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1. Introduction 

Coupled Map Lattices (CMLs), also named 
Coupled Map Networks (CMNs), represent a 
well-established tool in modeling diffusion and 
flow processes. CMLs are currently used to 
represent models of such various processes as 
laminar and turbulent flows, heat propagation, 
biological population dynamics, and economic 
processes [8, 11-13, 20-22]. 

Typical CMLs operating in discrete time are 
represented by systems of discrete recursive 
equations with variables with at least two 
indices, characterized by some form of regular 
relationship between the variables with indices 
with close values. The regularity is due to the 
fact that the nodes in the lattice operate 
according to influences coming from 
neighboring nodes, where the neighborhoods 
are similar [10,12,27], as in Figure 1. The 
general equation of a node is written as 

)( 1,,
h

titi fx  x ,  (1) 

Where xi,t is the output of the node with the 
corresponding indices, f stands for the input-output 
function of the node and the variable xh is a vector 
representing the outputs of the nodes in the vicinity 
of the node i, at previous time moment, 

),,,,,( ,,,1, thitithithi
h
it xxxx  x . (2) 

In Equations (1) and (2), the index i  stands for 
the position of the node in the row. When the 
rows are finite, i=1,…,N. The index t stands for 
the time moment; one row in the lattice is 
assigned to each time moment,  ,..,0t , or 

Mt ,..,0  for finite evolutions. 

 

 

 

 

 

 

 

 

 

 

 

 

The value .12 cth   represents the number of 
cells (nodes) in the vicinity. The vicinity is 
assumed symmetrical in (2). A set of initial 
conditions are needed to solve the equations (1) 
and (2). The initial conditions represent the 
values of the variables with the second index 0, 
xi,0; these values are assumed known. The 
number of indices can be extended at will for 
creating planar and spatial lattices; for example, 
two indices can be used to denote space, and 
the third index is used to denote time. 

(a)  (b)  

Figure 1. (a) Semi-planar coupled map lattice with 
finite rows; the shaded nodes have boundary 

condition values. (b) An annular lattice. 

The set of equations (1) and (2) can be 
supplemented with boundary conditions when 
the lattice is linear and the rows in the lattice 
have a finite number of nodes. The boundary 
conditions are either prescribed or reproduce 
the values of the corresponding boundary nodes 
on the first row. A CML without boundary 
conditions is named freely evolving or isolated 
CML. The boundary conditions refer to 
constraints imposed to some of the values of 
the variables, typically to the predetermined 
values of the “extreme” (boundary) cells, 

jj ax 1 , jNj bx  . 
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A simple case of CML uses weighted linear 
combinations of the outputs of the neighbors, 
as in multilayer neural networks. Symmetric 

kiki ww    and antisymmetric kiki ww    
couplings are frequently used [23]. In all the 
above CMLs, the neighborhood includes 
elements on both sides, like in Figure 1. This 
type is named diffusion-type CML. In contrast, 
if the neighborhood includes only elements on 
one side, the CML is said to have one-way 
coupling. These networks are also named uni-
directionally coupled map lattices. In case of 
one-way coupling, a CML with linear nodes 
has the equation 

  j
i

j
i

j
i xxx 1

1 1 
  . (3) 

Time-delayed map are defined by equations 
involving time lags larger than 1, as [23], 
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There are alternative ways of describing CMLs 
based on graphs. Assume a lattice-type oriented 
graph. The orientation is interpreted as (time-) 
propagation. To each node of the graph, attach 
vicinities (all similar) and a characteristic 
function. With initial condition for the first line 
and boundary conditions, we propagate from 
the first line. 

The CML is asymptotically stable when the 
states of the lines converge when time goes to 
infinity. When the convergence occurs in a 
finite number of lines, the behavior is stable. 
The CML may be periodical, with the states of 
the lines repeating periodically. CMLS with 
nonlinear nodes –depending on the initial 
conditions– may evolve chaotically. 

For a process to have a CML model, several 
conditions have to be fulfilled. In the first 
place, the process has to have similar 
components that can be modeled with identical 
cells, or with a small set of different cells. In 
the second place, the elements in the process 
should have a spatial distribution that is regular 
and corresponds to a simple graph, as a line 
graph, a circular graph (loop), or a planar 
regular graph. While more complex graphs 
have been proposed, computations are easier on 
simple graphs. Third, the connections between 
the elements, which model how one element 
influences the others, should fall in the 
category of models based on vicinities. 
Examples of processes that obey these 
conditions are the atom movements in a crystal, 

the spins in a magnetic material, the cars on a 
one-way road, and people sitting in a stadium. 
To such processes, simple graphs can be 
attached and a description of the process with a 
CML is easily done. More examples are 
introduced in the next section of the paper. 

