: 

 2 2var( ) ( )t t t tr E r     (1) 

where rt and μt are, respectively, the 
compounded return and its expected value at 
time t. The return series is known to be 
heteroskedastic if the volatility is time-varying. 

Regarding the behavior of financial time series, 
the realized returns have shown the presence of 
volatility clustering; i.e., the fact that the 
returns enter in periods of high –or low– 
volatility. Mandelbrot [10] was one of the first 
authors in realizing this phenomenon stating 
that: Large changes [in asset prices] tend to be 
followed by large changes –of either sign– and 
small changes tend to be followed by small 
changes. Furthermore, the observations suggest 
that the returns are best described by non-
Normal distributions, but by peaked and 
asymmetric ones; i.e., with high 3rd and 4th 
moments (a.k.a. skewness and kurtosis, 
respectively) [11], [12]. 

In order to represent these stylized facts, for 
each t Î  the return rt –or its bias w.r.t. a 
known expected value– can be modeled as a 
product of two processes: 

t t tr    (2) 

where , ,t te Î is a zero-mean, unit-variance, 

i.i.d sequence, independent of σt and rt [13]. 

As far as the volatility dynamics concerns, 
the evolution of σt, t Î , can be modeled by 
a deterministic, or stochastic, difference 

equation. The first approach leads to – easy 
to identify – structures that are able to model 
the hidden volatility only as a deterministic 
sequence, while the stochastic approach 
treats the state as a random process, hence, 
allowing the inference of its statistical 
properties, but requiring advanced techniques 
for parameter identification. 

Subsection 2.1 presents the model known as 
Generalized AutoRegressive Conditional 
Heteroskedasticity (GARCH), a common 
example of the previously mentioned 
deterministic approach, while Subsection 2.2 
shows the general form of the Stochastic 
Volatility (SV) model. 

2.1 Generalized autoregressive 
conditional heteroskedasticity 
(GARCH) 

This structure models the conditional variance 
at time t with respect to the observations until 
time t − 1; i.e., 

 2 2
| 1 | 1 1( ) |t t t t t tE r       (3) 

where  is the σ-algebra constructed upon the 

information contained in the returns r1:τ , and 
 | 1 1|t t t tE r    is the conditional 

expectation of rt. 

The model proposed in [1] is given by: 
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where the return rt is the observed process, the 
conditional volatility σt|t−1 is the state, and the 
innovation process ut is defined by: 

| 1t t t tu r     (5) 

Also, according to (2), it is possible to assume 
that t this innovation process is distributed by: 

2(0, )t t t tu Ns e s=   (6) 

where { }t t
e

Î
 NID(0,1). 

Additionally, m Î   and , ,w a b +Î  , α + 

β < 1, so that 2
| 1t t   > 0 for any value of t . It 

is important to note that, given rt−1, σt|t−1 is 
known without uncertainty, since the GARCH 
model is deterministic. 
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Regarding identification, an optimal set of 
parameters –given a set of observations– can be 
found by means of maximum likelihood (ML) 
provided that the likelihood function (7) is 
known (assuming that μt|t−1 = μ during the period 
of study). However, the right hand side of (7) is 
usually difficult to maximize, and requires the 
consideration of numerical techniques. 

1: 1:( , , , | ) ( | , , , )L r p r          (7) 

Although the GARCH model is theoretically 
capable of representing the stylized facts 
mentioned above, it models the conditional 
volatility as a deterministic signal, hence, it 
does not allow the estimation of its higher order 
moments or confidence intervals. This 
drawback suggests the consideration of 
structures that model the volatility as a 
stochastic process. This class of models is 
presented in the following subsection. 

2.2 Stochastic volatility models (SVM) 

The stochastic volatility models assume that σt 
is a hidden variable, driven by an innovation 
sequence which is independent of the observed 
process. This assumption is consistent with 
long-term observations showing clear, and 
apparently random, changes in volatility. 
Further reading about SVM can be found in 
[14]-[15]. The general form of the SVM is 
given by: 
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where the return rt is the observation, the 
volatility σt is the state of the system, and both 

{ }t t
e

Î
and { }t t

h
Î

 are i.i.d. sequences. 

