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1. Introduction 

In recent years, due to computational 
developments that have enabled more complex 
applications of nonlinear problems, the area of 
nonlinear control systems has been the subject 
of many studies (Soltanpour and Shafie, 2010). 
The present paper shows a combination of an 
adaptive controller and a feedback linearization 
technique to control a Magnetic Levitation 
System (MLS). This system was chosen since it 
has nonlinear dynamics and a didactic kit of the 
physical system is available to continue with 
future work. 

The MLS used is manufactured by ECP – 
Educational Control Products (www.ecp.com) 
and will be described in more detail in section 
II. Here one desires to control a magnet 
displacement over a glass stick as a result of the 
application of an electrical current on a coil 
(ECP, 1999). 

The relationship between the electrical flow 
and the magnetic disc movement is given by a 
second order nonlinear ordinary differential 
equation. This nonlinear relationship belongs to 
a class of engineering systems of the type 

      uxGxFBAxxtx  , . Several 
nonlinear control strategies can be used to 
control the disc position, such as, for example: 
fuzzy, neural network, adaptive control, 
feedback linearization (Khalil, 1996; Abdel- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hady and Abuelenin, 2008; Torres et al., 
2010a). Here both the exact feedback 
linearization technique and adaptive control 
will be used. 

Exact feedback linearization can enable a 
transformation from a nonlinear system to a 
linear through the addition of nonlinear 
compensators. Thus, this transformation allows 
designing a linear controller for the system 
linearized. However, the exact linearization 
technique with state feedback requires a 
mathematic model that represents the dynamics 
of the real plant (Slotine, 1991). Furthermore, 
the uncertainties in the phenomenological 
model can compromise better results. To deal 
with some uncertainties in the system's model, 
an adaptive controller is used. The controller is 
based on direct model reference approach 
(Narendra and Valavani, 1978; Ioannou and 
Sun, 1996) to provide a control law that will be 
used to the system after the linearization. 

The aim of this paper is to use the combination 
of two techniques to control the MLS: exact 
linearization with state feedback and Model 
Reference Adaptive Control (MRAC). These 
two techniques combined will enable a linear 
controller structure to deal with some 
uncertainties in the system model to MSL´s 
control disk position (a typical nonlinear 
dynamical system). 
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In section 2 the MLS is briefly explained .The 
proposal of the exact linearization with state 
feedback and its application over the MLS are 
presented in section 3. In section 4, the 
adaptive controller structure with a linear 
control law is presented. The simulation and 
analysis results are discussed in section 5. 
Finally, some remarks about the controller 
performance are presented in section 6. It is 
important to mention that a first version of this 
paper was published in (Torres et al., 2010b). 

2. The Model 

Magnetic levitation system 

In this paper the MLS made by ECP was used 
and is shown in Figure 1. It comprises two 
magnetic discs, a glass stick, two laser sensors 
and two coils. The sensors are used to obtain 
the system response associated with the disc 
positions. The system input is given by the 
application of an electrical current to the coils. 
The physical system communicates with a 
computer via Digital Signal Processing (DSP) 
and a black box is responsible for the electrical 
current drivers and the energy supply. 

This MLS can be classified according to two 
modes, SISO (Single Input Single Output) or 
MIMO (Multiple Input Multiple Output), 
which depends on the desired system 
configuration. In the SISO mode only one disc 
is used whereas in the MIMO mode two discs 
are used. Here the MLS was configured to 
operate as SISO and in the repulsive mode over 
the disc. In other words, only the bottom coil 
was used in this work.  

 

Figure 1. Magnetic Levitation System made by 
ECP (ECP, 1999). 

The MLS manual (ECP, 1999) shows the 
mathematic model, based on the physical laws, 
which allows us to obtain its differential 
equation model. The development of the 
mathematic model is beyond the scope of this 
paper. Through the balance of forces, the 
equation is given by (Laithwaite, 1965) 
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, (1) 

where: 

y - magnetic disc position 


y - first derivative of the magnetic disc position 


y - second derivative of the magnetic disc 

position 

c - air viscosity coefficient 

m - magnetic disc mass 

mF - magnetic force applied to the magnetic disc. 