The CMLs described above are deterministic, 
because the characteristic functions of their 
nodes were tacitly assumed deterministic ones. 
CMLs with probabilities are also well-know in 
physics as models of magnetic and diffusion 
processes [5, 9, 23]. 

A generalization of the CMLs, using fuzzy 
logic systems for describing the behavior of the 
nodes (cells) in the CML, was introduced in 
[25, 26]. The use of fuzzy logic in conjunction 
with CMLs has several reasons, including the 
need to simulate networks of human decision 
makers and the need to deal with dynamic 
pattern formation and pattern recognition in 
processes well described by fuzzy logic, as 
speech [19] and biological signals [30, 31]. 
There are two cases of CMLs with fuzzy logic 
cells. In the first, the cells are modeled by FLSs 
with defuzzification; the second uses nodes 
modeled by FLSs with fuzzy outputs (no 
defuzzification at the output).  

In Section 2, we present the notion of coupled 
fuzzy maps and provide the basic equations and 
examples of applicability. In Section 3, we 
discuss issues related to pattern formation in 
crisp and fuzzy CMLs. The last section 
concludes the paper. 

Notations: Throughout this paper, t
kx  and tkx ,  

denote a variable related to the kth cell of the 
row, at time moment t. The variable x is used in 
general for the input and output of cells, the 
notation u is used for aggregation of input 
variables, and )(f  denotes the function 
describing the cell. Whenever the time moment 
is obvious, we may drop the t index. The 
symbol   is reserved for membership 

functions (m.f.) and   for output singletons in 
a Sugeno-type FLS. CfML stands for Coupled 
fuzzy-Map Lattice, fCML stands for fuzzy-
Coupled Map Lattice, while FLS stands for 
Fuzzy Logic System. 
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2. CMLs with Fuzzy Logic Cells 
(CfMLs and fCMLs) 

2.1 Fuzzy logic nodes 

We recall that a fuzzy logic system is a 
mapping from a set of m.f.s to another set of 
m.f.s. FLSs are described by rules, such as “If it 
heavily rained last nigh, the morning is humid,” 
which include imprecise, qualitative terms, like 
“heavy rain” and “humid”. Reasoning based on 
such qualitative terms is widespread in human 
decision-making and everyday life. The m.f.s 
describe in mathematical terms the “degree of 
imprecision” and fuzzy logic allows us 
reasoning based on vague concepts. The reader 
is referred to textbooks for details.  

When the input of the FLS is a number, it is 
fuzzified and converted into one or several 
m.f.s. In many cases, fuzzy logic systems are 
provided with defuzzifiers at the output. The 
defuzzifier converts a m.f. into a number, in a 
similar manner a probability distribution 
function is converted into an estimated value by 
an estimator (e.g., the average estimator). 

 

 
 
 

Figure 2. A fuzzy cell in a CfML transfers to its 
neighbors the defuzzified output value, moreover 

information on the values of the output m.f.s.  

When a FLS is presented with numbers at the 
input and is provided with defuzzifier, it 
behaves as a crisp nonlinear system. It can be 
shown that the nonlinear system has a 
piecewise input-to-output function. Depending 
on the definition of the FLS and on the 
defuzzifier, the characteristic function can be as 
simple as a linear piecewise function, or a 
piecewise rational function, or a piecewise 
transcendental function (for instance, when the 
input m.f.s are Gaussians).  

The so-called Sugeno-type FLS is typically 
provided with a defuzzifier, see Figure 2. The 
difference between fCMLs and CfMLs is 
illustrated in Figure 2 for nodes represented by 
Sugeno-systems. In this figure, a Sugeno-type 
fuzzy system is implementing a node in a 
CfML. The dotted line shows the position of 
the input value; the arrows relate the antecedent 
m.f.s in the rules to the corresponding output 
singletons. When the FLS is defuzzified, the 

inputs and outputs of the nodes are real 
numbers and the resulting CML is a CfML. 
When the output of the FLS is not defuzzified, 
both the inputs and the outputs of the nodes are 
m.f.s, and the lattice is named fuzzy-coupled 
(fCML). The abbreviation FCML, meaning 
fuzzy CML, covers both subclasses fCML     
and CfML. 