Regarding the identification of the SVM, 
denoting by θ the set of parameters of the 
model, the likelihood function 

1: 1:

1: 1: 1: 1:

( | ) ( | )

( | ) ( | )

T T

T T T T

L r p r

p r p d

 

   

 

 
 (9) 

is defined as an intractable integral due to the 
presence of a hidden, stochastic, state. 
Therefore, an optimal set of parameters cannot 
be obtained from a maximum likelihood point 
of view, suggesting alternative schemes such as 
Expectation-Maximization, or Quasi-Maximum 
Likelihood [16]. 

The SVM are theoretically appropriate to 
explain the observed features in financial time 

series, however, the use of these structures 
implies complex distributions and considerable 
computational resources, hence, requiring 
advanced schemes to overcome the problem of 
volatility inference, and parameter identification. 

In order to make use of the advantages of both 
approaches, the deterministic and the stochastic 
one, in the following Section an SVM with a 
structure similar to the one of the GARCH 
model is proposed, so that the GARCH 
parameters found by means of ML, are 
assumed to be suitable approximations of the 
SVM’s optimal set of parameters. 

3. Development of a Novel, 
GARCH-based, Stochastic 
Volatility Model 

In the previous section it was stated that the 
GARCH model in (4), although allows 
straightforward parameter identification using 
ML, it does not account for the statistical 
properties of the variables of interest. On the 
other hand, the SVM (8) treats the volatility as 
an unobserved process allowing the inference 
of its pdf, at the price of not having a closed-
form of the parameter likelihood function. In 
this regard, the necessity of a SVM with a 
straightforward identification procedure arises 
naturally. To overcome this issue, an SVM 
based on the structure of the GARCH model 
will be proposed as follows. 

Regarding previous attempts to find stochastic 
counterparts for the GARCH model, [17] 
proposes an SVM called SGARCH (Stochastic 
GARCH) with a stochastic innovation in the 
evolution step. Although the authors in this 
work state that the SGARCH likelihood 
function is, unlikely most of the SV models, 
“relatively easy to derive”, and its 
maximization is more time-consuming than for 
a standard GARCH. 

3.1 Model definition 

The GARCH-based SVM proposed in this 
work, assumes that the volatility in (4) is not 
driven by the realized shocks ut = rt − μ, but by 
an unobserved process u′t that is normally 
distributed as assumed in Subsection 2.1. The 
supporting idea behind this concept relies on 
the belief that the process σt will be best 
described if the whole residual density –instead 
of the realized shock ut– is considered. 
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Based on Equation (6), the idea explained 
above can be implemented replacing ut in (4) 
by u′t defined by: 

'

(0,1) . . .
t t t

t

u

N i i d t

s h

h

=

"
 (10) 

Based on the relationships above, the proposed 
model can be expressed as in (11), and it is 
called uGARCH (unobserved GARCH). 

2 2 2 2
1 1 1t t t t

t t tr

s w as h bs

m s e
- - -= + +
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 (11) 

where rt is a return process, σt is the stochastic 

volatility, m Î   and , ,w a b +Î   are 

parameters, α + β < 1; (0,1)t Ne   and 
2(0, )t Nh s are i.i.d. sequences. 