The magnetic force can be written in the 
following way (ECP, 1999) 

4b)+a(y

i
=Fm , (2) 

where: 

i  - electrical current applied on the coil; 

a and b - are constants related with the coil 
properties. 

By substituting (2) in (1), a nonlinear 
relationship between the magnetic disc position 
and electrical current applied to the coil gives 
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 (3) 

Parameter estimation 

There are five parameters in (3): g, c, m, a, and 
b. The parameters g = 9.81 [m/s2], m = 0.12 
[Kg] and c = 0.15 [Ns/m] are considered as 
constant and known values (ECP, 1999). The 
parameters a and b are constants related with 
magnetic coil properties and must be estimated. 
In (Silva, 2009), the least square and Monte 
Carlo methods were used to estimate a and b. 
Accordingly with (Silva, 2009), based on a cost 
function, the Monte Carlo method presented the 
best values for these parameters. The values are 
a = 0.95 and b = 6.28. These values will be 
used in this paper. 
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3. Feedback Linearization  

Exact linearization with state feedback 

Feedback linearization can be applied to a 
certain class of nonlinear systems, including the 
MLS studied, and enables to transform the 
original system models into equivalent models 
of a simpler form. The control scheme uses the 
exact linearization with state feedback based on 
the cancellation of nonlinear functions. 
However, to enable the application of the 
technique, the system dynamic must be 
represented by (Guadarbassi and Savaresi, 2001) 

uXGXFX )()( 


, (4) 

where the functions F(X) and G(X) represent the 
nonlinearities of the states, u is the control system 
input and X is the state vector. Furthermore, two 
conditions must be satisfied. The first one is that 
the system must be controllable. For this first 
condition the matrix formed by vectorial fields in 
(5) must has order n , where n  is the system 
order (Khalil, 1996) 

]...[ GadGadGad 1n
F

1
F

0
F

 , (5) 

where Gadn
F  is the notation of Lie’s bracket 

(Slotine, 1991). 

The second one is that the system should be 
involutive. It means that the distribution 
expressed in (6) also should be involutive 
(Guadarbassi and Savaresi, 2001) 

 GadGadGadspan=D 1n
F

1
F

0
F

... , (6) 

where D is the involutive distribution of G(X) 
expanded in Taylor’s series (represented here 
by the notation span{.}) on an equilibrium state 
X0 (Nam et al., 1993) The order of D is given 
by 1n .  

In order to the distribution in (6) to be involutive, 
it is necessary that the order n of the expression in 
(7) be equal to dimension of D in (6) 

][ Gad,Gad 1n
F

0
F

 , (7) 

Once the conditions are satisfied it is possible 
to determine a diffeomorphism )(XTZ  . After 
this, the dynamic of the system given by (4) 
can be transformed into the form 

)]()[(1 ZuZFEZZ f   


, (8) 

where )(Z and )(Z  represent the state 

feedback, fu is the feedback signal, and E and 

F are, in this work, considered as constant with 
known values. A feedback signal fu  for the 

nonlinear system is chosen in the form in (9) 

uZZu f )()(   , (9) 

Thus, the linear system can be written as 

FuEZZ 


 (10) 

where u is the control signal (control law) for the 
system after linearization. The determination of 
u will be discussed in next section. 

Linearization of the MLS 

The model of the MLS made by ECP was 
presented in (3) and the two conditions for 
application of the exact linearization were 
presented in the last subsection. The feedback 
signal uf and the variables of states can be set as 

iu f         yx 1
       

 yx2

, (11) 

The dynamic of the system given by (3) can be 
rewritten in the form given in (4) 
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The functions F(X) and )(XG  that contain the 
nonlinearities of the system can be set as 
follows in (13) and (14) 
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The transformation )(XTZ   can be set in the 
form given by (15) (Khalil, 1996) 

)(
2

1 XT
Z

Z
Z 








 , (15) 

The functions )(Z  and )(Z  can be 
calculated in the form given by 

4
12 ))(()( bZcaZmgaZ  , (16) 

4
1 )()( bZmaZ   (17) 

Finally, the feedback signal uf can be rewritten as 
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ubZmabZcaZmgau f
4

1
4

12 )())((   (18) 

The application of the feedback signal uf over 
the system given by (12) will cancel the 
nonlinearities and the system will be 
transformed into a linear system given by (10). 
In the same way but using (15) (Slotine, 1991) 























2

1

x

x
Z . (19) 

A block diagram was implemented in Matlab 
Simulink© which simulates the exact 
linearization technique applied in the MLS (see 
Figure 2). 