Before ending this subsection, a few remarks 
on terms and abbreviations are needed. 
Rigorously, all lattices using FLSs as nodes 
should be named coupled fuzzy map lattices, 
because FLS are fuzzy maps. When the edges 
of the graph corresponding to the lattice shows 
the path for a fuzzy variable (m.f.), the 
corresponding CML should be named fuzzy 
coupled. Hence, the full name for a fuzzy 
coupled lattice with nodes represented by FLSs 
should be fuzzy coupled fuzzy map lattice. To 
simplify terms and abbreviations, we use the 
shortcuts fCML and CfML. 

2.2. Applications asking FCML models 

Various illustrations of applying deterministic 
(non-fuzzy) CMLs to model real-life processes 
appear in the literature, for instance [24]. 
Subsequently, we sketch the applicability of 
FCMLs to real life problems. We rely on the 
fact that whenever the process involves 
qualitative reasoning or uncertainty, fuzzy 
systems are a good toll for modeling the 
process [1,7,14,27].  

Example 1. Consider a line where people are 
waiting to buy entry tickets to a popular event. 
They may be discussing various topics. As they 
stay in line, they can talk and listen only to a 
few people in their vicinity. This situation 
corresponds to the line geometry (linear 
lattice). Successive time moments correspond 
to successive lines, as in Figure 1 (a). Because 
natural languages contain imprecise terms and 
involve uncertainty and qualitative reasoning, 
the behaviors of human individuals and of 
social groups are well described by fuzzy logic 
[27,29,30,31,32,33]. 

Example 2. Consider a specific trade, like 
vendors in the railway stations along an 
isolated railway (with no major stations and rail 
nodes). They may make decisions about the 
selling prices for their merchandise based on 
information they gather about prices at vendors 
from stations immediately close to their railway 
station. We deal here with line-type geometry, 
successive lines – as in Figure 1(a) – 

 Defuzzified value 
(fCMLs) 

 Belief degrees of 
selected consequents 
(CfMLs) 

input 

FLS 
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corresponding to successive time moments. As 
the decision-making process is often qualitative 
and based on simple rules [1, 14, 27, 32], it is 
suitable to apply fuzzy logic to the modeling [1, 
14, 27]. Again, we obtain a coupled fuzzy map 
lattice model. The prices (outputs of the nodes 
representing the vendors) will be “defuzzified” 
values of the fuzzy-logic model of the 
individual vendors (cells in the network); the 
inputs are the information about prices in, say, 
the neighboring left and right railway stations. 
Every cell, standing for a vendor, corresponds 
to a FLS. Consider that the vendors make the 
decisions in the form: 

If the price of the product at time t, in the left-
side station, price denoted by t

ky 1  is somewhat 
lower (L) than the price she uses, moreover the 
price of the product in the right-side station, 
denoted by t

ky 1 , is lower than the price she 

uses, t
ky , then increase the own product price 

1t
ky  during the next period of time by 1 . Here, 

time is assumed discrete and the successive 
moments of time are denoted by ,...1, tt . 
Notice that somewhat lower has the 
significance of qualitative appreciation; to this 
linguistic valuation, we attach a m.f.; moreover, 
we will use m.f.s for the linguistic degrees 
somewhat higher, much lower, much higher, 
and about equal (see Figure 3). The variable of 
the m.f.s is the difference d between the 
vendor’s and the neighbor’s price. Briefly, the 
above rule is: 

If t
ky 1  is L and t

ky 1  is L, then the increment 

for selling price is 1 , where 1  is a number.  

Similar rules are: If t
ky 1  is much lower (ML) 

and t
ky 1  is L, then the increment is 2 ; If t

ky 1  

is higher (H) and t
ky 1  is L, then increment      

is 3 . 

 

 

 

Figure 3. Triangular m.f.s of the fuzzy reference 
sets. For every input value, iu , only (at most) two 

truth degrees (values of the m.f.s) are nonzero.  

The readers can easily add rules to make a 
complete description of the desired process. 
The above description corresponds to a 
Sugeno-type fuzzy system with three inputs. 