An important issue regarding this model is that 
the moments of its posterior distribution: 
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do not exist; this means that the expectations 
related to the filtering problem do not exist 
either. However, as a PF-based state estimation 
framework is to be used [2], the consideration 
of finite number of samples guarantees that the 
expectations are taken w.r.t. a pdf which is 
representative of p(t

2 | r1:t) –i.e. similar in the 
areas of high concentration of probability 
mass–  ,  but with finite support. Also, although 
the moments of the posterior do not exist, the 
confidence intervals are properly defined; i.e., 
for any   [0,1), exists c < 1 such that: 

2 2
1:

0

( | )
c

t t tp r d    (13) 

3.2 Model identification based on 
standard GARCH structure 

In order to perform a successful 
implementation of the proposed model, a set of 
parameters accurately representing the process 
under study is required. Unfortunately, the 
likelihood function of the uGARCH, given the 
observations, is defined as an intractable 
integral. Considering  = [, , ], the 
likelihood function, derived from (9), is: 
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Hence, the maximization of L(|r1:t) is not 
straightforward. Based on the similarities of the 
models GARCH and uGARCH, it will be 
assumed that the optimal set of parameters for 
the GARCH model, derived using ML, 
represents a suitable estimation of the 
parameters for the uGARCH model. 

This means that, given a sequence of T 
observed returns r1…T, it is possible to fit a 
GARCH model by means of ML; i.e., to derive 
an optimal set of values for the parameters , 
, , and  in (4), and use them in the 
uGARCH model (11) to represent the 
relationship between a return series and its 
underlying stochastic volatility. 

4. PF-based Analysis of Financial Data 

In order to validate the proposed structure, a 
particle-filtering-based estimation scheme has 
been implemented, using the uGARCH model, 
to filter the volatility of both simulated and real 
financial return series. 

The filtering structure to be used is the so-
called Bootstrap filter proposed by [18]. This 
filter approximates the posterior distribution 
p(σt|r1:t) by a set of N weighted samples, 
computed recursively every time a new 
observation is available; i.e., it is assumed that 
exists {σt

(i) ,wt
(i) }i=1…N, such that: 

( ) ( )
1:

1

( | ) ( )
N

i i
t t t t t

i

p r ws d s s
=
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where δ(•) is the Dirac function. Moreover, 
to ensure that the set of samples represents 
accurately the posterior distribution, the 
Bootstrap filter includes a resampling step 
to avoid degeneracy of the empirical 
distribution in the right hand side of (15). 

4.1 Simulated time series 

The motivation behind the utilization of the 
proposed model structure, to solve the problem 
of estimating the volatility of a simulated return 
series, relies on the fact that the volatility 
process is known in such case; hence, the 
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estimation error can be computed w.r.t. the 
actual process. In this sense, 250 samples have 
been generated for the volatility and its 
corresponding return process {σt,rt}t=1...250 using 
the GARCH model in (16). 
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With this parameters, a uGARCH model has 
been implemented as shown in (17) as the 
underlying modeling structure of a Bootstrap 
filter to estimate the process {σt}t=1...250 
considering the observations {rt}t=1...250. 
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Results of this estimation procedure are shown 
in Figure 1. It is possible to note that the set of 
parameters of the GARCH model that 
generated the volatility sequence {σt}t=1...250, 
and its corresponding returns {rt}t=1…250, can be 
also used for the uGARCH SVM, since the 
generated process and the expectation of the 
volatility estimated by the Bootstrap filter are 
qualitatively close. Additionally, the mentioned 
filter gives a notion of the whole volatility pdf; 
characterized by its 95% confidence interval 
(shown in Figure 1). 

 

Although simulation results validate the 
proposed structure, it is also important to test it 
in scenarios with real data, where the hidden 
state and the model parameters are unknown. 
This case is revised as follows. 

4.2 Estimation of NASDAQ composite 
index volatility 

Since February 5th, 1971, the NASDAQ 
Composite Index (NCI) represents all of the 
components listed in the NASDAQ stock 
market, meaning that it has over 3000 financial 
instruments, and it is widely known as a 
technology industry indicator. The study of the 
volatility of the NCI –motivated by speculators 
and shareholders both aiming to trade 
derivatives over the NCI, or to take part of the 
technology market– is an interesting challenge 
given the strong fluctuations, and the high 
uncertainty, that such index has shown since its 
very early beginning. These features make the 
NCI a suitable candidate to validate the 
proposed structures.  