 

4. Adaptive Controller  

Model Reference – Direct Approach 

The Model Reference Adaptive Control 
(MRAC) is one of main techniques in adaptive 
control. The changes in the controller 
parameters are provided by the adjustment 
mechanism with the objective to minimize the 
error between the system under control and a 
model reference output (that is the desired 
response). MRAC uses integral laws to 
adaptation which can introduce a slow and 
oscillatory transitory, however in steady state 
there is a soft control signal (Narendra and 
Valavani, 1978; Ioannou and Sun, 1996). 

The block diagram in Figure 3 may explain the 
general idea of a system using MRAC.  

MRAC applied to the MSL after              
the linearization 

In this work MRAC classical technique using 
the stability theory from the input-output view 
is applied to the MSL after the exact 
linearization. Once the dynamics are now 
linear, the control problem will be formulated 
as model-following. The derivation of the 
MRAC will follow the 3 steps below (Aström 
and Wittenmark, 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Find a controller structure that admits 
perfect output tracking; 

Step 2: Derive an error model of the form 

)})((){( 0
1   tpG T  (20) 

where )(1 pG  is a Strictly Positive Real (SPR) 

transfer function in p, 0  is the process 
parameters (or the true controller parameters), 
and   is the controller parameters (or the 
adjustable controller parameter). 

Step 3: Use the parameter adjustment law 

 )(t  (21) 

 

Figure 2. Block diagram for the exact linearization in the MLS. 

 

Figure 3. General idea of a system using MRAC. 
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where   is the adaptation gain,   an auxiliary 

vector of filtered signals and   the error signal. 

All these parameters and variables in (20) and 
(21) will be defined in the next subsection. 

The controller structure 

The desired response given by a continuous-
time model reference signal could be written   
as follows 

)()( trBtyA mmm   (22) 

where mA  and mB  are polynomials to obtain 
the model transfer function in the form 

m

m
m A

B
sG )(  (23) 

The desired response (in this case here is the 
height value) and the input reference signal 

)(tr is bounded. The continuous-time plant (the 
MSL after exact linearization) could be 
described as follows 

)()( 0 tBubtAy   (24) 

It is assumed that the polynomials A and B do 
not have common factors and the polynomial B 
is monic with all zeros in the left half-plane. 
The parameter 0b  is called the high-frequency 

gain. The variable )(ty is the measured output 
and it is also bounded. The plant is a minimum-
phase and, in this work, it is assumed the sign 
of 0b is known. If the parameter 0b  is not 
known, it must be estimated. A linear controller 
can be written as 

)()()( tTrtSytRu   (25) 

where R , S  and T  are polynomials. Since the 
polynomial B  is stable, the corresponding 
poles can be canceled by the controller. In other 
words, BRR 1 . The closed-loop system when 
(25) is applied becomes 

rTbySbAR 001 )(   (26) 

where T will be chosen as 00 AtT  , and 0A  is a 

stable monic polynomial and 1R  and S  satisfy 

mAASbAR 001   (27) 

One way to achieve the perfect model-
following is set 

)()( 00 trtbtyA mm   (28) 

and the error equation (the difference between 
the plant response and the desired response 
given by the reference model) is set as 

)()( tytye m  (29) 

Let introduce the polynomials 1P , 2P  and P : 

21PPP  , n
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11 , and 

k
kk ppP    ...1

12 , where n = degree 

( mA ) = degree ( 1P ), and k = degree ( R ) = 

degree ( 2P ). It is assumed that degree ( 1P ) > 

degree ( 2P ) and the polynomial 2P  is a stable 
monic polynomial. 