It is easy to imagine various such descriptions, 
corresponding to different strategies (market 
behaviors) of the vendors. For example, a 
simpler case is that of vendors averaging the 
prices and deciding as follows: 

If the weighted average of the t
ky 1 , t

ky , and 
t
ky 1  is lower than t

ky , then the increment of t
ky  

is 1 , where the weighted average is computed 

as t
k

t
k

t
k

t yayayau 13211   . 

A description using rules as above is based on 
weighted averages and corresponds to a single-
input Sugeno fuzzy logic system. 

Example 3. As another example, consider a 
one-way, single-lane road, where all drivers are 
essentially influenced by the behavior of the 
drivers in front of them or just behind them – in 
the three-cell vicinity. The behavior of the 
drivers manifest in the way they accelerate and 
decelerate, in the manner they keep the distance 
with respect to the car ahead of them etc. These 
“parameters” are imprecisely estimated and 
perceived by the drivers. For example, imagine 
that the mood of the drivers is dependent on the 
manner the nearby drivers behave, moreover 
that the driving manner depends on the mood. 
This corresponds to a line-geometry, with cells 
representing the drivers and behaving 
according to a quite fuzzy description – a 
CfML model. 

This brief discussion shows that appropriate 
space distributions of individuals (not restricted 
to biological individuals), with a limited and 
uniform vicinity where the influences manifest, 
may lead to FCML models for processes like 
decision-making, mood and behavior, and 
moral opinion. Therefore, developing such 
tools like FCMLs and analyzing their dynamics 
may be a useful practice for explaining such 
processes, predicting their outcome, and 
correcting (controlling) them. Other similar 
illustrations of applying FCMLs to modeling 
are presented in more detail in [25, 26]. 

2.2 Basic equations - fCMLs 

The fCMLs make use of the intrinsic properties 
of the fuzzy cells by carrying fuzzy information 
(FI) from one cell to the cell on the next row. 
The type of FI sent to the next row and the way 
of aggregating this information with other 
pieces of information define the CfMLs and 
their peculiarities. 

much  
lower 

much 
lower

somewhat  
lower 

somewhat  
lower 

about 
equal 

d

(x) 
1 

u 
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Under a general framework, in a fuzzy-coupled 
map lattice the values of the m.f.s of the cells 
[25, 26] are functions of the fuzzy output 
values of the neighboring fuzzy cells on the 
previous row, that is, they are functions with 
variables the values of all the output m.f.s of 
the neighboring fuzzy cells on the previous 
row. All nodes are assumed identical and 
having the same variable for all the input and 
output m.f.s. The general equation of CfMLs is 
then: 

))(,),(

,),(,),(()(
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1
,

1
,1,
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r
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r
thi

thithij
j
ti
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


 (5) 

where j = 1, …, r is the index of the m.f.s, 

)(1, vj
ti   is the value of the jth m.f. of the ith 

fuzzy cell on the tth row, v is the variable of the 
m.f.s, and  jf  is one of the j functions 

defining the cells. Figure 4 illustrates the idea 
in Equ. (5) for the case of a 3-vicinity and FLSs 
with 3-m.f. outputs. 

 

Figure 4. Output triangular m.f.s of the nodes.  

Example 1. Consider Mamdani-type fuzzy 
system nodes with three triangular m.f.s at the 
output. Define the values of the output m.f.s 
determined by the ad hoc formula 
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Together with the expressions of the m.f.s, the 
above relation defines a fCML. 

Example 2. Consider a Sugeno system having 
three Gaussian input m.f.s  

   
.0,,;3,2,1

,/)(exp 2





jjj

jj
j

ssaj

saxx

R
 (6) 

The corresponding output singletons are 
denoted by j . A node from the layer t  

produces three singletons with the 
corresponding truth degree,  

)},(),,(),,{(~ 3
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3
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2
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1
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1
,, tititititititi y  (7) 

We assume that the three inputs to the node i  
on the layer 1t , each input represented by the 
fuzzy vector y~ , are dealt with according to the 
standard (min-max) fuzzy logic. Then, the 
aggregation operation produces an input to the 
node i  on the layer 1t  according to: 
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 (8) 

Because we assumed that all nodes are 
identical, the singletons should be identical 
independent of the indices ti, . Therefore, we 
drop these indices. The truth values of the 
singletons remain dependent on all indices. We 
can write (8) as 

))},(),,(),,{(~ 3
1,

32
1,

21
1,

1
1,   titititix   (8’) 

where )),,max( ,1,,11,
j

ti
j
ti

j
ti

j
ti   . 