4.2.1 Data preprocessing 

Given that the models presented in the Sections 
2 and 3 assume that the observed process is a 
return time series, the financial data –usually  
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Figure 1. Volatility estimates of a simulated process r1:250 using the uGARCH model and the PF. a) black 
dots: simulated volatility process using a GARCH; circles: uGARCH-PF estimate; fine solid line: uGARCH 

estimate of the 95% CI. b) Simulated return process 
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available in the form of prices, or index, series– 
have to be converted into returns. This process 
is performed using continuous compounding; 
i.e., the index values pt, and the returns rt are 
related by: 

 1logt t tr p p  (18) 

Figure 2 presents both the NCI values and their 
returns computed according to (18) for the last 
4 years. The first signs of the late-2008 
recession can be also observed in this figure, 
where the 600th sample represents September 4, 
2008. Also, based on the statistics in Table 1, 
the presence of higher-order moments suggests 
the consideration of volatility models as the 
ones presented in Sections 2 and 3. In the 
following both the standard and the unobserved 
GARCH are implemented to estimate the 
volatility of the NASDAQ Composite Index. 

 
 

Table 1. Median and first 4 moments for the 
NASDAQ Composite index returns between April 

18, 2006 and April 8, 2010 

Median Mean Variance Skewness Kurtosis 

0.0010 3.366e-05 3.0177e-04 -0.1381 8.9040 

4.2.2 Model training 

The observations to be considered for NCI’s 
volatility estimation will be the closing value of 
such index on a daily basis between July 21, 

2008 and July 17, 2009 (250 samples 
corresponding only to  weekdays, continuously 
compounded, and denoted by r1:250). The 
motivation to consider such period was to 
evaluate the performance of the estimation 
structures under considerable index changes, 
since September 2008 is the start of the late-
2000s recession (according to the National 
Bureau of Economic Research). 

Out of the index values r1:250, it was considered 
the subset r1:80, to identify a standard GARCH 
model using maximum likelihood. These 
parameters, as in Subsection 4.1, have been 
also used to implement an uGARCH model 
(19). 
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In the following subsection, the uGARCH 
model in (19), together with the Bootstrap 
filter, is used to estimate the volatility of the 
NCI within the mentioned period. These results 
are compared to a smoothed estimation 
performed by a GARCH model. 

4.2.3 Volatility estimation 

Figure 3 presents the index values and its 
returns series, in addition to the computed 
estimates. In Subfigure (b) it can be seen how 
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Figure 2. NASDAQ Composite Index and its return series between April 18, 2006 and April 8, 2010. 
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the index fell as a consequence of the start of 
the recession in t = 50, while (c) shows how the 
returns present high variance from this point.  

 

Regarding the estimates, the uGARCH-PF-
based filtering structure realizes the variation of 
the volatility behavior, since the confidence 
interval estimate widens in t = 50, and also 
presents accurate estimates w.r.t the smoothed 
GARCH estimate. 

5. Conclusions 

This paper presents, and implements, a novel 
stochastic volatility model, namely uGARCH, 
based on the deterministic GARCH model, to 
estimate the volatility of a given sequence of 
financial returns using particle filters. Although 
the proposed structure does not allow 
straightforward parameter identification, the 
results show that a set of parameters derived by 
means of maximum likelihood for the standard 
GARCH model, can be also used in the 
uGARCH model. 

In the context of estimating the hidden volatility 
in both simulated and real financial systems, the 
expected value of the uGARCH estimates is 
similar to the one of the standard GARCH. 
Additionally, the uGARCH represents the whole 

probability density function of the hidden 
volatility, which is a useful resource in 
applications such as VaR estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Concerning future research in this line, the 
authors propose the inclusion of adaptive 
identification schemes in order to derive a 
representative set of parameters in case of 
changing dynamics. 
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