From (27) and after some algebraic 
manipulations, let define the filtered error fe as 
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where Q is also a polynomial whose degree is 
not greater than degree )( 0 mAA such that  

mAA

Qb
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is SPR. This filtered error fe
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necessary to obtain the error signal   in the 

form of (20). One can writes 
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The filtered error then becomes 
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Let l and m be the degrees of the polynomials S 
and T, respectively. Let introduce a vector of 
true controller parameters 

T
mlk ttssrr ).........( 001

0   (33) 

where ir  are the coefficients of the polynomial 

2PR  . Also define the auxiliary vector   of 
filtered input, output and input reference signals 
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The filtered error in (32) can then be rewritten as 
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To obtain an error model, one must introduce a 
parameterization of the controller. The control 
law )(tu  is given by  

)()( 1 Ptu T  (36) 

By using this control law and (35) the filtered 
error can be written as 
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Let introduce the signals   and  . After some 
algebraic manipulation by using (37) these 
signals can be defined by 
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The signal   is called the augmented error, and 
  is called the error augmentation. The error 
model in (39) is the same defined in (20). It is 
also linear in the parameters and satisfies the 
requirements of the step 2, and the parameters 
will be updated by (21).  The stability of the 
closed-loop system is obtained by considering 
that )( 00 mAAQb  is SPR and that signals in    
are bounded. Finally, the equations needed to 
implement the MRAC system can be 
summarized as follows: 

r
A

B
ym

m

m  (40) 

 mf yy
P

Q
e

P

Q
e   (41) 









  Tu

P1

1
 (42) 


m

f AA

Qb
e

0

0  (43) 

 )(t  (44) 

)()( 1 Ptu T  (45) 

5. Simulation and Analysis Results 

The Matlab Simulink© was used to simulate 
the proposed controller for the MLS in the 
present work. The block diagram designed in 
Simulink is shown in Figure 4. The model 
parameters of the MSL used here were 
presented in subsection 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Many different model reference adaptive 
systems can be obtained by different choices of 
the design parameters. For sake of simplicity, 
in this work the polynomials were chosen as 
follow: P1(s) = Am(s), P2(s) = A0(s), and Q(s) = 
A0(s).Am(s).  

The transfer functions of the reference model 
was chosen as 
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Figure 4. Block diagram in Simulink. 
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The polynomials A0, R, S, and T were chosen as 
follow below and by using the solution given 
by the Diophantine equation (27) 

0 0 0( ) 2A s s a a= +  =  (47) 

1( ) 2.15R s s r r= +  =  (48) 

0 1 0 1( ) 0.43; 0.56S s s s s s s= +  = =  (49) 

0 1 0 1( ) 0.28; 0.56T s t s t t t= +  = =  (50) 

The simulations were performed regarding )(tr  
(reference) as a square wave signal with 
amplitude equal to 1 and the adaption gain   
equal to 0.8. The value of b0 was chosen equal 
to 0.5. Figure 5 shows the compared response 
between the model reference output and the 
plant output. Figure 6 and Figure 7 show the 
error signal and the control effort, respectively. 

According to (3) the reference signal r  is the 
electrical current applied on the coil  ti  (that is 
the manipulated variable). It could be observed 
in Figure 5 that the model reference output 
given by (3) was tracked by the plant output. 
The process variable  ty  that is the magnetic 
disc position could be observed in Figure 5 
with oscillations in transitory, but stable in 
steady state. The error e  in steady state is little 
according to Figure 6 and the control effort 
associated with the electrical current is 
bounded as shown in Figure 7. 

 

Figure 5. Comparison between the desired response 
(model reference) and plant response. 

 

Figure 6. Error signal. 

 

Figure 7. Control effort. 

6. Conclusions 

In this paper the combination of two techniques 
to control a MLS were presented: exact 
linearization with state feedback and MRAC – 
direct approach. It could be observed through 
the simulations and analysis results that the 
desired response (output signal of the model 
reference) was tracked by the plant response.  
The error signal could be seen as bounded and 
near to zero and the control effort could be seen 
also as bounded. The simulation results show 
that the adaptive controller is able to control 
satisfactorily the magnetic disc position, in 
spite of the presence of model uncertainties. 
For future work this adaptive controller should 
be implemented in the real physical system. 
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