The node i  on the layer 1t  responds with the 
fuzzy output vector of singletons according      
to (7),  
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1,
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2
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1
1,1,   tititititititiy

where, using (6), 

)),(max( 1,1,
j
ti

jjj
ti   . (9) 

The equation (9) completes the computation of 
the fuzzy node. 

2.3 Basic equations - CfMLs 

Formally, equation (5) holds for CfMLs too. 
However, the details of application of the 
equation (5) differ and take into account the 
type of FLS used for the nodes and the logic 
used. Considering the case of standard Sugeno-
type, identical nodes with defuzzified output, 
for 3-input nodes, as in the previous example, 
the output is a function of the values of the 
m.f.s only: 

)()()(

)()()(
)(

321

332211

1,
uuu

uuu
ux ti 


 . (10) 

In (10), u is a value determined by the 
aggregation of the defuzzified outputs of the 
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nodes on the previous line. A typical 
aggregation is the weighted sum,  

titititi xwxwxwx ,11,0,111,   ,  (11) 

where kw  are weights. 

3. Pattern Formation in CMLs and 
Fuzzy CMLs 

The formation of patterns in CMLs is 
extensively documented in the literature, e.g [2-
5,11,12,15-17]. Stability issues in various types 
of CMLs have been addressed using various 
tools in [2-6, 15-17, 21]. Patterns in both 
fCMLs and CfMLs have been presented in [25, 
26, 28, 32]. We present subsequently examples 
of patterns that are obtained similarly to those 
in [26]; because the FCMLs used are similar to 
those in [26], we do not discuss them here.  

We exemplify the discussion with pictures of 
the behaviors of the CfMLs, as shown in 
Figures 5-7. In these figures, the time axis is 
along the horizontal direction, the first line is 
the vertical at the left-side of the picture, and 
the narrow strip at the left of the pictures shows 
(enlarged) the first line, that is, the initial 
condition used in the simulation. The initial 
condition is generated randomly. All pictures 
are converted from color to gray and have 
modified contrast for pattern visibility. 

Figure 5 exemplifies the formation of stable 
(solid arrows) and vanishing (thinner, contour 
arrows) strip-like patterns. Figure 6 shows the 
development of almost randomly distributed 
triangular patterns along triangle-formatted strips.  

 
Figure 5. Stable strip-like pattern. Right: Vanishing 

(light arrow) and stable strips 

 

Figure 6. The formation of triangular patterns 

 

Figure 7. Spatio-temporal coalescence (arrows). 

Notice that the triangular patterns represent a 
form of local (line) self-organization, which is 
symmetrically “erased” toward its center during 
time. Finally, Figure 7 illustrates cases of 
coalescence (partial organization). The 
remaining part of the paper is devoted to 
explain these self-organization processes.   

Many properties of the CMLs and CfMLs are 
due to the lattice geometry, not to the cell 
(node) properties, or to a combination of the 
two. For example, the formation of the 
triangular patterns is directly related to the type 
of vicinity and to the type of the lattice, and 
partly independent of the function performed 
by the nodes. Constant strips appear when 
localized constant solutions are allowed. 
Periodicity related to the lattice graph and 
vicinity type helps explaining the periodically 
varying strips. Determining what patterns the 
CfMLs can develop is of interest because it 
helps us to make predictions on the dynamic 
behavior of the modeled process. 

3.1 Conditions for periodic patterns  

A CML has period p if the output of the node j 
on line n is the same to the output of the node i 
on line n+1, yi,n=yi,n+p(i,n). We assume a 3-
vicinity. Then, detailing the meaning of the 
periodicity condition requires recursively 
developing the expression of yi,n+p as a function 
of 12 p  values p lines behind, 

npininpi yyy ,,, ,,,,   . Indeed,  

   1,11,1,1, ,, pnipnipiipni yyyfy  

 
  







2,12,2,1

2,2,12,2

,,

,,,

pnipnipni

pnipnipni

yyyf

yyyff
 (12) 

Notice in Figure 8 that for 2-period, yk,n+2=yk,n, 
five initial values (line p) contribute to the final 
value (line p = 2), each initial value going 
through two edges of processing by a function 
f. When the inputs to nodes are aggregated in 
an invertible manner, that is, when the three 

time  
axis t 
(iteration) 
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input values nknknk yyy ,1,,1 ,,   produce an input 

value specific only to the vector 
),,( ,1,,1, nknknknk yyy y , the periodicity 

condition along the k index, nknk yy ,2,  , 

implies the periodicity of the corresponding 
input vector ),,( ,1,,1, nknknknk yyy y . 

Consequently, in this specific case of 
aggregation, 2-periodicity along k implies 
periodicity of the whole set of 5 values 

nknk yy ,2,2 ,,   . The latter condition is 

equivalent to a periodicity in a strip of indices 
2,1,,1,2  kkkkk . It is easy to see that 

propagating along the k indices the same 
conditions as above, the whole line of index n 
must be periodical with the same period. This 
explains the tendency of CMLs and FCMLs to 
develop line periodicity, as seen in Figure 5. 
Notice however that the invertible aggregation 
may occur in fCMLs, but invertibility is not 
satisfied in typical CMLs and in CfMLs with 
aggregation performed by weighted sums as   
in (11). 

 

Figure 8. The simplest case of periodicity, 2-period 
(p=2).  

The lower the period, the smaller is the number 
of conditions in the form of (12) to be satisfied 
by the CML. This explains why small period 
patterns appear more frequently in simulations 
of CMLs. In general, for a p-period, the number 
of conditions to be satisfied in a lattice with 3-
vicinity and invertible node function is 12 p  
for the central node (see Figure 9), moreover a 
number of )12()12(  pp  conditions must be 

satisfied to guarantee that the 12 p  points on 

the row pn  , which determine the periodicity 
condition for the central node on the row n, are 
periodically evolving.   

 

Figure 9. The 3-period case of periodicity, for 
infinitely large lattices 

The above discussion shows that small periods 
are more probable in CMLs with invertible 
node functions.  

3.2 Formation of small triangular patterns  

The above discussion also explains the 
formation of triangular patterns that 
spontaneously form and die out, as in Figure 6. 
Indeed, suppose that a number of 7 adjoin 
nodes on a row of a CML have the same value, 
moreover that value y satisfies the condition 

xxxxf ),,( . Then, the value x is guaranteed to 
survive in the triangle whose basis is composed 
of the 7 nodes, see Figure 6, but not more than 
in the triangle. That is, a triangular pattern 
forms, then dies out. Smaller or larger 
triangular patterns are produces in a         
similar way. 

The occurrence of 7 nodes with the same value 
is improbable in a crisp CML. However, the 
condition of equality can be relaxed to the 
conditions Iyy nknk  ,3,3 ,, , where I is a 

(small) interval, and Iyyyf rsrsrs  ),,( ,1,,1 , 

 },,{ ,1,,1 rsrsrs yyy  },,{ ,3,3  nknk yy  , that 

is, in all relevant vicinities. The above 
conditions are easily satisfied in fCMLs and 
CfMLs, because of the operation based on 
m.f.s, which inherently are selecting intervals.  

3.3 Row symmetry preservation and 
periodicity issues  

In this subsection we consider CMLs with 
finite rows. We show that in these CMLs, the 
effects occurring at the edges of the lattice are 
essential in determining the lattice behavior. In 
this context, we address the following 
questions: i) If and when should we expect that 
a symmetric row is transformed into a 
symmetric row; ii) How many rows should we 
compute to make sure a specific pattern, like 
periodicity, or strip-like pattern is preserved? 
iii) Can the answers to the above questions be 
independent on the cell function f ? 

The following properties hold: 

Property 1. In a lattice with identical cells, 3-
vicinity, with finite rows of width 12 N , with 
no boundary conditions (free boundaries) or 
with symmetric boundary conditions, a 
symmetric row necessarily generates a 
symmetric row. The property is true for crisp 
CMLs, fCMLs and CfMLs. 

y k, n+2 
n + p 

n + p -1 

n + p - 2 

p = 2 
n 

k y k, n 

k – a kk - 3 k + 3 k +a 

n + 3 

n + 2 

n + a 

n  
n + 1 

p = 3
7 cells 

contribute to
periodic 

patterns with 
period p =3 
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The property results from the conditions 
imposed and from the symmetry of the vicinity 
and from the expression of the node function. 
Because of the symmetry of the row with index 
t, the output of the nodes tsNy ,1  and tsNy ,1  

are equal, for all Ns 1 . Therefore, whatever 
type of aggregation function ()g  is used by the 
nodes, the following equality holds, 

)).,,((

)),,((

,2,1,1,1

,2,1,1,1

tsNtsNtsNtsN

tsNtsNtsNtsN

yyygfy

yyygfy








 

As a consequence of the above property, once a 
symmetric row is created or spontaneously 
occurs in a CML or FCML, only half of the 
structure needs to be computed thereafter. 
Notice that the property holds whatever are the 
aggregation and node functions. 

Property 2. Under the same assumptions as in 
Property 1 (no boundary conditions case only), 
if two rows of the lattice, with indices t  and 

14  Nt  are equal, then the CML has period 
14 N . The property does not depend on the 

type of nodes (crisp or fuzzy) and holds for 
both fCMLs and CfMLs. 

The proof of the property relies on geometrical 
considerations. A node on the border of the 
lattice, as node B in Figure 10, propagates its 
influence through connections to other nodes 
until the other border, in node C placed exactly 
after N2  lines. On whatever other allowed path 
we determine the influence of the node B on a 
node placed on the line 12  Nt , the path has 
a length of exactly N2  edges in the lattice, see 
Figure 10. The sub-lattice delimited by the 
rows t  and 12  Nt  is thus performing as an 
elementary block of the lattice. 

   
Figure 10. The boundary-reflection and boundary-

to-boundary driven pattern formation 

Consider two successive block of 12 N  rows, 
with the last row of the first block identical to 
the first row of the second block. Then, it is 

apparent from Figure 10 that after 14 N  rows, 
the paths from any node on the line t  and any 
other node on the line 14  Nt  repeat. We 
name the value 14 N  inherent lattice period. 

Because of the repetition proved above, 
whenever two lines with indices t  and 

14  Nt  are equal, we are guaranteed of a 
period 14 N  and can stop computations of the 
lattice. The search of periodicity in a lattice 
with large N is thus simplified, because instead 
computing, say N100 , we need to compute 
only 14 N  lines if a line repeats. Because the 
simulation of the CMLs and of the networks of 
fuzzy systems is computation intensive [18, 28, 
32], any result that reduces the computation 
load, as the above one, helps in the 
implementation. 

Property 3. Under the same assumptions as in 
Property 1, if two rows of the lattice, with 
indices t  and )14(  NQt  are equal, then the 

CML has period )14( NQ . 

The property follows from the same 
considerations as for Property 2. 

As a practical consequence of the above 
properties, no simulation shall include less then 

12 N  rows, to derive a viable conclusion on 
the pattern formation. The second and third 
properties hold for fCMLs and CfMLs as well. 
These properties provide an indication on the 
number of rows to be computed for 
determining if itinerant chaotic behaviors 
occur. Because the basic structure of the 
bounded lattices has 14 N  rows, at least 
multiple of a few tens of 14 N  lines must     
be computed. 

5. Discussion and Conclusions 

Following [26], we thoroughly discussed the 
concepts related to coupled map lattices that 
use FLSs as nodes of the lattice. Special 
emphasis was placed on examples of processes 
that can be modeled with fuzzy coupled map 
lattices. We have stressed that such lattices are 
appropriate to model social and economical 
processes; moreover, we provided simplified, 
but viable examples for such processes.  

The rational of using FLSs as cells in the CMLs 
is multi-fold. In the first place, FLSs are 
suitable to model systems with inherent 
imprecision or with uncertainties. Moreover, 
FLSs with defuzzifier represent universal 

A 

2N+1 

N N
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N 
The first line: 

initial condition
B 

The first line 
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influence of the 
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approximators for smooth functions on 
bounded intervals. Consequently, there is a 
guarantee that a large range of applications is 
treatable with such models.  

We provided explanations for several features 
occurring in crisp and fuzzy CMLs, such as 
triangular patterns, strips, and periodicity. We 
determined necessary conditions for periodicity 
in linear CfMLs and conditions for the minimal 
number of iterations in simulations of CfMLs 
to determine if a period p occurs. Estimations 
of the required number of iterations to 
determine periodicities in CMLs have been 
derived. The results related to patterns 
formation are valid for crisp as well as fuzzy 
coupled map lattices. 
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